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When a classical signal is very weak, the quantum features of its detector cannot be ignored.
There appears then to be a conflict between the continuous nature of the classical signal and the
discrete spectrum of a quantum device. Moreover, the final output cannot be read directly from a
quantum system: The latter has to be “measured” by another device (the “meter’”) which then
yields another classical signal—a real number. This paper examines the amount of distortion
caused by the presence of a quantum interface between two classical signals. It is shown that the
meter should have a moderate resolution, so as to lump together numerous levels of the detector. A
finer resolution deteriorates the correspondence between the input and output signals. A perfect
resolution, down to isolated eigenvalues, may completely lock the output signal (this is the quantum

Zeno effect).

I. INTRODUCTION AND SUMMARY

The amplification of random signals is a common feat
of engineering, as any owner of a radio receiver may
know. In the language of theoretical physics, this is done
by coupling the signal to a detector (a dynamical system
of known structure) so that the Hamiltonian H of the
detector contains a term depending on the unknown sig-
nal. Then, by observing the time dependence of a dynam-
ical variable of the detector, we can reconstruct the entire
H, including the unknown signal. However, when the
signal is extremely weak, for example, if our aim is to
detect gravitational radiation,' radically new problems
arise: If we attempt to describe the detector dynamics by
classical methods, namely, as the motion of a point in
phase space, this motion may encompass a domain small-
er than #. This means, effectively, that classical mechan-
ics breaks down and the detector must be treated as a
quantum system. (It is assumed here that the noise tem-
perature is low enough to allow neglecting all noise and
other dissipative effects.)

We are then faced with a familiar problem: a quantum
system driven by a time-dependent classical force? (even
very weak signals can be treated classically, because they
contain enormous numbers of photons or gravitons®).
The next problem is to decode the information stored in
the quantum system and to convert it into a new classical
signal—the reading of our meter. This is the classic
“quantum measurement” problem. In general, quantum
measurements lead to an entropy increase* and therefore
to a degradation of information. Thus, in summary, the
problem is to examine the amount of distortion caused by
the presence of a quantum interface between two classical
signals. In this paper, it is shown that the resolving
power of the meter must be matched to the spectral prop-
erties of the quantum system. While a poor resolution
obviously gives inaccurate results, a resolution that is too
sharp is also undesirable, because in that case the meter
overwhelms the detector and yields results having little
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relationship to the original signal.

Section II of this paper discusses the final link of the
amplification chain: the conversion of information en-
coded in a quantum state into the reading of a classical
meter. The treatment is strictly quantum mechanical. It
invokes no controversial notion such as the “collapse” of
a wave function. The meaning of the wave function is
that of a mere mathematical tool, allowing us to compute
the probabilities for the occurrence of specified macro-
scopic events, following a given preparation.’”’ It is
shown that the rule saying ‘“‘the observable values of a
dynamical variable are the eigenvalues of the correspond-
ing operator” is valid only in the limit of idealized me-
ters.

Consecutive measurements are discussed in Sec. III.
There must be as many independent meters as there are
data to be taken (naturally, all these “meters” can be in-
corporated into a single instrument, but then they must
belong to different degrees of freedom?®). In the limiting
case of very precise measurements performed repeatedly
at very short time intervals, the meters lock at one of the
eigenvalues. This is the so-called “quantum Zeno para-
dox” (which has nothing paradoxical: the meters literally
overwhelm the quantum system).

The general results obtained in Sec. III are illustrated
in Sec. IV for a model where the unknown signal is a
variable torque causing the precession of a rotor (a parti-
cle of known spin). First, we consider the simple case of
a spin-J system, for which every detail of the calculation
can be followed explicitly. As expected, a spin-1 particle
cannot be a good detector: its Hilbert space is too small.
We then consider the case of a particle having a large
spin. It is shown that arbitrarily weak torques can be ob-
served without appreciably disturbing the precession of
the detector, provided that the meters have a resolution
suitably matched to the spin spectrum.

Throughout this paper =1 and, moreover, the unit of
length is chosen in such a way that the meter’s scale
directly gives the eigenvalues of the measured operator.
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II. QUANTUM MEASUREMENTS

A “measurement” is a process which generates a corre-
lation between a property of the measured object and a
property of the meter. As a simple example, consider a
particle of spin 1 whose initial state is described by a spi-
nor (3). Suppose for simplicity that there are no other
degrees of freedom and no forces acting on that particle.
The problem is to measure o ,, a dynamical variable pur-
ported to have observable values +1.

The “meter” which performs this measurement is
idealized as being another particle, with position g,
momentum p, and mass M. Its free Hamiltonian is
p2/2M. Tts interaction with the spin-J particle is de-
scribed by

H,=g(t)o,p, | (1)

where g (1) is an externally controlled function of time’
with narrow support near t=0, and such that
[ g(1)dt =1, in appropriate units.

Both o, and p are constants of the motion. The
Heisenberg equation of motion for g is

¢=i[H,q]l=g(t)o,+(p/M) . (2)

The last term of (2) can be neglected during the brief in-
teraction. The solution of (2) thus is

q4r=q;to, . (3)

This result is better visualized in the Schrodinger pic-
ture. Let ¢(q) denote the initial wave function of the me-
ter. Assume that this is a function with a sharp max-
imum at ¢ =0 (this means that, before the measurement,
it is most probable to find the meter close to g=0).
Moreover assume that M, the mass of the meter, is so
large that ¢(q) will not appreciably spread during the ex-
periment. In other words, it is legitimate to take
H=H,,. The time evolution generated by this Hamil-
tonian is

¢(g —1)+ ¢lg+1). (4)

a a 0
g9 o B

This process is illustrated in Fig. 1. The meaning of
the right-hand side of (4) is the following: There is a
probability amplitude a¢(g —1) to find the meter near
g =1, and the particle with spin up; and a probability am-

plitude B¢(g +1) to find the meter near ¢ = — 1, and the

(g)eta (St + (§)dta-n
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FIG. 1. The evolution of the wave function due to a measure-
ment process. In this drawing and the following one, a=0.8
and 3=0.6 (the vertical scales are in arbitrary units).
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particle with spin down. I emphasize that quantum
mechanics allows one to compute only probabilities of
events. It does not describe the events themselves.'®
What we call “the observed value of o,” is given by
the final position of the meter. The wave function ¢ gives
the probabilities of observing the meter at its possible
final positions. Ideally, ¢(q F 1) should have zero width
and the result of the measurement should be *1, i.e., one
of the eigenvalues of o,. However, the actually observed
value of o, may differ from the ideal result by a quantity
of order Ag, the width of the meter wave packet. This
discrepancy is not a trivial “technical difficulty,” but a
matter of principle. It will be seen in the following sec-
tions that in some cases it may be necessary to have Ag
larger than the separation of consecutive eigenvalues.
Although there is no advantage to such a situation in
the present problem (which involves a single measure-
ment of o,) let us examine the consequences of having
Ag >2. The situation is represented in Fig. 2. The prob-
ability of observing the meter between g, and g, +dgq is

Pdgy=[lal*|¢(go—DI*+IBI* |4(go+1)|*1dg, , (5)

where both terms may have contributions of the same or-
der of magnitude.

For future reference, it is convenient to rewrite the
preceding equations in terms of density matrices. Let A,
be the eigenvalues of the operator A being measured (in
the simple case considered above, 4 was o, and we had
A, ==x1). Let p,,, be the density matrix of the quantum
system, in a representation where A4 is diagonal. Let
D(q’,q")=¢(q')p*(q"") be the initial density matrix of

~ the meter. The combined density matrix thus is

Pmnq’59" ) =P, ®(q',q") . (6)

The interaction Hamiltonian (1) becomes g (¢) Ap and,
instead of (4), we now have

Pmn@’ 59" )=>Pmn(q" —Apq" —A,) . )

This expression contains all the information about the
combined state of the quantum system and the meter
used to observe it.

At this point, if we are no longer interested in the
quantum system, we may trace out the indices referring
to it. Then, the average value of any observable function
f(q)—after completion of the interaction between the
meter and the quantum system — is

(f(@)=3w, [ ®lqg—1;,g—1,)f(g)dq , 8)
j

FIG. 2. This is the same as the right-hand side of Fig. 1, ex-
cept that the initial location of the meter is uncertain by more
than the separation of the eigenvalues *+1, so that the measure-
ment is “fuzzy.”
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where w; =p;; is the probability of occurrence of the jth
eigenstate of A, just before (or after) the interaction. For
example, in the simple case where the meter is prepared
in a symmetric state, ¢(q)=¢(—gq), we have

<q>=§w,-7»,- 9
and
(ay=Zuw; | [ ¢lg(q) P dg+2}] . (10)
J
Therefore,
(g?)—(g)*=(A4)’+(Aq)*, (11)
where
(AA)2=2wjk§~ Iijkj ]2 , (12)
J J
and
(Ag?= [ q*lo(q)|2dq , (13)

are the variances associated with the quantum system
and the meter, respectively.

Conversely, if we are interested in the quantum system
(for later use) but not in the meter itself, the new density
matrix p,,, of the quantum system is obtained by tracing
out ¢’ and q¢"":

Pon= [ Pon @ =X d =2, )G =P Sy » (14)

where S, is the coherence matrix:

Smn:f¢(q —A,)d*(g—A, )dq=(eip(}"" ‘)‘")) . (15)
For example, if

$(q)=(2mo )"Vt I /4 (16)
we have Ag =0 and

Smn =exp[ —(A,, —1,)*/807] . (17

Obviously, S,,,, =1 (for any ¢) so that the diagonal ma-
trix elements of p are not affected. On the other hand,
the off-diagonal elements of p are depressed by a factor
S,..» and may even be reduced to zero if the displaced
wave functions are mutually orthogonal, as in Fig. 1.
However, if AgX|A,—A,_;|, as in Fig. 2, the off-
diagonal elements of p are not completely suppressed. (In
particular, if some eigenvalues are degenerate, the subma-
trix of p,, corresponding to these eigenvalues is not
affected at all.)

In the following sections, we shall consider a sequence
of consecutive measurements. In particular, it will be
seen that a low resolution such as the one illustrated in
Fig. 2 may sometimes be advantageous when we want to
monitor the time evolution of a dynamical variable.
Some authors discuss this problem in the formalism of
effects and operations.'""'? The present paper uses the
standard Hamiltonian formalism, which is, in my
opinion, simpler and clearer.
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III. CONSECUTIVE MEASUREMENTS

The detection and analysis of time-dependent signals
necessitates numerous measurements, distributed in
time, 3715 50 as to get a sequence of numbers, correspond-
ing to times #;,?,,..., and so on. There can be no con-
tinuous measurement, because a ‘“‘measurement” was
defined as a brief and intense interaction between the me-
ter and the measured system, as shown, for example, in
Eq. (1). In particular, the support of g (¢) must be smaller
than the difference 7, —¢; _;, so that the measurements
do not overlap.

It is possible for sure to consider measurements of
finite duration, where the function g () is spread over an
appreciable time, but such a measurement yields only a
single number corresponding, in the best case, to a time
average of the observed variable.!® (One can even consid-
er a passive detector, such as a Geiger counter waiting
for the decay of a nucleus, but this situation does not fit
at all with our definition of a measurement. This setup is
best described as a single metastable system with several
decay channels.!”)

Quantum theory by itself does not impose any funda-
mental limitations to monitoring arbitrarily weak signals
within arbitrarily short time intervals. Limitations arise
solely because we want to use, or are forced to use, some
particular detectors. For example, gravitational radia-
tion couples very weakly to matter, and detectors must be
very massive, and expensive, antennas.! This means,
effectively, that it is impracticable to have a large number
of identical detectors from which quantum averages are
to be obtained. We must extract as much information as
possible from each measurement.

Two strategies are possible. We may prepare the
detector in a known state, which is an eigenstate of its
free Hamiltonian (that is, the detector’s Hamiltonian
when no signal is present). We wait some preassigned
time and then measure an operator which commutes with
the free Hamiltonian. If the measurement is sharp, as in
Fig. 1, the detector is left in a known eigenstate and the
process can be repeated. This stategy is conceptually
simple, but very inefficient: Each resetting of the detec-
tor destroys latent information, namely, the relative am-
plitudes and phases of the various components of the
detector’s wave function just prior to the measurement
(one component is selected by the measurement, the other
ones are lost forever). In particular, if the time ¢ elapsed
between propagation and observation is smaller than
{m/2AH), where

AH=[{H?)—(H )*'? (18)

is the energy uncertainty of the detector (including its
coupling to the signal), there is a probability larger than
cos?(tAH) that the initial eigenstate will again be ob-
served.'®!? Very weak signals therefore necessitate wait-
ing a long time between consecutive measurements. How
long is unpredictable; in the absence of extraneous infor-
mation. Finally, if and when enough nontrivial data have
been obtained, we have to reconstruct from these data the
time dependence of the signal. For example, this time
dependence can be represented by a trial function includ-
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ing some unknown parameters, and the latter can then be
fitted to the experimental data.

A more efficient strategy is to let cumulative effects of
the signal develop while the measurements are being per-
formed. We shall see that this is possible if the measure-
ments are “fuzzy,” as illustrated in Fig. 2. When Agq (of
the meter) is much larger than the separation of consecu-
tive eigenvalues (of the detector), the relative amplitudes
and phases of the corresponding wave-function com-
ponents are not completely lost. The dynamical evolu-
tion of the detector can thus proceed, although it cannot
be the same as in the absence of measurements. The
reason is that if we want to measure a time-dependent
variable A (¢) and if [ 4 (2), 4 (¢')]0, a measurement of
A (t) “disturbs the value of 4(¢').” Stated more precise-
ly, given an ensemble of identically prepared and identi-
cally measured systems, the histogram of observed values
of A(t') depends on whether or not there is a prior mea-
surement of A4 ().

Although the evolution of a quantum detector is inevit-
ably modified by continually measuring it, we would like
the meters’ readings to remain reasonably reliable, even
after numerous observations. Ideally, we would like the
quantum evolution to mimic the classical one, and the
output signal to be an amplified replica of the input sig-
nal. The signal distortion (and concomitant loss of infor-
mation) should be minimized. The purpose of this paper
is to investigate how closely these aims can be achieved.

Let us consider a sequence of measurements performed
at times ¢,,...,¢y, by means of meters with coordinates
qi,.--,qy, respectively. The initial density matrix of the
detector and the meters is a generalization of (6):

Prn@1:91 5 a8 N ) =Pmn [19;(q}59;") - (19)
J
The Hamiltonian of the combined system is

H=Hy(t)+ AXg(t
i

with the same notation as in Eq. (1). Here H, involves
only the dynamical variables of the detector and in par-
ticular H, has a known functional dependence on the un-
known signal. The masses of the meters are assumed SO
large that we can neglect their contributions p; /2M to
H,. In other words, we can ignore the spontaneous
spreading of each meter’s wave packet.

In the interval between measurements H, generates
the unitary evolution p— U pU On the other hand, cir-
ca each t=t;, there is an evolution similar to Eq. (7):
namely,

Pmnle - 59}59)s - - A @ =Ny -2

(21)
Note that the new density matrix entangles in a nontrivi-
al way the discrete indices mn of the detector and the
coordinates of the jth meter.

Equation (21) contains all the information about the
state of the detector and the various meters. We can then
ask a variety of questions, such as those at the end of the
preceding section. For example, if we are interested only
in the detector, not in the meters that have already in-

')"’pmn(' . .,q;—
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teracted with it, the net result of a measurement is given
by Eq. (14):

pmn _)p,mn :pmnSmn (22)

After that, the following meter, if observed, will give re-
sults similar to (9) and (10), with

2 imPmnUjn (23)

where U is the unitary matrix representing the free evolu-
tion of the detector since the preceding measurement,
which left the detector in state p,,,,,.

We may also be interested in comparing the readings of
different meters. For example, if there are N consecutive
measurements, let us predict the expected {(g, —gy)?)
(regardless of the results obtained at ¢,,...,¢y_;). As
before, let p,,, be the density matrix of the detector just
before the first measurement. The latter causes

Prn®1(q1,97 ) =>Pmn ®i(q] —A,,qy —A,)

=p)(q1,q7) (24)

(the g; referring to subsequent measurements are omitted,
for brevity). Between the first and second measurements,

there is a unitary evolution p'!’—p?’=U1)p! 't so
that, just before ¢,, we have
Pi(a1,a1 )= 2 U Usn *Plan (91,47 - 25)

mn

Then, there is a second measurement whose result is ig-
nored® (g5 and g are traced out). According to (14) this
leads to a reduction of the off-diagonal elements
P\ —p'?)S, .. Consider in particular the case where the
measurements are sharp (as in Fig. 1) so that S,,=$§,,.
We thus have, immediately after ¢,, a density matrix con-
taining only the diagonal elements p'’ of (25).

Between the second and the third measurement, there
is another unitary evolution p'?’—p®= Ump(2 Ut
with result

P (41,9 =Z UL U p g 1,97 - (26)
r
Again, the third measurement is sharp and only the diag-
onal elements survive. These are

pSg1,q ) =3V (qt,q7) , @7
where
viA=lUP|*. (28)

The rule to continue is obvious. After the last un-
registered measurement®® at ¢, _,, we have a diagonal
density matrix with elements
N—1 :
P ahqt)
- N=2)pN-3 3)2) (20
=2 Z Viw Vi V- VIV PR a a7 -

(29)

Then, finally, the Nth measurement gives
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Pa} a0k =S UL U VR g a)
X
XPy(gy—Aqy—Ay) . (30)

Recall that we are interested in {(g; —gy)?), for which
we need only the reduced density matrix involving g; and
qn, with the detector’s indices traced out. This is

P(a1,97 ;9898 =S W,p\2(q1,q7)
zr

Xq)N(qIIV—}"zqu’V’——}"z) ’ (31)
where

W= 3 VTV, o)
xS

and

P, )= U ULy ®1(@] = Ay gt =Ry ).

(33)

Here, we may be tempted to increase N and to make
the time intervals very short, so as to have a quasicon-
tinuous monitoring. However, as we shall presently see,
this would lead to a complete loss of information. Con-
sider in particular the case where the measurements are
equally spaced, at intervals 7=(zy—1t;)/(N —1), and let
N — 0 while T=t¢y—1t, is kept fixed. Let

t +T

h=[" Hwd . (34)
We then have, in the brief time interval 7,

U=e "=I—ih—1h’+ -, (35)
whence

Vo=|U,1?=8,—8,3 |n,[>+|h,*+0(n*) . (36)
J

It follows that each V in (32) differs from the unit matrix
by terms of order (TH /N)?. Since there are N —2 such
terms in (32), W,, =8, +O(T?H?/N). Thus, in the limit
N — 0, we can replace all the U and V by unit matrices
and we obtain :

(1,97 5q5,q8)= Zw;Pi(g] —Ajq7 —A;)
J
X®y(gy—Ajqy—A;), (37)

where w;=p;, as usual. We then have, by virtue of (9)

and (10),
((g;—qn)?)=(Agq, )+ (Agqy)*. (38)

The dynamical evolution of the detector has been
“frozen” by its continual interaction with the meters.
This is the well-known quantum Zeno effect.?! ~2°

This effect was proved here without invoking the con-
troversial “collapse” postulate. It has nothing paradoxi-
cal, notwithstanding its name ‘“Zeno paradox.” What
happens simply is that the quantum system is
overwhelmed by the meters which continually interact
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with it. Note that the derivation essentially depends on
the assumption S,,=5,, or, in other words,
Ag <<|A;—A;_;|. Meters with a coarser resolution do
not completely block the detector’s motion. Indeed, it
was shown by Caves and Milburn?® that 7 can be made
arbitrarily small, provided that o increases as 7~ .

IV. EXAMPLE: DETECTION OF A WEAK TORQUE

As a concrete example, assume that a random signal
o(t) can be used as a torque acting on a rotor with angu-
lar momentum J. The Hamiltonian of the rotor is

H=H,+o(t), . (39)

If the rotor is spherically symmetric, H,=1J?/21 is a con-
stant of the motion, which can be ignored. The equations
of motion (in classical or quantum theory) are

J.=J, J,=0, J,=—J, . (40)
Their solution is

J, =J gcosT+J,psinT , (41a)

J,=J50, (41b)

J,=—J, gsinT+J,cosT , 41c)
where

t
= t)de . : (42)
= [ oo

In classical physics, the initial values J;, are known
and continual measurements of J, and J, give 7=7(1):

T=arctan(J, /J,)—arctan(J,y/J o) , (43)

whence we can obtain w(¢). Unfortunately, this method
is not readily applicable to quantum systems, because J,
and J, do not commute and therefore (43) is not valid.
We shall now see in detail what can be done when the
“rotor” is a particle of spin 1. Thereafter, we shall con-
sider a particle of large spin j.

The state of a spin-4 particle can be described by a
density matrix

p=1I+m0o), (44)

where m=2(J). Since the equations of motion (41) are
linear, they are satisfied by m as well as by J. In this ex-
ample, we shall assume that initially m =(0,0,1). There-
fore m will remain in the xz plane. The coherence matrix
S,,, has diagonal elements 1, and off-diagonal elements
S1,=S,;==S <1 (assumed real, for simplicity). Thus, in
the present notation, the density matrix reduction (14)
simply is

m,=Sm, and m,=m, . (45)

The combined effect of a rotation and a reduction is the
mapping
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where

S cosf S sinf
cosf

— ind . 47)

Here, 6= f w(t)dt during the time interval since the
preceding measurement. Recall that, for a Gaussian
shaped ¢(q), we have S =exp[ —1/8(Aq)?]. The extreme
cases are Ag >>1, giving S~1 and therefore an unper-
turbed rotation of the vector m (but no true measure-
ment, of course); and Ag << 1 (whence S ~0) correspond-
ing to a sharp measurement. Suppose that we repeatedly
measure J,. Initially, we have (J,)=1. Thereafter, all
we can obtain is a sequence of +1 and —J from which
we have to reconstruct the function 7(z): Obviously, a
spin-1 particle is not a good torque detector—its Hilbert
space is too small. On the other hand, these particles
come cheap (that is, for gedanken experiments) so that we
can afford to use a large number N of identical detectors.
It therefore makes sense to compute the expected average
m,=<{J, ), under various scenarios.

The following figures illustrate the behavior of m,(t),
in the simple case w=1 (so that 7=1) from ¢=0 to
t=57/2. The dotted line is the undisturbed m,=cost
evolution, corresponding to Ag >>1 [we would of course
need N >>(Aq)? to actually observe it; as an average over
N data]. This ideal result is compared, in Fig. 3, to the
case S =0 (sharp measurements) for 10, 30, and 90 equal-
ly spaced samplings. Obviously, the more frequent the
measurements, the less m, moves (this is the Zeno effect).
In every case, m, decays exponentially—it does not oscil-
late as the unperturbed m,. This can be verified by com-
puting the eigenvalues of  in (47). The latter are given
by the secular equation A>— A cos8(1+S)+S =0, whence

Ar=1{(1+8)cosO£[(1+S)cos’0—4S]'"?} .  (48)

If S=0, we obtain A, =cos, with eigenvector u . =(9);

and A_=0, with eigenvector u_ =(}). As we started
0
m,
0.5 ‘M:..f’ ° o ‘ ,.-""'w"'“
.‘. ° oo, .
3 o
. 0o 6 4 ° &, o o
° B °° 0 0o 4
° '-.
° °-‘ °
0 1 " hd ° e
g : 27 t
—0.5F e

FIG. 3. Average (J,) of a spin-} particle precessing around
the y axis with constant ®=1. Initially, {J,)=m,=0.5. The
dotted line corresponds to the undisturbed evolution (that is,
each point represents the value of m, which would be obtained
if there were no measurement before that time). The circles
represent consecutive values of m, that are observed if sharp
measurements are performed at intervals (from top to bottom)
57 /180, 57 /60, and 57 /20.
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FIG. 4. Under the same conditions as in Fig. 3, each set of
circles represents consecutive values of m, that are observed if
fuzzy measurements are performed at intervals 57/60. The
coherence factors S=0.4 and 0.9 correspond to Ag=0.37 and
1.09, respectively. The critical value of S determining the onset

of oscillations of m, is S, =0.589.

from u ., the vector m is shortened by a factor cosr at
each measurement.

When 0<S <1, the eigenvalues A, may be real or
complex conjugate, according to the sign of (145 )%cos’6
—4S (Ref. 27). Figure 4 illustrates the case =57/60,
with §=0.4 and 0.9, corresponding to Ag=0.37 and

Al

hlllu...

T 1

-J 0 j

FIG. 5. The top diagram is the expected probability distribu-
tion for the results of measurements of J,, following a prepara-
tion of the state with j, = + j, and a rotation by 7 /2. The calcu-
lations were done for j =32 and the standard deviation for this
diagram is AJ,=4. The five other diagrams are the expected
probability distributions for a subsequent measurement of J,,
after another rotation by 7 /2. The results depend on the reso-
lution of the meter which performed the first measurement.
From top to bottom, Ag (shown as a horizontal error bar) is O,
1, 2, 4, and 8. (Different vertical scales were chosen in the vari-
ous diagrams, for better visibility. The sum of lengths of the
vertical bars is always 1, by definition.)
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1.09, respectively. We see that the larger Ag gives com-
plex eigenvalues to (2, and yields damped oscillations of
m,. Similar results were recently obtained by Milburn.?

The worst-case scenario is a pair of consecutive mea-
surements performed at 7= /2 and 7=, respectively.
The result can easily be obtained in closed form and will
later be compared with the one for a rotor of spin j.
From (47) we have, with sin@=1,

—-S 0

2 ,
=1y -5

’ (49)

so that the initial m is simply multiplied by — S, after two
measurements. For very fuzzy measurements (Ag >>1),
—S ~ —1 and the spin has been flipped, as expected. For
sharp measurements, m is reduced to zero and, thereaf-
ter, no further information is available.

Obviously, a spin-1 particle cannot mimic the classical
rotor described by Eq. (39). We therefore turn our atten-
tion to spin j. Let us prepare the rotor in an eigenstate of
J,, with j, =j. Its rotation through an angle 7 /2 is gen-
erated by the unitary matrix U. We have, with Wigner’s
notations,”®* U, =D"({060}),,. In the “worst
scenario” mentioned above, 6= /2 and the first mea-
surement of J, is performed on an eigenstate of J, with
eigenvalue j. The probability of getting j, =m is a bino-
mial distribution

w,, = (2N /[2/(G +mNj —m)'] , (50)

with variance’! j/2. This is shown in the upper diagram
of Fig. S, for the case j =32 [the standard deviation then
is AJ,=(j/2)!2=4].

Thereafter, the situation depends on whether the first
measurement was sharp or fuzzy. If it was sharp
(S,,,=8,,,) the histogram of expected results for the
second measurement (at =) is given by the second dia-
gram of Fig. 5: the distribution is almost uniform, and
very little information is available. Better results are ob-
tained if the first measurement is fuzzy.?? The following
diagrams of Fig. 5 show the distribution of results of the
second measurement, depending on the Ag of the meter
which was used for the first measurement. Obviously, a
broad Ag allows the quantum state to reassemble near
Jj, = —Jj (which would be its expected value at 8=, if the
first measurement were not performed).*

On the other hand, if Ag is too broad, the “measure-
ment” becomes useless. Actually, the expression which
should be optimized is given by Eq. (11). From the exam-
ple discussed above, it appears that the fuzziness of the
meter should be about the same as the natural width of
the detector’s wave packet. A poorer resolution obvious-
ly gives inaccurate results, but a finer resolution destroys
the information in which we are interested.

This problem is peculiar to quantum systems. It disap-
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pears in the semiclassical limit, where eigenvalues be-
come extremely dense. From the quantum point of view,
classical measurements are always fuzzy. This is why a
watched pot may boil, after all: the observer watching it
is unable to resolve the energy levels of the pot. Any hy-
pothetical device which could resolve these energy levels
would also radically alter the behavior of the pot. Like-
wise, the mere presence of a Geiger counter does not
prevent a radioactive nucleus from decaying.!” The
Geiger counter does not probe the energy levels of the
nucleus (it interacts with decay products whose Hamil-
tonian has a continuous spectrum). As the preceding cal-
culations show, peculiar quantum effects, such as the
Zeno ‘“‘paradox” occur only when individual levels are
resolved (or almost resolved).

APPENDIX: QNDD VARIABLES

This paper would not be complete without a mention
of QNDD (quantum nondemolition detection) variables®*
satisfying [ 4 (¢), 4 (¢')]=0. If such a dynamical variable
were realizable in the laboratory, it could be monitored
continuously with arbitrary precision, without disturbing
in any way its evolution. For example, if v(#) is a random
classical signal and if H=wv(t)p, then g is a QNDD vari-
able because ¢ =v (t), so that

g(0=q(0)+ [ v(t)dr" (A1)

whence [q(2),(g(¢')]=0. Measuring g will of course dis-
turb p, but this has no effect on the evolution of q itself.
The difficulty, of course, is that the Hamiltonian
H=v(t)p is only a mathematical construct, with no ex-
perimental counterpart.

It is unlikely that any nontrivial QNDD can actually
be realized, because of the conflicting requirements which
it must satisfy: Its time evolution should be sensitive to
weak external signals, but on the other hand it should not
be affected by the intense interaction of the measurement
process.

In particular, it should be noted that QNDD variables
must have a continuous spectrum. Indeed, from
[A(t),(z')]=0 it follows, by taking ¢'=t+dt, that
[4,A4]=0,0r

[4,[4,H]]=0. (A2)

Now, if 4 has discrete eigenvalues A, and A, the matrix
element of (A2) between the corresponding eigenstates is

(A —A, *H,,, =0, (A3)

so that H,,, =0 if A,,7A,. Then, if (A3) holds, we also
have [A4,H]=0 and A is a constant of the motion.
Therefore, nontrivial QNDD variables cannot have a
discrete spectrum.

*Permanent address: Department of Physics, Technion—Israel
Institute of Technology, 32 000 Haifa, Israel.
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