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We calculate the baryonic properties, such as masses and magnetic moments, for the octet and
decuplet baryons. The finite mass of the strange quark is taken into account. Results are presented
for hidden gauge and massive Yang-Mills-type models.

I. INTRODUCTION

Recently, a large interest in strange Skyrmions has
developed. In particular, models which use the Callan-
Klebanov bound-state quantization method' have been
investigated. ' One of these models incorporates vector
mesons into the strange Skyrmion, leading to remarkably
good agreement between theory and the experimentally
known S=1 baryon masses. Similar results have been
obtained in strange chiral bag models. "'

We present here a perturbative approach to the prob-
lem of incorporating nonvanishing strange-quark mass.
We use the term perturbatively in the sense that we in-
clude the mass of the strange quark after we calculated
the underlying Skyrmion. This is somewhat opposite to
the Callan-Klebanov method, which assumes that the
strange quark is very heavy. The problem of extending
the SU(2) pseudoscalar Skyrmion, containing only pions,
to an SU(3) pseudoscalar Skyrmion, i.e., describing the
baryon octet (spin —,

'
) and decuplet (spin —,

' ), has been ad-
dressed earlier. ' ' However, in the light of the success
of models incorporating vector mesons into SU(2) Skyr-
mions, ' we will attempt the extension of gauged, i.e.,
including vector mesons, SU(2) Skyrmions to SU(3). Our
perturbative approach is presented for the pure pseudo-
scalar Skyrmion and two gauge variants of the Skyrmion,
which include the vector mesons. One method of gaug-
ing is the hidden gauge theory and the other possible
gauge procedure is the massive Yang-Mills model. '

Besides the octet and decuplet masses we will calculate
the magnetic moments and the electromagnetic mass
splittings in a perturbative fashion.

The paper is organized as follows. First we shortly re-
view the three different models, including the necessary
Ansatze for solving the energy and moment of inertia
functionals. In the next section we calculate the magnet-
ic moments of the octet baryons, using SU(3)-symmetry
arguments and the vector-meson-dominance approxima-
tion. The following section treats the SU(3) mass symme-
try breaking due to the nonvanishing quark masses. In
the last section we present a discussion about the quality
of the predictions and the involved approximations.

II. THE MODELS

There exist several models in order to describe the nu-
cleon and the delta in an SU(2)-Skyrme theory. One can

use either the pure Skyrmion models with' or without
pion mass terms' or a gauged Skyrme model, i.e., includ-
ing vector mesons. The second category, namely, the
gauged Skyrme models, contains a whole variety of
different approaches and approximations.

We are classifying the gauged Skyrme model by their
way of gauging. There are two choices. Either the global
symmetries of the nonlinear cr model are gauged, the
massive Yang-Mills case, ' ' or a hidden local symmetry
is used, the hidden gauge model. It can be shown that
these two types of gauging can be reproduced by a more
general Lagrangian and they are thus the "same" at an
effective level, ' but this is only of academic interest here,
since the "equivalence" on an effective level does not im-

ply that both models lead, a priori, to the same physics. '

We split this section into three parts, the pure Skyrme
model, the massive Yang-Mills model, and the hidden
gauge model, which we are reviewing briefly.

The main idea is to extend the well-known methods for
SU(2) Skyrmions to SU(3) by first assuming that all the
quarks have vanishing mass and then calculating the per-
turbations caused by nonvanishing quark masses. In a
second approach we assume that all pseudoscalar mesons
have the same mass, the mean SU(3) pseudoscalar-meson
mass =408 MeV. Note that we assume throughout the
paper f =fr =f„.

A. Pure Skyrme model

The first to treat the SU(2) Skyrmion extension to the
SU(3) Skyrmion was Guadagnini, ' followed by several
other authors. ' ' All treat the SU(3) problem the same
way, by assuming complete SU(3) symmetry and then
treating the symmetry-breaking terms perturbatively.
However, somewhat different attempts have been made
to tackle the SU(3) Skyrmion problem, by diagonalizing
the broken Lagrangian, by assuming that strange
baryons consist of a SU(2) Skyrmion and a bound K-
meson state, ' and via algebraic quantization. '

Here we will restrict ourselves to the method intro-
duced first by Guadagnini, ' which we describe below.
Consider the pure massless Skyrme model together with
the Wess-Zumino-Witten term. The action is then
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i&c
I s„wz= f Tr(L„)+ Tr[L,L ] d x+ f,E"' Tr(L„L L LpL )d x,32e' " 240~2

where the currents are

L,„=U'a„U

and the chiral field is

y.U=e

where W, (a =1, . . . , 8) is the pseudoscalar octet and e is
a parameter. Witten showed that the Wess-Zumino-
Witten-term ensures the quantization of the Skyrmion as
a fermion (spin —,', —', ) and that for the Skyrmion soliton
solution the baryon number is equivalent to the topologi-
cally conserved winding number [~3(SU(3)}=Z]. Note
that the %'ess-Zumino-Witten term does not contribute
to the classical energy nor to the moment of inertia, due
to the fact that m, (SU(2) ) =0.

The stationary Skyrmion soliton solution is achieved
via the celebrated hedgehog Ansatz: namely,

cose+ is"r sine 0
0 (2)

U(t)=A(t)UA (r), (3)

where U is given by Eq. (2} and the time-dependent ma-
trix A H SU(3).

The baryonic wave functions can now be described by
the generalized SU(3) 2) functions: i.e.,

q(A)=&'.g(A)=& I&'"'lP&, (4)

The choice 6(0)=m. and 6( oo ) =0 ensures that the wind-
ing number, i.e., the topological charge connected with
the mapping equation (2), which is equal to the baryon
number, is 1.

The quantization of the Lagrangian connected with the
action equation (1), is achieved by the collective-
coordinate method'

where [n] denotes the representation of SU(3),
a=(Y,I,I3) whereas P=(1,S, —S3).' Some wave func-
tions are, e.g.,

Ys = —1/2

g,"= „,=2 Z&o, l, lie(')ll, ,', ,'&,

„,=&10&—2, 0,0ln(")l 1,-'„——,
'

& .

The SU(3) X/ functions are normalized according to

H =M+ (Cq —
—,
' }+—1 1 1

2A~ 2 A~
J2+1

1

where J is the spin of the baryon and the ellipsis
represent a number of additional terms depending only
on Xc (Ref. 23). Note, that the hedgehog Ansatz equa-
tion (2) implies that after quantization spin and isospin
are identical I=J.

The constant Cz in the Hamiltonian is the quadratic
Casimir invariant and depends only on the representation

[n]: e.g.,

C~[8]=3, C~[10]=6 .

As a result of the specific values for Cz the nucleon-delta
splitting is the same for SU(2) as for SU(3) Skyrmions:

3Ma&= +(symmetry-breaking terms) .
2A1

The mass and the moments of inertia for the pure pseu-
doscalar Skyrme Lagrangian are given by

f (2)())'2)(~ )dp(a)= . 5" 5 5&dim n

The adiabatic rotation quantization procedure according
to Eq. (3) leads to the Hamiltonian of the form

2 2e 2e
M =4 ( 6' +2si 6)+ 26' +

0 2 2e
(6)

sin 8 2Ai=4m ', r f s—in 6+ (r 6' +sin 6) dr,
e

A&=4m —,
' r f (1—cos6)+ (r 6' +2 sin 6) dr,2 2 1 —cosO

r

0= +2sin 0 8"+0' sin2B+ —8' — —+r, 1 sin2e sin28,
2 4 y~ (9)
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where the equation of motion, Eq. (9) is achieved by
minimizing the energy functional M Eq. (6). The variable
r is defined by r =ef r. The resulting values for the func-
tionals, Eqs. (6)—(8) as functions off and e are'

f. 56
M =73, A1=, A2=f e f e

Note that we are able to express all physical quantities in
terms of a geometrical factor times a product of powers
of e and f in the pure Skyrme model, ' due to the trans-
formation r ~r.

The Hamiltoniav is not unique, we can add terms
which vanish in the classical limit. These terms can
change the total energy.

The method of quantization and the form of the Ham-
iltonian are preserved in the gauged Skyrmion models,
with some special choice for the vector-meson fields.

B. The massive Yang-Mills model

play a special role: namely, the co and the P. We will al-
ways assume ideal co-P mixing, i.e., co —( —,

'
)
' ~

A,

+(I/&3)A, and P —( —')'~ A,
—(1/&3)A, . If we choose

the hedgehog Ansatz for U Eq. (2) and take the Ansatze
for the vector mesons consistently, we see that the P field
decouples from the Lagrangian even including the Wess-
Zumino-Wit ten term.

The Lagrangian X' is not complete yet, the gauged
Wess-Zumino-Witten action is still missing. Gauging the
Wess-Zumino-Witten action leads to'

XvM= X'+
2 co„e„pTr[2V (U apU+apUU )

64m

+V U VpU]

+
2

co e pTI( U'a. VV'a. VV'apV)
48 2 p pVCXp

We could have added an SU(3)-symmetric term contain-
ing the pseudoscalar-meson masses of the type

The massive Yang-Mills model starts with the non-
linear sigma model together with the Wess-Zumino-
Witten action. We consider the nonlinear o. model first.
The Lagrangian for the nonlinear 0. model is

3f72 +4PP1 + Pal "f Tr(U+U —2)
32

Pl
p f Tr(U+ U —2) (15)

2

4
Tr(a„Ua„U ) (10)

with f as the pion decay constant, f =93 MeV, and U
the usual chiral matrix, see Eq. (2).

We can now introduce the vector mesons are gauge
particles of a U(3) v symmetry; i.e.,

D„U=a„U i [V„,—U],
where we absorbed the coupling constant into the
vector-meson field. After adding the kinetic energy of
the gauge fields and their masses we get

2
1 2

Tr(D„UD„U ) — F„+ V„, (12)
4 P P 4 2 P~ 2 P

where we assumed that all vector mesons have the
same mass m; i.e., X' is SU(3) symmetric. From now
on we will always use the phenomenologically successful
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (KSFR)
relation for the determination of the coupling strength

0 1

V;= Ae~k;r r" AJA +2Ae; kr r/k "Q(r)At,k G(r)

' 1/2
2

VD= Ace(r) — + — A
2 2 3

(16)

+2A [ G&(r)k'A. '+G2(r)A, 'r r'r r Jkj

+S (ir)A,
' k']At

where the i,j,k run from 1, . . . , 3 and the a from
4, . . . , 7. The k's are defined as k = —(i/2)Tr(A AA. )

with +=1, . . . , 8. Again the Hamiltonian is, similar to
the pure Skyrme-model equation (5),

without spoiling the properties of the Lagrangian equa-
tion (14). The necessary Ansatze for solving the Lagrang-
ian equation (14) are

r

cose+iv"r sine 0

m2 m2 m2 —2g2f2
p co 7T (13)

Note that V„consists of a nonet of vector mesons V„'A,'.
There are two of them [A, =(—', )'~ and k —Y] which

1 3 1 1 1H =M+ C ——+ — — J
2A2 4 2 A2 A1

L

with the functionals now given by (see Ref. 12)

(19)

2

M=4m [r 6' +2sin 6+2sin BG(G —2)]+2f 6 f r co + [——r co' +G' + —,'G (6 —2) ]2 2 2 2 2 2 1 2 t2

+ [4coe'sin 6+co'sin2OG (G —2)] dr,
16~

(20)
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A)=4m —,
' ~ sin 8 6) —1 +2 „r 6)+—,

'

+
2

[4G (6f+G, G2 —2G, —62+1)+3r G', +r G2 +2r GIG2+2(G~ —2G+2)G~2]
3g

Q' +2 +2f g Q + [2Q6'(2sin 6—
G&

—G2)+Q'sin28(GG, —G —G2)] dr,
6g 2 r 8a

(21)

2

r [(1—cos6)(1 —Sz) +4S&+4S&]+ [2r S„' +G (Sv 1)—] dr . (22)

A pseudoscalar-ineson mass term X» would change the functional M equation (20) to

M'=M+m„J' (1—cos6) .

From the functionals (20)—(22) we get the equations of motion via a variation of the functionals versus the fields

2, (1—G)8"= ——8'+ sin28+ co'[ —2 sin 6+G ( G —2 )cos26],
r 8rr2f 2r2

2+6"= G(G —1)(G 2)+2f~ —G+g f„sin 8(G —1)— co'sin28(G —1),
r 2 16m.

(23)

(25)

co"=— co'+2f—~ co g—6'sin 6+ g [G(G —2)6'cos26+G'(G —1)sin26],
r 4~2r 2 87T2r 2

2+
G&' = ——G'&+g f„[sin 6(G, —1)+2G&]+ [G (G, —1)+2(G —1)Gz]— [Q'(1 —G)sin26],r r & r

(26)

(27)

Gq' = ——G2 —g f [sin 6(G, —1)—262]+ [G G, —G +2(G —3G+3)G2]r r
g2

[Q6' ——,'Q(1 —G)sin26 j,
8m r

2

Q" =2g f Q+ Q+ [ —28'(2 sin 6—G, —Gz) —26'cos26(G —GG, +G, )
Z2 2

(28)

+sin26(G'G, —G'+GG', —G', )],
62

Sv= ——S~+ (Sv —1)+f~ [(1—cos6)(1 —S~)+2Sv] .

(29)

(30)

The incorporation of X» would add only m~ J' sin6 to
the right-hand side of Eq. (24). Note that the Az and the
equation of motion for Sv do not contain remnants of' the
Wess-Zumino-%"itten term, due to the special form of the
Ansatz for A2. The equations of motion, together with
the condition that at r = ~ the vacuum should be ob-
tained and that 6(0)=m, which translates into a baryon-
number-1 solution, are leading to the following set of
boundary conditions:

6(0)=m, 6( oo ) =0,
G (0)=0, G( ao ) =0,
~'(0)=0', ~( )=o,

'

G', (0)=0, G, (ao)=0,
G2(0) =0, G2( ao ) =0,
Q(0) =0, Q( ~ ) =0,

Sv(0) =0, Sy( ~ ) =0.

The resulting values for A; and M are, if we take

m =2f~ =(770 MeV) and f =93 MeV,

M =976(1143) MeV,

A, =0.36(0.22) fm,

A2=0. 13(0.07) fm .

The numbers in parentheses are obtained if we take L„,
with m, =408 MeV into consideration. Surprisingly, the
mass of the soliton is close to the experimental nucleon
mass, but the moment of inertia A, is much too small. It
should be =1 fm in order to agree with the octet-
decuplet splitting. If we include the pseudoscalar-meson
mass we get a soliton Inass which is about 20% larger
than in the massless case. The values for the moments of
inertia are smaller, which can be easily seen if we recall
that a finite pseudoscalar-meson mass changes the con-
vergence for large distances of the chiral field 0 from a
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polynomial to an exponential behavior.
Note that A2 is not directly accessible via experiment. L v=f Tr V„——(()„g' +()„g g)

1

2L

2

(39)

C. The hidden gauge model

U(x) =gL(x)gR(x) (31)

where the Ps are SU(3) matrices. Additionally we intro-
duce a U(3) gauge field V„(x) with

In the case of hidden gauge theories the method of con-
struction is different from the Yang-Mills case. The
stress is in the hidden gauge case more on transformation
properties of chiral nonlinear Lagrangians. The con-
struction of chiral nonlinear Lagrangians from required
underlying transformation properties dates back to the
late 1960s. ' We can postulate a hidden symmetry
group U(3) v in the nonlinear o model by parametrizing
the chiral matrix U. Consider the chiral matrix U in the
form

%"e can construct a Lagrangian from these two invariants
which, after adding a kinetic energy for the gauge fields,
reads

2

&Ho= — T—«D„4.(L D„CR4 )'

—a Tr(D„)L/L+D„g g )
— Tr(F„, ) .

(40)

The choice a =2 ensures the famous KSFR relation. It
is interesting to note that g is in the B = 1 sector a singu-
lar map from % U « to SU(2). This singularity is the
driving force for the nontrivial p field.

The field-strength tensor is given by

V„(x)= V„'(x)

The transformation group now reads

[SU(3)L XSU(3)R] „b„X[SU(3)LXSU(3)R]„„)

with

(32) F„.=a„v„—a,v„—i[v„v„] .

The Wess-Zumino-%'itten term can be introduced by a
procedure which was first used by Fujiwara et al. They
showed that one can add a number of terms to the Wess-
Zumino-Witten term without spoiling its anomalous
properties:

(L(x)~h (x)(L(x)gL,

gR(x) —+h (x)gR(x)gR, (33)

6
rwz=r(w'z)+ y f c,l, d4x (41)

V„(x) h(x)V„(x)h (x)+ —h(x)() h (x),
g

where h (x ) H U (3 ) v. Obviously

U=gLgR (gI gLh )(h(RgR) —gLUgR .

The covariant derivative is defined by

Dp ((L R)(x) = (() jv )g(L R—)(x);
i.e., we do not simply replace B„Uby D„U. Again we ab-
sorbed the coupling constant g into V„. %'e can con-
struct two [SU(3)L X SU(3)R ]s»b, ) X [SU(3)V])«,(
X [parity] invariants from these derivatives:

2

Tr(D„gL gL D„gR gR )—
4

(35)

pPvaP fr( ~L&L~LC(R &L&RC(LC(R )1 p v a p p v a p

e) vaP fr( &L&L&L&R+&L&RC(L~R )2 p v o p p v o p

(45)

(46)

The X, are invariants which conserve physical but break
intrinsic parity.

Using the following definitions (the A„'s are global
gauge fields, i.e., independent from Vz )

~p, D(r, k(L, R)S(L,R)
(L,R) (42)

s„v.=a„v„—a.v„—i [v„, V.], (43)

g(LR)=g ((1pv b(L R) p v v p

—([a„"",W(,LR)])g'„R), (44)

the invariants are given as

2

4 Tr(D„(L(L+D„gRjR ) (36)
pvaPTr[ ( Fv (~L~L ~R~R ) ]

=je('vaPTr[ 'gV (~ ~ —~ ~L)]

(47)

(48)
Gauge fixing with

k~L =4 =0
leads to

2

(37)

e)r, vaPT (
)~ y L R R ) pR L~L)

5 pv o p 2 p, v u p

—&. &PvaPTr( ) y L &L&R ) FR &R&L)6 pv o p 2 pv o p

The phenomenologically best actions are given by

(49)

(50)

& ~ =f'.Tr . (d„A' d„A)——1
I wz 1 wz 15C(c(X4+X6+c2X)) r (51)

2

Tr( B„U()„Ut
) (38)

where the choice c& =1 and c2= —
—,
' leads to partial

vector-meson dominance (PVMD) and the choice c, =1
and c2= —

—, to complete vector-meson dominance1 26, 9

(CVMD) with
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iNc

240m

Now the Lagrangian reads
6

HG
—XHG+ g ciXi. +X~, (52)

Again we could have added the pseudoscalar-meson mass

Pl pg f Tr( U+ U —2)

without spoiling the properties of the Lagrangian equa-
tion (52). The Hamiltonian for the hidden gauge theory
is

where the XHo is defined in Eq. (40) and the L; are given
in Eq. (41). X are the kinetic and massive parts of the co

meson
H =M+ 1 3 1 1

C ——+—
2~2 4 2 A

J2
2

(53)

2
r2 ~ 2

CO CO

2g 2

Taking now the same Ansatze as in the massive Yang-
Mills case yields

M =f d r 6' +2 +2 (G —1+cosB) + 2G' + 1
(co' +2g f co )

2g

3Nc

16~2r 2
—2c2coe'sin e

C+ [—coB'6 (6 +2)+2 sinB( —coG'+ Geo')+co'(2 sinB —sin26)]
3g

(54)

A&=4nf —,'f r [sin 6+36&+26&Gz+Gz —2sin 6+4(6& —1)(cosB—1)]

+ [4G (G, +G, G2 —26, —6&+1)+3r 6', +r G2 +2r G', G2+2(G —26+2)G2]
3g

0Q' +2 +2f~ Q
2 2

C
+ 2c2QB'sin 6+ [QB'(262+6, —6 —GG, )+Q'(2sinB —sin26) —Q sinB(G'+6', )

+Q'sinB(6+G, )] dr, (55)

A =4m r (1—cosB)+4 S —1+cos-f' e
2 2 ' 2

+ [2r Sy+6 (S~ 1) ] dr —.
2g

(56)

A nonvanishing pseudoscalar-meson mass changes the mass functional to

M'=M+m J' (1—cosB) .

The equations of motion resulting from minimizing the functionals M, A&, and A2 Eqs. (54)—(56) are given then as

(57)

6"= ——8'+ sinB( 1 —G —
—,
' cosB )

r r 2

+ Ic|[2'(GG' —6'+ 6'cosB)+co'(6 —2G —2+4sin 6)]+6c2co'sin BI,
16m r

2

6"= 6(G —1)(G —2)+2g f (G —1+cosB)— c, [coB'(6+cosB—1)+2''sinB],1 2 2 Ncg
2 16m. r

2

co"= — co'+2g f co+ Ic,—[26'(1—G)cosB+4sinB(6'sinB —6')+6'(6 —26 —2)]+6c 6'sin 6I,
16m r

(58)

(59)

(60)
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G", = ——G', +2g f G, —4g f sin —,'B2

+ [G (G, —1)+2(G —l)G2]+ c, [QB'(G —1+cosB)+2Q'sinB],1 2 Xcg
1

16m r
(61)

G2'= ——Gq+2g f G2+4g f sin —'B
2

+ [G (Gi 1)+2(G —3G+3)Gz] — c, [QB'(G —5+cosB)+2Q'sinB],1 2 Xcg
r 2 16m r

(62)

2

2
Q+2g f Q+

2 (c, t B'[(Gi —G+2)cosB —2G2 —GGi —G, —G —2+4sin B]2, , &cg
2

+2(G2 —G')sinBI+6c2B'sin B), (63)

S = ——S + (S —1)+2f~ S —1+cos—2, 6 2 2 8
v v 2 v V 2

(64)

If we take the nonvanishing pseudoscalar-meson mass
into account the right-hand side of Eq. (58) gets an addi-
tional term m J' sinB. The equations of motion are
subject to the boundary conditions, due to the fact that
we want to have a B = 1 solution and vacuum at r = ao:

B(0)=n,
G(0)=2,
~'(0) =0,

Gi(0)=0,
G~(0) =0,
Q(0)=0,

Sv(0) =0,

B(00)=0,
G(oo )=0,
ro( oo )=0,
Gi(~ )=0
G2( ca )=0,
Q( oo )=0,
S~(~)=0

= 1293(1412) MeV (CVMD),

A, =1.84(1.06) fm (PVMD)

=0.85(0.53) fm (CVMD),

A2=0. 56(0.23) fm (PVMD)

=0.28(0. 14) fm (CVMD),

where the numbers in parentheses correspond to the case
including X~,.

The masses are larger than in the massive Yang-Mills
model, due to the nontrivial boundary conditions in the p
Geld. The moment of inertia A& is surprisingly close to
the experimental value of = 1 fm.

Again, including the pseudoscalar-meson mass yields
smaller A; and a larger mass M. This is a result of the
change of convergence of e from po1ynomial to exponen-
tial.

The resulting values for the moments of inertia A, and
the inass M are, if we take m =2f~ =(770 MeV) and
f =93 MeV,

M=1547(1817) MeV (PVMD)

III. EI.KCTROMAGNKTIC PROPERTIES

J„ II =i-I „+Z„. (66)

Alternatively we can use the notion of current field iden-
tities in connection with vector-meson dominance (VMD)
for the construction of the electromagnetic currents. The
VMD current field identities are

2mJP= — pp p

2Pl ~
Jp CO@

g

(67)

(68)

We can identify these currents, Eqs. (67) and (68) as the
electromagnetic I =0, I = 1 currents, respective1y.

We consider nucleons first. In all models either pure
or gauged we are able to read off the form factors Gz M
immediately, once the currents are given. Using the Breit
frame we get for the spin- —,

' Skyrmion ' the following
nucleon matrix elements between final state f and initial
state i with the momenta q/2 and —q/2, respectively:

J(0)X; —+ =
& I Xq~

The s3 are the initial and final spins of the nucleon along
the z axis and u is the spin operator. For the axial-vector

The electromagnetic properties of the classical and the
gauged Skyrmions can be extracted by constructing the
Noether currents corresponding to the global symmetry
U(3)l XU(3)ii of the Lagrangian.

The electromagnetic current can be easily read off:

(65)
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current we take only the transversal part. The
adiabatical quantization procedure leads to o.

—2iATr(A Ar). The magnetic moments are given
by G~(0).

The magnetic moments of the other octet baryons can
be calculated by using the transformation property of the
charge operator g (Ref. 29), since our baryon wave func-
tions have good hypercharge and good isospin. The

transformations of Q under SU(3) leads to

Pp Pg+~ Pn P=o ~

S A
= —(V, +V. » V,-=a=- .

In the pure pseudoscalar case without pseudoscalar
mass the magnetic form factors are given by

si e i 'e
r 2 (69)

leading to the magnetic moments via Ps v
=lim~ OG

' (q ) (Ref. 30)

—,'(p +p„)=0.489,
2690

—,'(p —p„)= =3.05 .
e4

In the determination of the magnetic moments for the
gauged Skyrmions we will use the approximation of
vector-meson dominance leading to the form factors

dition G(0)=2 in the hidden gauge case. Note that in
the massive pseudoscalar-meson case the vectorial mo-
ments are much too small.

IV. EXPI.ICIT SYMMETRY BREAKING

There are two different sources for the explicit symme-
try breaking. The first contribution resides in the
pseudoscalar-meson sector

2
s Mm~2

G~ = — f r Aj i (qr)dr,2
q

2
8 M

G~ = f rGj, (qr)dr .
3 g q 0

(70)

(71)

m~sU(3) f2Tr( U+ Ut 2)m 4

2 2

f Tr[ks(U+U )]
2 3

(72)

This vector-meson dominance approximation leads to the
magnetic moments (the numbers in parentheses are the
results including the Xp, )

0.26(0.27) (PVMD ),
—,'(p +p„)= 0.20(0.25) (CVMD),

0.47(0.51) (YM),

with m„, = —,'(3m +4mx+m„). The first term in Eq.
(72) expresses the nonvanishing pseudoscalar-meson mass
and the second the mass difference between pions and
kaons. The first term is included into the numbers quot-
ed in parentheses.

The two terms lead to the following contributions to
the Hamiltonian:

3.27(1.71) (PVMD ),
—'(p —p )= 1.80(1.11) (CVMD),

0.52(0.29) (YM) .

m m
&H = f d x — f~Tr[gs(U+Ut)],

f f d x Tr(U+Ut —2) .

(73)

(74)

If we use the Noether currents together with the approxi-
mation of the Wess-Zumino-Witten term by a ym term
we get the hidden gauge model

Note that the first term breaks the SU(3) invariance due
to the occurrence of A, 8.

The second source resides in the vector-meson sector

0.20(0.22) (PVMD ),
0.20(0.24) (CVMD),

2 2m + —m
AH =fd r — Tr(A, sV ).

4 3
(75)

2. 52(1.38) (PVMD),
1.99(0.97) (CVMD) .

Note that the results differ only slightly for the scalar
magnetic moments. The large difference in the isovec-
torial magnetic moment between the Yang-Mills model
and the hidden gauge model is due to the boundary con-

However Am is

Am = f (m~ —m )f (1 cosB)r dr—(77)

for the pseudoscalars (73) and for the vector mesons (75),

Both Eqs. (73) and (75) show the same property; i.e.,

BH =b,m Tr(A A,8A) . (76)
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gg 2

2 2m +
—m

4~f r'dr— C ——' —I g2 0 6
2

S2+ 462+8G2G1+1261 3
2

+
2

2 1
1 I

(Nlb, HIN) = —
—,', &m,

«I~HIA &
= —

—,', ~m,

& & I&HI& & =+
—,', am,

& =-laHl=- & =+ —,', ~m,

(79)

(80)

(81)

(82)

for the hidden gauge as well as for the massive Yang-
Mills model.

C2 is the quadratic Casimir invariant and I the expec-
tation value of the 'square of the isospin.

Following Ref. 18 we get, for the octet (spin- —,
'

baryons),

(=- I~HI=-*&=+,~m,

(nlSHln&=+-', am .

But now with

Zm~'i ——am +am'"
7T p

hm" '=Am +Am" '
p

All baryons get additiona11y a contribution 5H:

5H' '=5H' '+5H 5H" '=5H" '+5H
P P 77

with

(85)

(86)

(87)

(88)

and for the decuplet (spin- —,
' baryons)

(glZHlx) = —
—,'am,

& a*I~HI~" & =o,

3m +4m + +m —8m
5H = Tr(V )d r

P 32 I2

(84)
I

QH„=67rf„m, f (1 —cos8)r dr .

Note that QH =0 if we include X~, into our calculations.
The vector mesons give the contribution

47r r dr — +2 +
gg2 y2 6A1

0
3

2 +4G2+gG261+1261
r2

For the different models we get

am'"=am +am"'
7T P

=388 MeV Skyrme

=692(180) MeV hidden gauge (PVMD)

=300(92) MeV hidden gauge (CVMD)

=209(29) MeV Yang-Mills,

Zm'"' ——am +am'"'
'lT P

=388 MeV Skyrme

=695(182) MeV hidden gauge (PVMD)

=306(98) MeV hidden gauge (CVMD)

=204(78) MeV Yang-Mills,

SH"'=SH'"+SH (SH )P 'TT P

=2148 MeV Skyrme

=1925(95) MeV hidden gauge (PVMD)

=1199(89) MeV hidden gauge (CVMD)

=362(4) MeV Yang-Mills,

5H" '=5H" '+5H (5H )P 7T P

=2148 MeV Skyrme

=1928(98) MeV hidden gauge (PVMD)

= 1205(98) MeV hidden gauge (CVMD )

=358(16) MeV Yang-Mills .

The numbers in parentheses refer to the massive
pseudoscalar-meson case. Alternatively we can calculate
the singlet, the 27-piet, and the F and D masses leading to

m(|) =—(2m~+2m=+mA+3mg )

m&+ 0~H

m[27) 8 ( ~ ) (2m~+2m- —3mA —m= )
1/2

=0,
mF =

—,
' V2(2m& —2m- )

= —-'&2 SH8
8 7

mD = —
—,
'

( —', )' (2m&+ 2m-+2m A
—6m + )

1
(

2
) 1/2gH8

8 5
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TABLE I. The mass splittings in MeV for physical input parameters. The experiment is taken from
Ref. 31. The numbers in parentheses correspond to the massive pseudoscalar-meson case.

PVMD
The mass splittings

CVMD Expt

f.
g{e)
~N
~NA
M~q
M~=
M(l)

~8—&O

~Nb

M

~~a

93
5.85

3568(2923)
138(36)
275(72)
346(90)

3776{2977)
164(278)
285(309)

88(23)

172(46)

264{68)

93
5.85

3014{3156)
60{19)
120(37)
150(46)

3104{3185)
354(562)
406(578)

38(13)
76(25)

114(37)

93
5.85

2617(4803)
42{19)
84(37)
105(46)

2779(4830)
811(1351)
848(1370)

26(10)

52{20)

78{29)

65
5.45
3402

78
155
194

3528
293
370
41

82

123

93
5.85
939
176
254
379
1151
231
293
155

307

442

The numerical value of the singlet mass comes out much
too large about 200%, see Table I. Additionally we can
calculate the electromagnetic EI = 1 splitting for
~~, i =~ra, Maori, +~ »

The numbers in parentheses correspond to the massive
pseudoscalar-meson case. Note that the values for the
splittings are much too small, see Table II.

V. DISCUSSIGN

(m 0
—m + )f J (1 cose)r d—r

3.3 ( Skyrme),
1.6(0.4) (PVMD),
0.7(0. 1) (CVMD),
0.6(0. 1) (YM) .

(91)

In Table I we have listed the mass and mass splittings
for the octet and decuplet baryons. The very large nu-
cleon masses are due to the small values of A2, in all mod-
els. If we do not include the e8'ects of the quantization
A' s, we get better nucleon masses, see the individual list-
ings in Sec. II. Note that the 27-piet mass MI27~ vanishes
which is in good agreement with the experiment ( —2.7
MeV) (Ref. 31). However, the singlet mass is too large
and the F/D ratio turns out to be &5 as compared to
4.06 in the experiment. ' One of course rediscovers the
Gell-Mann-Okubo relations:

TABLE II. The magnetic moments for physical input parameters. The primed quantities for the

hidden gauge-model calculate the magnetic moments with the help of the vector-meson-dominance ap-

proximation. The experiment is taken from Ref. 31. Note that the values in the massive pseudoscalar-

meson case are much worse then the ones quoted in this table.

PVMD'
The electromagnetic properties

PVMD CVMD' CVMD Expt

f~
g(e}
pp
Pn

p
p, p

p
P~—

93
5.85
3 ~ 53

—3.01
3.53

—3.01
—1.5
—0.52
—0.52

0.32
0.80
6.4

93
5.85
2.72

—2.32
2.72

—2.32
—1.16
—0.40
—0.40

93
5.85
2.00

—1.60
2.00

—1.60
—0.80
—0.40
—0.40

0.14
0.35
2.8

93
5.85
2.19

—1.79
2.19

—1.79
—0.90
—0.40
—0.40

93
5.85
1.09

—0.05
1.09

—0.05
—0.02
—0.94
—0.94

0.12
0.30
2.4

65
5.45
3.53

—2.56
3.53

—2.56
—1.28
—0.98
—0.98

0.66
1.6
1.3

93
5.85
2.79

—1.91
2.38

—1.25
—1.14
—0.69
—0.61

1.29
3.3
2.4
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2(M~+M-) =3MA+M~,

M~ —M ~=M ~
—M ~=M g

—M

The deviations of the F/D ratio and the much too large
singlet mass suggest that the model does not have the
correct baryon wave functions or in the case of the singlet
mass that the absolute scale of the vacuum energy of the
theory is not well chosen.

The same applies to the magnetic moments given in
Table II. Note that the predictions from the Noether
currents are superior to the vector-meson-dominance ap-
proximation.

The electromagnetic AI = 1 splitting is much too small

in all models, which suggest that the splitting mechanism
needs additional contributions. The large contributions
of A2 to the total energy are casting doubts on the validi-
ty of the quantization procedure, although the octet split-
tings are well reproduced for the vanishing pseudoscalar-
mass case. We can, therefore, conclude that the pertur-
bative approach to the SU(3) Skyrmion problem is not
successful.
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