
PHYSICAL REVIEW 0 VOLUME 39, NUMBER 10 15 MAY 1989

Symmetry in string theory
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A general method for determining the target-space symmetries, both broken and unbroken, of
string theory is presented. Symmetries are shown to be consequences of a class of automorphisms of
the world-sheet operator algebra. This formalism is used to prove general coordinate invariance,
two-form gauge invariance, and non-Abelian gauge invariance in heterotic string theory.

I. INTRODUCTION

First-quantized string theory is formulated in a way
that is not very transparent. Our only handle on dynam-
ics is a set of rules for calculating on-shell scattering am-
plitudes in perturbation theory. In principle, this is all
we need to discover the outcome of any experiment
(indeed all we need is tree amplitudes, the rest of the
theory being fixed by unitarity), but these rules do not
make the physics particularly obvious, nor are they par-
ticularly easy to handle beyond the computation of a
small number of loops in a few particularly tractable va-
cua.

One of the most powerful tools in the elucidation of
important physical properties of a theory is its symmetry.
Indeed most twentieth-century physical theories have
been constructed by requiring that they exhibit certain
types of symmetry, chosen for reasons that were various-
ly aesthetic, phenomenological, or mathematical. Sym-
metries are usually quite striking in their physical conse-
quences, yielding conservation laws or dramatic regulari-
ties in experi, mental data. Most importantly for the
theoretical physicist, symmetries are usually much easier
to analyze than detailed dynamics. Modulo anomalies
(which are frequently exactly computable at one loop)
symmetries are manifested in the classical theory (i.e., at
the tree level) but yield results that are exact, even non-
perturbatively. Historically, the study of symmetries
(and especially the way in which they were realized) gave
important information about both the strong interac-
tions, which is the other complicated, nonperturbative
problem that has concerned particle physicists, as well as
the electroweak force.

String theory, on the other hand, has developed along
diA'erent lines, emphasizing the perturbative calculation
of scattering amplitudes over the study of invariance
principles. We have previously outlined a formalism for
discovering target-space symmetries in string theory. In
this and subsequent papers we will present a general
theory of symmetry in string theory. It is our hope that a
study of symmetries (and the way in which they are real-
ized) will prove to be as illuminating in string theory as it
has been in the standard model. For example, this ap-
proach may provide a useful guide for such problems as a
phenomenological (or perhaps even first principles)
choice of the string vacuum.

In field theory, finding symmetries is in principle
straightforward: the theory is defined by a classical ac-
tion, and we must seek transformations of the space-time
fields that leave it invariant. In first-quantized string
theory we cannot proceed in this way. We are furnished
with an action for a conformally invariant world sheet-
field theory in which the space time fiel-ds (i.e., the parti-
cles with which experiments are performed) do not ap-
pear. What we do have is a set of rules for computing
amplitudes as vacuum expectation values of certain pri-
mary fields (also called vertex operators) in this two-
dimensional theory. Historically, the claim that string
theory possesses general coordinate and gauge invari-
ances is based on the existence of massless vector and ten-
sor states of the string, and on the comparison of a few
tree amplitudes (at low energy) with the corresponding
amplitudes of general relativity and gauge field theories. '

Even for these generally accepted symmetries this is a
rather unsatisfactory state of aAairs. Are all tree ampli-
tudes gauge invariant at low energies? Does this invari-
ance hold at higher energies? After all, one of the great
virtues of string theory is that it is so unlike field theory
at high energies.

The problem of symmetry in string theory is much
deeper than this, though, because it is probable that
string theory possesses a much richer symmetry structure
than we yet know, of which gauge and general coordinate
invariance are but remnants. First, the particle content
and interactions of a string theory seem to be so tightly
constrained that they are essentially unique. Normally
this occurs because a symmetry is relating one coupling
and particle to another, as gauge invariance relates the
cubic and quartic couplings of gauge bosons. Second,
Gross and Mende have discovered that at high energies
(where we might expect a spontaneously broken symme-
try to be restored) scattering processes share certain
universal features, suggesting that all states of the string
are related by some enormous spontaneously broken sym-
metry. Elucidation of this symmetry will probably go a
long way towards answering the oft-posed question
"What is the underlying principle of string theory?"

In this paper we shall describe a general method for
proving the existence of symmetries in first-quantized
string theory, and illustrate the method by proving the
existence of the various massless gauge invariances of the
heterotic string: general coordinate invariance, two-form
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gauge invariance, and non-Abeliari gauge invariance (in-
cluding the full Es X Es case with spin operators). In the
latter case, we shall show how world-sheet anomalies lead
to the two-form transforming under the gauge transfor-
mation, a manifestation of the Green-Schwarz anomaly
cancellation mechanism, first shown by Hull and Witten
for the SO(32) case. A closely related example associat-
ed with an auxiliary gauge field of the four-dimensional
supergravity multiplet has already been discussed else-
where. We postpone to a subsequent paper a general

I

theory of the method, and a proof of the existence of the
higher symmetries discussed in the preceding paragraph.

II. THE METHOD

The tool that we shall use to prove the existence of
symmetries is the generating functional for on-shell am-
plitudes Z[@']. Z is a functional of the space-time fields
N' defined by the requirement that

((k„j,g„)=f gd I'„e " 'g„"5 Z[C&']/54„'(I', ) 5@„(1'„)~

where A& is the amplitude for the scattering of N parti-
cles of momenta k„and polarizations g„. However, the
amplitude is given by'

(2)

(The complete vertex operator would include an addition-
al factor of g„,e'"' ). Thus the generating functional be-
comes

Z [G„]= fDX exp —f d z G„(X)c}X"KX', (5)

where

The right-hand side of Eq. (2) is the vacuum expectation
value of a product of primary fields of the two-
dimensional (super)conformal field theory, ' with action
So, that defines the string-theory vacuum. " [We have
written Eq. (2) assuming that this conformal field theory
contains some free bosonic fields X corresponding to
some number of Hat-space-time dimensions, although this
assumption is not important. ] Writing Eq. (2) in
functional-integral form and comparing with Eq. (1) it is
not hard to see that the generating functional is given by

Z [N„']= fDX exp( —S~ ),
S,=S,—f d z@„'(X)Vf'(z) .

(3)

and the truncated graviton vertex is given by

Thus the generating functional is the partition function
for a family of two-dimensional field theories,
parametrized by the space-time fields. Since we use Z
only to generate on-shell amplitudes we need orily

differentiate Z in on-shell directions. We therefore only
need consider the partition functions for conformal two-
dimensional theories, "which is just as well, since only in
this case does Eq. (3) make literal sense. Nevertheless, it
is very tempting to extend Eq. (3) to include renormaliz-
able rather than simply conformal field theories (i.e., to
include an ultraviolet regulator and counterterms), and to
hope that in so doing we are getting some sort of off-shell

string theory. '

As an example, consider the generating functional for
gravitons in the bosonic string. In this case

So= fd z il„BXi'BX

G„„(X)= il„,+h „„(X).

h~, (X) is the graviton field and we interpret G„(X) as
the space-time metric, so that the family of conformal
field theories is the set of torsion free nonlinear o models.

A symmetry of the theory is a transformation on the
space-time fields that leaves Z invariant for all values of
the space-time fields:

Z [4']=Z [4&'+ 54'] . (6)

X"~X"+P(X)
the generating functional becomes

Repeatedly diff'erentiating Eq. (6) with respect to &0' and
making use of Eq. (1) yields Ward identities for ampli-
tudes. ' This is completely analogous to working with an
action, the only difference is that the action is the gen-
erating functional for one-particle-irreducible Green s
functions. However working with a generating function-
al for amplitudes does have one advantage worth men-
tioning (in addition to tractability). If, as is frequently
the case, we are interested in asking questions about am-
plitudes involving only a subset of the possible states of
the string, we simply put other fields equal to their vacu-
um values in the generating functional. Precisely because
we are using an explioi. tly on-shell formalism we do not
have to worry about "integrating out" the other fields as
we would if we were working with an action. In string
theory, with its large number of possible states, this is a
considerable advantage.

How do we demonstrate such an invariance? The first
method we discuss involves finding an appropriate
change of variables in the functional integral. ' Consider,
for example, general coordinate invariance in the bosonic
string. By making the change of variables
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Z[G ]=fDX J exp —f d z G„,(X+(')B(X"+P)B(X +P)
L

= fDX J exp —f1 z(G„„+g B&G„,+B„g Gi„+8+~G~i )BX"BX
L

=Z[G„+g BqG„+B„gGi +8 g G„i], (8)

where the third equality holds if the Jacobian of the
transformation, J, is unity. Under these circumstances,
Eq. (8) is a demonstration of general coordinate invari-
ance (at least for graviton amplitudes).

There is frequently some obstruction to choosing the
measure in such a way that the Jacobian is unity (though
not in the case at hand)' and we shall return to discuss
these anomalies later. However there is a more immedi-
ate problem with Eq. (8) insofar as the Jacobian is not
unity even naively. In constructing the generating func-
tional Z we consider amplitudes in a Aat background.
Since we did nothing to the functional measure, it
remains independent of 6„,and the Jacobian invalidates
the desired result. We could, however, restore the invari-
ance by changing the measure by introducing a factor of
the square root of the determinant of the space-time
metric pulled back to each point on the world sheet.
That is, let

DX ~DX[—G (X)]', G =det[G„„(X)] .

This would yield a new functional truly invariant under
coordinate transformations. To complete the proof of
coordinate invariance of string theory we must now argue
that this new, invariant functional remains a generating
functional for on-shell amplitudes. Di6'erentiating with
respect to G„[as in Eq. (1)] yields the desired amplitudes
plus unwanted terms from dift'erentiating the measure.
These unwanted terms do not contribute to amplitudes,
however, by the tracelessness of the graviton polarization
tensor. This form for the generating functional is by far
the most convenient and, henceforth, will be used ex-
clusively. Thus general coordinate invariance is proved.

The method described above works well for a number
of symmetries, but has certain drawbacks.

(i) Handling Jacobians properly takes considerable
care. This includes the anomaly problem alluded to
above.

(ii) There does not appear to be a general rule for
finding the appropriate changes of variables in the func-
tional integral. The nontrivial requirement is that the
generating functional be rewritten in the same form be-
fore and after the change of variables, with only the
space-time fields changing.

(iii) As a particular case of the above, spin operators
play a significant role in heterotic and type-II strings.
These operators are normal-ordered exponentials of
chiral scalar fields, which we need to transform to discov-
er gauge invariance or supersymmetry. Unfortunately
the desired transformations appear to be very complicat-
ed and nonlocal.

The origin of these difficulties is that we have not made
use of all the information available to us, in particular the
algebraic properties of the primary fields that are the ver-

tex operators. To remedy this we rewrite the generating
functional in the following way:

Z [@]=fDX exp( —S+ )

= lim tr[exp( PHC—, )],P~ oo

where H+ is the two-dimensional Hamiltonian corre-
sponding to the two-dimensional action Sq„both of
which are parametrized, of course, by the space-time
fields 4.

%'ith the generating functional in this new form we
need to understand how to prove the existence of sym-
metries: i.e., what is the analogue of a change of variables
in the functional integral? The answer is an automor-
phism of the operator algebra. In particular we shall
consider automorphisms of the type

50=i [h, O],
where 0 is an arbitrary operator of the algebra, and h is
any fixed operator. It is not hard to see that the Jacobi
identity guarantees that Eq. (10) is indeed an automor-
phism. Automorphisms of this type are termed "inner, "
and it is inner automorphisms that will concern us here,
but it should be emphasized that outer (i.e., noninner) au-
tomorphisms also yield symmetries, and it seems likely
that discrete symmetries and the relationship of string
theory to the sporadic finite simple groups can be under-
stood in this way.

In more concrete terms an inner automorphism
reduces to the cyclic property of the trace:

Z [N] =tr[exp( PHz, ))=tr[e—xp( PUH+ U —')] (l l)

for any operator U. In particular consider an operator
close to the identity (h is infinitesimal)

U =1+ih
so that Eq. (11)becomes

Z [0&)=trI exp[ P(Hq, +i [h, Hq, ])]I

The argument of the exponential is a new Hamiltonian.
It might be possible to choose the operator h in such a
way that this new Hamiltonian is also in the family that
enters the generating functional; i.e., it might be possible
to make this deformation of the Hamiltonian correspond
to a deformation of the space-time fields. In this case

Z[@]=trtexp[ P(H~+i [h, Hq, ])—)I
= tr[exp( PH~, +sc, ) )=Z [@—+M&]

and we have proved a symmetry. The problem of finding
a symmetry is thus reduced to finding an operator such
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that the second equality above holds. Although it is not
yet obvious, this is progress.

III. BOSONIC GAUGE INVARIANCES

D —By+1 OB

The vertex operators may similarly be written'

VG(z, z)= i f—d8((„„)DX"dXe'"

Vs(z, z)= i f d—8$(„,)DX"$X e'"'

V„(z,z)= f d6) e„"DX"J e'"'

(13)

(14)

Here G, B, and A refer to the metric (i.e., graviton), an-
tisymmetric tensor and gauge fields, respectively. The
polarizations are denoted by g and e, and the momenta

by k. J are currents whose lowest components are most
naturally constructed out of P', the bosonization of the
fermions that are the lowest components of the
superfields '+. The currents take the normal-ordered
form

J =:exp (ia;P'):, J'=i dP',

where a is a root of the gauge algebra [in this case either
Es X E8 or SO(32)] and the fields P' parametrize the
group's maximal torus (the second form listed above ap-
plies to currents belonging to the Cartan subalgebra).
They satisfy the equal-time commutation relations

In this section we shall use the Hamiltonian method
described in Sec. II to prove the standard gauge invari-
ances for amplitudes involving massless external bosons,
specifically, general coordinate invariance, Abelian two-
form gauge invariance and regular non-Abelian gauge in-
variance. For definiteness we shall consider the heterotic
string in ten dimensions.

The superconformal field theory corresponding to this
vacuum is, of course, just the free (1,0) supersymmetric
field theory with ten bosonic superfields X" and a right-
moving sector that can be written in terms of 32 free
Majorana-Weyl fermionic superfields 4 . The action is'

S = i f—d z dOri„~X"dX'+i% D%"+ ghosts, (12)

where 0 is the single odd superspace coordinate and D is
the superderivative

S~ = i—fd'z d 0[G„,(X)+B„,(X)]DX~dX +i g ~Dq "

+» „(X)J DX"+ ghosts .

The ghosts will play no further role in the discussion in
this section, and so will be omitted from future formulas.

From Eq. (16) we may construct the associated classi-
cal energy-momentum tensors. The results of a straight-
forward calculation are

T~=A,"dX„+(i/2)d+„A, A~A,

T=6"' )Xc„BX —(i&2)A, 'A, ' —(i&2)co '
A, 'A, X"

] F MJMgagb (17)

T =G~ FX„ÃX.+(i~Z)~ "q "'+(i&Z)~ MJMX~'

) FMJMgagb

where

c)X„=(1/&2) [rc„+( G„+B„)X'+ (i /&2)co'bA;gb

+(i/Q2) g MJM] (18)

FX„=aX —V 2G„,X' .

Equations (17) and (18) are written in component fields,
so that previously introduced symbols are now to be in-
terpreted as lowest components instead of complete
superfields. k" is the higher component of the superfield
X". I' is the field strength constructed from the gauge
potential A and cu is the vielbein compatible spin connec-
tion with torsion

(19)

These equations deserve some commentary. It is
necessary to work with world-sheet fields with equal-time
commutation relations independent of the space-time
fields, so that all dependence of the generating functional
on the space-time fields is explicit. Thus the generators
of the algebra from the bosonic sector are X" and their
conjugate momenta ~„. To achieve the same goal for the
Majorana-Weyl fermions k, it is convenient to choose an
orthonormal basis to the tangent space at each point of
space-time [a vielbein E(X)„'] and refer the fermions to
that basis:

[JL(a ) JM( a& ) ]
—+2fLMbcJx(a )5(a I

)

+ (i x/rc)5 5'(o —0 '), The algebra of X' is then field independent:
(15)

(20)

where f are the relevant structure constants and the
current algebra has a central extension proportional to a,
which in this case has a value of 1. Having passed to the
Hamiltonian formalism, all operators are evaluated at
fixed world-sheet time, and so are functions only of the
spatial coordinate o. A prime denotes difFerentiation
with respect to o..

With these vertices we may write the generating func-
tional as

Z [G~,B„,A„]= fDX( —G )'~ exp( —S@),
(16)

I A.'(cr ), A, (o') I
= —g'"5(o —cr')/&2,

[m.„(cr),X'(cr')] = i 5„5(0——o.'), .

[k'(cr), X'(cr')]=[+„(o), A, (o')]=0 .

(21)

Unfortunately, Eqs. (17) and (18) do not describe a su-
perconformal field theory. We are by now familiar with
the idea that only space-time fields that satisfy the string
equations of motion correspond to a conformally invari-
ant world-sheet theory. " We shall simply assume that
this condition is satisfied, and shall need explicit forms
for neither the equations of motion nor their solutions.
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However there is another source of conformal noninvari-
ance that we must confront. In order to be a supercon-
formal field theory it is necessary that the moments of the
normal-ordered stress-energy tensor satisfy the Neveu-

Schwarz or Ramond algebras. However, the algebra of
the currents J [Eq. (15)] contains a central extension pro-
portional to ~ that does not appear in the classical Pois-
son brackets. The same is true for bilinears in A, :

[A.'A, (o ), A;A(c,r')]=(I /&2)[ 2)"A, k"(o )+ri A, 'A, '(o ) —2) 9.'X"(o )
—2l' A, A, '(o )]5(o —cr')

+(ip/4n)(5. "5 " 5'—"5 ')5'(o —o') . (22)

In this case the central extension is proportional to p, which again has a value of 1 (it is convenient to leave p and ic ar-
bitrary to keep track of the terms which are due to the central extension, and to make our formulas easier to apply in
other situations}.

Since currents J and A, bilinears appear in the energy-momentum tensors of Eq. (17), these central extensions will con-
taminate their equal-time commutators, which will cease to be those of the superconformal algebra. To correct this sad
state of affairs (recall that we argued earlier that the generating functional for on-shell amplitudes must be the partition
function for a superconformal field theory) we must amend Eqs. (17)—(19) as follows:

TF = inc)X„+(i/3)H„„A,"Ai'k

T=6~"ax„aX, (i v'—2)A;A, ' (i@'—2)[~'" (~/4—~)A MFM]g'g X~'

(ip/4&2~)co„' F,b J X" + [(p!4n)~„' co',. (Icp/g—n)A, co.„'"F b ]X"X',
T=G" $X„c)X.+(i&2)% +" +(iV'2)[AM (p/g~)~—'FM]JMXI'

,' FMb J—M—g'gb+(i ic/2v'2~) A MFMbgagbX~ + [(ic/2~) A MA M (ic /g~2) A MabF M]X~'X '

(23)

c)X„=BXq —&26„„X", (24)

c)X„=(1/ 2) I
m.„+[6„,+8„+(ic/2') A „A ]X

+(i I&2)co„' A, '1,"+(iI&2)A „J

ance of these three forms is thus seen to be a consequence
of the central extension in the current algebra and the re-
quirement of superconformal invariance.

With these formulas we may prove the usual bosonic
gauge invariances. Recall from the discussion of Sec. II
[Eq. (11)]that we need to find operators h that satisfy

and

H = 3dB+(ic/4vr)—QvM (p/4m')QL—

2( A Md A M 1 fLMNA LA MA N)

$g+ 2 gb bC CQ

L
—CO

(25)
H~+i [h, Hq, ]=H~+sc,

for some 54, so that

Z[4 ]=Z [4&+5@] .

Of course the Hamiltonian is

0@= do T 0 +T 0

(27)

The most noteworthy amendment to the classical equa-
tions is that of Eq. (25) where the torsion is augmented by
the difference between the Chem-Simons three-forms as-
sociated with Yang-Mills and spin connections. It is pre-
cisely such an amendment to the torsion that leads to the
cancellation of anomalies in the eftective field theories as-
sociated with the consistent superstrings. The appear-

h = i Id cr AM—(X(cr ) )J ( cr ) .

We may compute the commutator

(29)

The operators h are not hard to find. The most in-
teresting case is that of a non-Abelian gauge invariance.
In this case h is

i [h, T(o )]=&26"'c)X„[(ic/V2n )8 A A X +id A J +if A A ]+(irc/2m. )c)„A F, A, 'A, X"

(1/+2)f LNMALFN JMgagb (& /4~)~abf LNMALFN JMXP' (&p/4+2~2)g AM~abFMXP'Xv'

= Tv+be(cr ) Te(cr )
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where the changes in the space-time fields (written in
form notation) are

5 g M +2(dgM+ fLNMgLg N)

58 = (a/—&2n )d A

A similar result may be obtained for T, i.e.,

i [h
& T( o' ) ]= T@+ sq& ( o' ) T@( o )

(31)

with the same changes in the space-time fields, given by
Eq. (31).

Thus gauge invariance is modified, in that the two-
form field B must transform also, as a consequence of the
central extension of the current algebra. This result was
previously obtained by Hull and Witten using a func-
tional integral approach for the SO(32) string. In that
case (but not for ESXEs) the gauge currents can all be
written as fermion bilinears, and the variation of B is due
to a nontrivial Jacobian in the functional integral mea-
sure for these fermions (a "o model anomaly" ). '

Other gauge invariances may be demonstrated in the
same way. Calculation of the commutators is straightfor-
ward but rather tedious, so we shall simply list the opera-
tors h which generate the symmetries and describe the
actual field transformations. The appropriate operators h

are

general coordinate invariance

fdo P(X(o. ) )m„(o ),
two-form gauge invariance

fdo V„(X(o))X"(o),
local Lorentz invariance

(32)

5' = &2(d X+ [co,X]),
5~ a +2yabE b

M = (p/2&2m )d X' co'

(33)

IV. CONCLUSION

We have described a method for providing the ex-
istence of symmetries in string theory and used it to
demonstrate the standard bosonic gauge invariances (in-
cluding Green-Schwarz terms), at least for amplitudes in-
volving only massless bosons.

The results are exact, at the string tree level, and hold
to arbitrarily high energy. Since the results depend only
on the operator algebra which is local on the string world
sheet, it seems unlikely that these results will change for
surfaces of higher genus. Stated more succinctly, closed-

i fdo—X' (X(o ))A,'& (o ) .

The general coordinate and two-form gauge transforma-
tions are canonical, but, because of the central extension
of the current algebra in Eq. (22), local I.orentz transfor-
mations exhibit the same Green-Schwarz mechanism as
occurred in the gauge case:

string theories appear to have no anomalies, a result sug-
gested on other grounds by Schellekens and Warner. ' A
fuller investigation of this point would involve a proper
understanding of conformal field theories on an arbitrary
Riemann surface' and the behavior of its partition func-
tion at the boundary of moduli space.

It is natural to ask why the operators of Eq. (32) do
indeed generate symmetries; that is, we would like to un-
derstand what properties of h lead to its satisfying the
nontrivial condition

i [h, Hq, ]=H~+sq, Hq, —.
A general discussion of this problem will be presented
elsewhere, but for the particular cases discussed in this
paper there is a straightforward answer. All possible
terms of (naive) dimension two that can be written with
the available world-sheet fields appear in the Hamiltonian
of Eqs. (23), (26), and (28). Thus commuting it with the
integral of an operator h that is of dimension one will
necessarily yield terms of the form that appeared in the
original Hamiltonian. However, it is not yet obvious that
this guarantees a symmetry, because there are relations
between the coem. cients of these terms. For example, in
the classical expression for T [Eq. (17)] the coefficient of
J k'k is the field strength derived from the gauge po-
tential that is the coefticient of J X". We must explain
why these relationships are preserved by commuting with
h. The reason is that these relationships are a conse-
quence of superconformal invariance. They will there-
fore be preserved if

T~ T+i [h, T]

preserves the superconformal invariance. This is certain-
ly the case, simply because we are dealing with an (inner)
automorphism of the algebra; the superconformal algebra
is preserved by virtue of the Jacobi identity.

An instructive example to consider is non-Abelian
gauge invariance. If we were to commute the operator h

of Eq. (29) with the classical form of the energy-
momentum tensor given in Eqs. (17) and (18) (i.e., the
energy-momentum tensor without the terms proportional
to v or p) we would, by the dimensional arguments given
above or by direct computation, discover dimension two
terms of the same form as already appear in T. However,
the relationships between the coem. cients would not be
preserved, precisely because of the central extensions in
the current algebra. This is the easiest way to show that
the energy-momentum tensor of Eq. (17) is not supercon-
formally invariant. It is also the easiest way to find the
corrections that restore superconformal invariance, Eqs.
(23)—(26).
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