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The laws of perfect general-relativistic magnetohydrodynamics (GRMHD) are rewritten in 3+1
language in a general spacetime. The laws are expressed in terms of quantities (magnetic Geld, Aow

velocity, . . . ) that would be measured by the "fiducial observers" whose world lines are orthogonal
to the hypersurfaces of constant time. This 3+ 1 formalism of GRMHD should be of interest in nu-

merical relativity, numerical astrophysics, and the membrane paradigm for black holes. The
GRMHD equations are also specialized to a stationary spacetime and a stationary MHD Aow with
one arbitrary spatial symmetry {e.g., a stationary MHD magnetosphere for a rotating Kerr black
hole); and the general features of stationary, symmetric GRMHD solutions are discussed.

I. INTRQDUCTIQN

In astrophysics one often encounters magnetic fields.
When interstellar clouds condense into stars, when stars
collapse to neutron stars, and when accreting material
falls into black holes, they all carry magnetic Aux with
them into a much smaller region thereby producing a rel-
atively large-scale, ordered magnetic field. Meanwhile
other processes, e.g., the dynamo effect, also extract ener-

gy from the Quid's motion and further intensify the al-
ready existing magnetic field. In order to understand
many interesting phenomena in our Universe, we need a
well-developed theory of magnetized plasmas. However,
the full plasma theory is difficult to handle even in some
of the most simple situations, and there are many situa-
tions where, as a first approximation to plasma theory, a
theory of magnetohydrodynamics (MHD) can be rather
accurate and reveal much interesting physics. For exam-
ple, to study magnetic phenomena inside our Sun,
Newtonian MH'D is sufficient. ' To study magnetospheres
and interiors of a neutron star, special-relativistic MHD
gives one a good understanding but general-relativistic
MHD is desirable. However, to study the innermost re-
gions of accretion disks and jets of magnetized, accreting
black holes, the strength of gravity demands a general-
relativistic MHD treatment.

There have been many efforts to develop a fully
general-relativistic magnetohydrodynamic (GRMHD)
theory and to apply it to interesting astrophysical situa-
tions (Refs. 3—8 and references cited therein). Thus
GRMHD is already a rather mature subject. However, it
is found in research that some versions of the theory are
more helpful in intuitive thinking than others, or more
convenient to use for some problems. A 3+1 formula-
tion is particularly useful for numerical calculations, '

and it shows promise for intuitive understanding in
black-hole situations (the "membrane paradigm, "' a
3+ 1 version of black-hole theory based on a special fami-
ly of fiducial observers). There has been one previous
3+1 formulation of CxRMHD: that of Sloan and Smarr.
However, that formalism expressed the theory in terms of

a set of variables (energy density, energy fiux, stress ten-
sor) that are not optimal for intuitive understanding. The
objective of this paper is to reexpress GRMHD in a more
intuitively useful form: a form based on fIuid and field
quantities that are measured by a preferred family of fidu-
cial observers (FIDO's) directly (the FIDO-measured
magnetic field 8, Quid velocity V, and the mass density p
and pressure p as seen in Quid's rest frame). Expressed in
this way-the 3+ 1 equations of GRMHD are Eqs. (2.5) or
(2.13), (2.6), (2.12), (2.22), (2.24), and (2.26) below.

The work reported here has particularly been motivat-
ed by the "Blandford-Znajek effect"; i.e., the extraction
of rotational energy from a black hole by the coupling of
magnetic fields threading the hole to the hole's gravi-
tomagnetic field (its "dragging of inertial frames"). In
their seminal paper on this subject, Blandford and Zna-
jek" idealized the magnetosphere as force-free, with its
plasma consisting of electron-positron pairs created by
magnetic-gravitomagnetic-induced electric fields. Mac-
donald and Thorne' analyzed this Blandford-Znajek pro-
cess using the membrane paradigm and retaining the
force-free idealization near the hole. More recently,
Phinney has developed and applied to the Kerr
geometry a (non-3+1) formulation of GRMHD theory
and has used it in an improved, MHD analysis of the
Blandford-Znajek process. All of this past research has
dealt with equilibrium states of the magnetosphere. A
natural extension of these studies would be an investiga-
tion of the magnetosphere's dynamical properties, or as a
first step, the behavior of MHD waves propagating in it.
The author is carrying out an initial study of such ~aves
in a black-hole magnetosphere. As a foundation for that
study, a 3+1 version of GRMHD is developed and
presented in this paper.

Although the formulation presented in this paper was
motivated by the black-hole problem and meshes nicely
with the membrane paradigm, the formalism is not re-
stricted to black holes or the membrane paradigm. It is
presented initially (Sec. II) in a much more general form
than that. However, in the Kerr geometry we have a set
of preferred FIDO's [the zero angular momentum ob-
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servers' (ZAMO's)]; and our general formalism can be
easily specialized to the Kerr geometry with the ZAMO's
playing the role of the FEDO's. The resuIt is the mem-
brane paradigm version of GRMHD.

In Sec. II of this paper the full and genera1 set of
GRMHD equations is given in terms of quantities mea-
sured by the FIDO's. In Sec. III we demonstrate that,
without much extra eFort, Phinney's results on station-
ary, GRMHD, black-hole magnetospheres can actually
be generalized to any stationary MHD system with one
spatial symmetry; and for such a system we reduce the
full set of GRMHD equations to a set of algebraic rela-
tions and an (algebraic) wind equation which, plus one
nonlinear partial diff'erential equation also contained in
this set of GRMHD equations, fully determine the struc-
ture of MHD fIows. In a subsequent paper me will use
those equations to build equilibrium models, which we
will then perturb in order to get insight into dynamical
black-hole magnetospheres.

II. GKNKRAL-RELATIVISTIC
MAGNETOHYDRODYNAMIC EQUATIONS

g =—detfy, , /. (2.4)

Latin letters i, j, k, . . . represent indices in absolute
space and thus run from 1 to 3; greek letters a, p, y, . . .
represent indices in spacetime and thus run from 0 to 3.
Summation on repeated indices is assumed.

vector whose components in the coordinate system (2.1)
are BSJ/Bt.

In this paper geometrized units, with 6 =c =1, mil1 be
used. Vectors and tensors living in four-dimensional
spacetime mill be denoted by boldface italic letters, such
as the FIDO's four-velocity n; vectors living in three-
dimensional absolute space will be denoted by boldface
roman or greek letters, such as the shift function p;
three-dimensional tensors are distinguished from vectors
by a dyad over the letter, such as the three-dimensional
metric y. All vector-analysis notations such as the gra-
dient, curl, and vector cross product mill be those of the
three-dimensional absolute space whose three-metric is y,
unless specified otherwise. The determinant of the three-
metric is denoted as g:

A. Notation

For the concept of a 3+ 1 split of spacetime into space
plus time and the concept of the FIDO's, associated with
such a split, readers are referred to York, '" to the mem-
brane paradigm book, ' and to references cited therein.
Here only the basic points will be summarized. The
foundation for the 3+ 1 split is a particular choice of time
coordinate t (i.e., a particular "foliation" of spacetime
into "universal time" t and "absolute space, " the hyper-
surfaces of constant t). With a specific choice of time t
and spatial coordinate x', the spacetime line element
takes the form

B.Kvo1ution of the magnetic Aeld

dB 1+—B.VP+ 8B= ——V X (aE),1

CK CX

(2.5)

In an MHD fIuid, the motion of the Quid will change
the magnetic field; and the magnetic field, in turn, wiH
change the state of the Quid's Rom through its Lorentz
and Coulomb forces.

The FIDO-measured magnetic field 8 is governed by
half of Maxwell's equations [Eqs. (3.4), (2.16), (2.17) of
Ref. 15, together with (2.3b) above; see also Ref. 6];

ds2= adt +y—, (dx'+p'dt)(dx +p dt), (2.1) V.B=0. (2.6)

and the FIDO's (whose world lines are orthogonal to the
hypersurfaces of constant t) have four-velocities

r

1 a
a Bt Bx

(2.2)

The FIDO's proper time ~ is related to the "universal
time" t by dr=a dt The rate . of change of any scalar
physical quantity as seen by a FIDO is

r

df (4) 1 8nVf= —. ——PV f,d'T Bt
(2.3a)

and the FIDO-measured rate of change of any three-
dimensional vector S or tensor D that lies in absolute
space (i.e., orthogonal to n) is defined by

ds 1 dD 1X,S—(P V)S, —=—X D —(P V)D
d7 0 . . d7 0'

(2.3b)

Here, 6I is the expansion rate of the FIDO's four-velocity,
i.e., three times the direction-averaged "Hubble expan-
sion rate" of absolute space as seen by them,

(2.7)

and is expressible in terms of g =det~y;J ~, the "lapse
function" a, and "shift function" (or "gravitomagnetic
potential" ) p by

r

8, g8= — ' —VP (2.7')
2g

The FIDO-measured electric field E, electric current j,
and electric charge density p, are treated as auxiliary
quantities in the GRMHD formalism. For imperfect
MHD (MHD with finite electrical conductivity) they can
be found from the other half of Maxwell's equations [Eqs.
(3.4), (2.16), (2.17) of Ref. 15 together with (2.3b) above;
see also Ref. 6],

Here ' 'V denotes the gradient in four-dimensiona) space-
time, V is the gradient in three-dimensional space, and
X, is the Lie derivative along 8/Bt, so X,S is the three-

dE +—E VP+8E =—V X (aB)—4m j,d7 Q CX

V.E=4mp

(2.8)

(2.9)
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j+y (V.j)V —p, y V=oy(E+VXB). (2.10)

Here V is the FIDO-measured Quid velocity, y is the
Quid's Lorentz factor as seen by the FIDO's,

( 1 V2) —1/2 (2.11)

and o. is the electric conductivity as measured in the Quid
rest frame, not in the FIDO's frame.

In this paper we will restrict attention to perfect
MHD, i.e., to MHD with perfectly conducting (cr~ ~)
Auids; this is an excellent idealization for most astrophys-
ical situations. For a detailed discussion of its validity in
the context of active galactic nuclei (AGN's), see Sec.V3
of Phinney. Under the perfect MHD assumption there
can be no electric field in the Quid's rest frame, i.e.,

E+VXB=O. (2.12)

This equation can be formally derived from u "F„=Oor
can be inferred from (2.10) with o ~ oo. Note that for
perfect MHD, E can be computed from V and B using
Eq. (2.12); then j and p, can be computed from (2.8) and
(2.9). In the following Eqs. (2.8) and (2.9) will not be used
again except to calculate the auxiliary quantities j and p,
when needed.

For perfect MHD the magnetic-field evolution equa-
tion (2.5) can be simplified by substituting —V X B for E
and making use of Eq. (2.6). The result is

and from Ohm's law (the spatial part of the 3+ 1 version
of J"+u"u J =o.r'" u, where u, is the Quid four-
velocity}:

C. Motion of the fluid

The total energy-momentum tensor of an MHD system
must obey the conservation law

V ( +fluid + +EM ) (2.16)

Here Tz„;d is the four-dimensional energy-momentum
tensor of the Quid and TEM is that of the electromagnetic
field. Each of these T s is broken into the FIDO-
measured energy density e, energy Aux or momentum

density S, and stress tensor W. ' For the electromagnet-
ic field alone we have [Eq. (3.10) of Ref. 15]

e = (E+B}= 1
(2.17a}

SEM= (EXB),= 1

4m
(2.17b)

WEM= [—(EE+BIIB)+ —'(E +B )y].
4m. 2

(2.17c)

Here y is the three-metric of absolute space and g
denotes the tensor product. For the perfect Quid we have
[Eq. (3.11) of Ref. 15]

which says explicitly that once V B=O is imposed on the
initial data, it will continue to hold at later times as the
magnetic field is evolved using (2.5) [or its consequence,
(2.13) or (2.13')].

+—B.V(P—aV)+ 8+ B=O,
Dw a a

where

(2.13)
e=(p+pV )y,
S=(p+p)y V,

W=(p+p)y V@V+py,

(2.18a)

(2.18b)

(2.18c)

D d 1 8+V V= — +(aV —P) V
D~ d~ cx Bt

(2.14)

is the time derivative moving with the Quid. As Evans
and Hawley have pointed out, with a little bit of manipu-
lation this evolution law can be reduced to a form more
suitable for numerical calculations:

a&g B —VX [(aV—P) XB]=0.
g Bt

(2.13')

Because the evolution law (2.13) represents only half of
the dynamic Maxwell equations [Eq. (2.5) but not (2.8)], a
natural question arising at this stage is: Should one im-
pose the constraint (2.6) (V B=O) at all times or just on
the initial data? The answer is what we would guess in-
tuitively: as in everyday physics we only need to impose it
on the initial data. The proof is very straightforward; we
will sketch it here to conclude this section. First we
move d /dr inside V in (d/dr)(V B), taking care to in-
clude curvature terms when we change the orders of
differentiation; then we use (2.5) to eliminate dB/dr.
The end result is

where p is the mass density and p is the presure as seen in
the fiuid's rest frame, y=(1 —V )

'i is the fiuid's
Lorentz factor [Eq. (2.11)].

The conservation law (2.16) can be viewed in two
equivalent ways. One is to treat its two parts separately,
and regard the electromagnetic part as an external force
acting on the Quid, an approach used by Sloan and
Smarr. We shall also adopt this approach in deriving our
dynamic GRMHD equations. The other approach is to
treat the total energy-momentum tensor as a whole. '

This is found to be more useful in deriving conservation
laws when symmetry exists and will be used in Sec. III
below to deduce properties of equilibrium solutions.

When we project (2.16) along a FIDO's world line we
get the local energy-conservation law as seen by the
FIDO; when we project (2.16) into absolute space, i.e., or-
thogonal to the FIDO's world line, what we get is a force
balance equation as seen by the FIDO's. The two result-
ing equations are ' '

dE +He+ W'iX y = — V (a S)1;~ 1

d7. 20!

d V.B=—t9V B, (2.15) 1+—( VP):W+ E.j, (2.19)
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dS; +OS;+ (X,y;. )SJ= —ea; —W;, a 1

+—P ~;S~—W~~. +p, E;
1

+(jXB),. (2.20)

a—= (Va)/a (2.21)

Here e, S;, and 8',
&

are the FIDO-measured energy densi-
ty, energy flux, and stress in the fluid alone [Eq. (2.18)];

is the negative of the FIDO-measured gravitational ac-
celeration; and the covariant derivative in three-
dimensional absolute space is denoted by a slash ~i T. he
auxiliary quantities p„j, E are to be found from Eqs.
(2.8), (2.9), and (2.12). If we replace e, S, W in (2.19) and
(2.20) by the appropriate expressions for a fluid with dis-
sipation and retain a finite conductivity o., what we get
are the "imperfect" general GRMHD equations. How-
ever since we will concentrate on perfect MHD in this
paper we shall replace e, S, % by their perfect-Quid ex-
pressions in (2.18). When this is done, the FIDO-
measured law of force balance (2.20) becomes

poy p+ y, -+poy pV; V — 8,8 +poy pV;4~ 4~ '~ D~ 'D~ y; — 8;8 (V i„V. )4~ '~ 4~ ' J

= —
poy p a, ——P ~,

V' —(X,y, )V' —
p~, + (VXB),V (VXB)— (oB) ~,

+ (a8, )~
B'1 2 1

a ' ' ' " ' 4' 8~(g2 ' 4m'a

1 (BXIVX[VX(avxB)+(B V)P]+(VxB) VPI).4m.a (2.22)

Here a subscript i on a vector quantity means the i com-
ponent of that vector;

p+7
po

(2.23)

is the specific enthalpy of the fluid [and also the inertial
mass per unit rest mass, cf. Exercise 5.4 of Misner,
Thorne, and Wheeler' (MTW)]; and po is the Quid's rest
mass density. In deriving the above equation, the local
law of conservation of rest mass [3+1 version of
(p u").„=0]

Dpo 2 DV
D~ Dw

1 g, +V (aV —P) =0
2g

(2.24)

was used.
Here we deliberately will not make the law of energy

conservation (2.19) explicit because in perfect MHD, a
combination of (2. 1.9) and (2.20) is easier to use. We shall
turn to this in some detail in the next subsection.

Because of the underlying plasma processes, where the
Auid particles are locked onto magnetic field lines, it is
easier for Quid to move along magnetic field lines than
across them. If we think of the coe%cient of DV~/d~ on
the left-hand side (LHS) of (2.22) as an "effective inertia, "
we can clearly see this anisotropy in the Quid's inertia
caused by the magnetic field. The quartic term in y on
the LHS is a relativistic correction: Quid is harder to ac-
celerate at higher speed. The second term on the LHS of
(2.22) represents the force needed for a moving fluid when
its specific enthalpy is changing. The last term on the

In perfect MHD there is no Ohmic dissipation nor
viscous loss, so entropy is strictly conserved locally.
Therefore we can write the first law of therrnodynarnics
as

dp ——p ~dp,+
Po

as seen in the Quid's rest frame, or

Dp Dpo
D~ " D~

(2.25)

(2.25')

We can also derive Eq. (2.25) from the law of energy con-
servation as seen by the Quid T ~. u&=0 plus the frozen-
in condition and the conservation of rest mass, or
equivalently from a linear combination of (2.19) and

LHS is a correction to the first inertial term. On the
right-hand side (RHS) of (2.22), the first term in the large
parentheses is the standard gravitational acceleration
(due to failure of the FIDO's to fall freely); the second
term in that set of parentheses is the gravitomagnetic ac-
celeration; and the third term comes from the coupling of
the motion of the Quid to nonstatic spatial curvature.
The second term on the RHS is the familiar pressure gra-
dient. The third and fourth terms on the RHS are just
the Coulomb and Lorentz forces. The curl of the o,V X B
term is the coupling of the induced electric field to the
Quid velocity and the magnetic field. The rest of the term
comes from the coupling of the magnetic field to the
gravitomagnetic field, a force underlying the Blandford-
Znajek effect.

O. Thermodynamic variables
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(2.20) plus (2.6) and (2.24). Notice that in Eq. (2.25) only
the Auid's variables appear; and energy conservation has
the same form as for an ordinary Auid with no magnetic
field. This comes from the perfect MHD assumption that
in the Auid's rest frame there is no electric field and there-
fore no exchange of energy between the fluid and magnet-
ic field. In our MHD equations we choose to use (2.25)
instead of (2.19). Of course our MHD equations are not
complete without an equation of state

F(po,p, s)=0, (2.26)

where s is the specific entropy. In this paper we assume,
for simplicity, that the system of equations for perfect
MHD is closed by a barotropic equation of state (i.e., s is
constant throughout the Auid and, of course, constant in
time)

p =p(vo) (2.26')

and correspondingly p can be computed once and for all
from [cf. Eq. (2.25)]

(2.27)

To summarize, in our 3+ 1 equations for perfect MHD
the basic variables are the FIDO-measured magnetic field
8 and fluid velocity V, and the rest-mass density po as
measured in the Auid's rest frame. The total density of
mass-energy p and pressure p (in the fiuid rest frame) are
computed from po via Eqs. (2.26') and (2.27}; the FIDO-
measured electric field E is computed from V and 8 via
Eq. (2.12); the FIDO-measured current density j and
charge density p, are computed from Eqs. (2.8) and (2.9);
the magnetic field 8 is evolved via Eq. (2.13); the fiuid ve-
locity V is evolved via Eq. (2.22); and the rest-mass densi-
ty po is evolved via Eq. (2.24). These are the perfect
CxRMHD equations in their most general form. Using
these equations, we can study stationary configurations,
dynamic evolution of conducting Auid with appropriate
boundary conditions, or a small perturbation to an equi-
librium state.

hypersurfaces of constant time; i.e., they are three-
vectors in absolute space; (iii) the congruence of FIDO
world lines will not expand,

0=0; (3.2)

and (iv) the gravitational acceleration will have vanishing
projection along P:

a P=O. (3.3)

We shall see how 3+1 electrodynamics can be simplified
under these conditions (Sec. III A) and how the conserva-
tion laws associated with these KVF's can be used to sim-
plify the analysis of equilibrium configurations (Secs.
III 8 and III C). This discussion is a 3+1 treatment of
Phinney, and an extension to MHD of Macdonald and
Thorne' (but with the spacetime slightly more general
than in those cases}.

A. Electrodynamics

three-dimensional absolute space),

2 o
—=k ( four-vector potential )

=(time component of four-vector potential),

3
&

—=m. (four-vector potential)

=m (three-vector potential)

=(g component of three-vector

or four-vector potential).

(3.4)

(3.5)

(3.6)

To study electrodynamics in a stationary, symmetric
spacetime, we first introduce, as auxiliary quantities used
in intermediate steps, some special components of the
four-vector potential. They are'

A—:y (four-vector potential)

= ( three-vector potential living in

III. GRMHD IN A STATIONARY, SYMMETRIC
BACKGROUND

8=13m. (3.1)

These restrictions guarantee that (i) our metric (2.1) will
be independent of t and g; (ii) P and m will both lie in the

In this section we restrict attention to a stationary
spacetime with one spatial symmetry and demand that
the MHD Aow have the same symmetries. More
specifically, we assume that spacetime has a timelike Kil-
ling vector field (KVF) k =8/Bt and a spacelike KVF
m=8/Bg which commute with each other, and we insist
that all Auid and electromagnetic quantities have vanish-
ing Lie derivatives along k and m. Moreover, we also in-
sist (as is the case for a rotating, Kerr black hole) that the
gravitomagnetic potential point along the symmetry
direction m,

Using these potentials, we can write the electric and mag-
netic fields as [Eqs. (5.9) and (5.10) of Ref. 15]

E=—(V Ao —pV 3~),
1 (3.7)

8=VX A. (3 &)

Because A
&

will play an important role in determining
the structure of stationary MHD flows, let us examine
the physical content of A& first. Consider a curve C in
absolute space with tangent vector m (i.e., an "integral
curve" of m) and a magnetic fiux tube bounded by C (see
Fig. 1). The magnetic fiux '0 inside such a flux tube is re-
lated to A

&
in the following way:

q(x)= f f 8 ds= f,a,dg . (3.9)
S

Here 4, regarded as a scalar field in absolute space, has
the above value at any point x that lies on curve C. Be-
cause m—:8/Bg is assumed to be a KVF, A

&
is indepen-
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Before we try to relate A& to 8 and E, let us first
decompose, for later convenience, any vector U in abso-
lute space into its g component U~ and the part U per-
pendicular to m =8/Bg:

U=U'+ U~m. (3.10}

m= —]8(
I

{The superscript I' stands for "poloidal" —a terminology
adapted from the axisymmetric case where g is the angle
around the symmetry axis. ) Then it turns out that (see
below)

(3.11)

Here V and 8 are the "poloidal" parts of the fluid ve-
locity and magnetic field, respectively. Thus the poloidal
magnetic field lines coincide with the fluid's poloidal
stream lines on surfaces orthogonal to m. This can be de-
rived by taking a scalar product of (3.7) with m and then
using the g symmetry and the frozen-in condition (2.6) to
conclude that

m (VXB)=0, (3.12)

or

m. (V XB )=0, (3.13)

I
l
l

I
l

Cp

v'—= k
4&0',Ppg

BP (3.14)

With this choice we can show, using (2.6) and (2.24), that

which says that m, V, and 8 are not linearly indepen-
dent; hence the statement in (3.11). Because V and B
are parallel, we can define a proportionality coefficient k
to relate them. By a careful choice, it is defined as '

8' Vk =0. (3.15)

FIG. 1. Magnetic Aux inside Aux tube bounded by C is
'Il(xi= fc A&dg= A&/cd/. (a) When ill and t(icgdare finite,
A& is clearly the Aux per unit length of C within the tube; (b)
when fed/ is not finite, e.g. , if m is a translational symmetry
and C extends to infinity, + is infinite unless A& vanishes. For
any finite A&, we use the g symmetry and consider only a small
portion 6L of curve C. Then 6%= A&6L and we can still think
of A

&
as the Aux per unit length of C within the Aux tube.

dent of g; so we can consider A& as the fiux per unit g
length of C within the flux tube. In an axisymmetric
spacetime, g is equal to the angle P around the axis of
symmetry, the line integral (3.9) runs from 0 to 2n, and
%(x) is the fiux inside the circle that passes through x
and is generated by 8/Bg. In a translation-symmetric
spacetime g' runs from —oo to + ~ and for finiteness we
make use of the g symmetry and restrict the line integral
(3.9) to a small, fixed interval [say go(x) (g(go(x)+5L
for some small 5L], and regard ~Ii(x) as the fiux in a tube
bounded by (i) the integral curve of m through x, (ii) a
curve at (=go(x), (iii) a curve at g=g'0(x)+5L, and (iv)
some fixed fiducial integral curve of m.

The proof involves combining the stationary, symmetric
versions of the law of mass conservation (2.24)

V (apoyV )=0 (3.16)

and the law of flux conservation V 8 =0. Therefore k
will be constant on magnetic surfaces, or flux tubes,
though it typically will vary from one magnetic surface to
another.

Now we wish to find a relation between B and A ~.
The argument here is that of Thorne and Macdonald.
Consider an integral curve C' of m which diA'ers slightly
from C. The flux per unit length of C, between C and C',
1s

VA&=mXB=mXB . (3.18)

By taking a cross product with m, we can invert (3.18) to
obtain

mXVA~8 =— (3.19}

dA(=(VA(). dx=B (mXdx)=(mXB) dx, (3.17)

where dx is any vector reaching from C to O'. Because
C' is arbitrary, d x is also arbitrary, and we thus have
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Here, y+=m m is the "g' component" of the three-
metric. From (3.19) we can deduce that

S~
—=Wm, Sz =—aS —PW,

Pg QO

(3.28)

B .VA(=0 (3.20) whose products with the lapse function a are divergence
free under stationary, symmetric assumptions:

This guarantees that A &, as is k, is a constant on magnet-
ic surfaces and that k can be regarded as a function of V (aS )=0, V (aS )=0

p~ E (3.29)

k =k(A(). (3.21)

8" VAo=0,

which in turn implies that

(3.22)

(3.23)Ao= Ao(A().

Since V Ao and V A
&

are both poloidal (by g symmetry)
and are both orthogonal to B, they must be parallel to
each other:

VAo= —V VAg, (3.24)

The coefticient k is called the stream function in Phinney
because it is constant along a "stream line, " i.e., along an
integral curve of V=V + V~m. As we shall see in Sec.
III C, stream functions play an important role in deter-
mining the structure of stationary fIows.

We can also express E in terms of the gradient of 3&.
The frozen-in condition (2.12) implies that E is orthogo-
nal to 8; and thus (2.12) plus Eqs. (3.7) and (3.20) and g
symmetry implies

[Eqs. (3.67) and (3.71) of Ref. 10]. Here S is the fiux of
pg

the g component of momentum, and SE is the flux of en-

ergy at infinity, or "red-shifted energy. " Because of the
symmetry, the g components of these fiuxes give identi-
cally zero contribution to the conservation laws (3.29).
Thus, the poloidal parts of the fluxes also satisfy the con-
servation laws (3.29) and we shall concentrate attention
on them. Using expressions (3.14) and (3.25) for E and 8,
we find

S~ = (py V&
—aB&/k )poyV,

S~ =[yp(a —PV~) —V aB~/k]poyV,

(3.30)

(3.31)

which allows us to introduce two more stream functions:

l:ypVg —aB~/k, —l=l(A(),
e—:yp(a+P V& ) —V aB&lk, e = e( A

&
).

(3.32)

(3.33)

That l and e are indeed stream functions (i.e., are con-
stant along 8 and thus are expressible as functions of
A &) can be verified directly from (3.16) and (3.29)—(3.33).
We can rewrite Eqs. (3.30) and (3.31), using l and e, as

E=——(P+ V )V A~= ——( V m+P) XB.1 ~ 1

a (3.25)

for some scalar field V . Correspondingly, Eq. (3.7) im-
plies S = l ( A()poyV,

S~ =e(A~)poyV .

(3.30')

(3.31')

By taking derivatives along 8 of both sides of (3.24) and
using (3.20) and (3.22) we conclude that V must be a
function of A&, i.e., B -VV =0, and V is also a stream
function. We can think of V as the coordinate speed of
the magnetic field, because observers who move with
d g/dt = V [i.e., at velocity ( V m+P)/a as measured by
FIDO's] see an electric field

As pointed out by Phinney and also quite obvious here, l
and e can be interpreted as the covariant g component of
momentum (henceforth the "generalized momentum")
and the energy at infinity carried by unit rest mass of
fIuid. Sometimes, especially when seeking solutions to
the "wind equation" [Eq. (3.46) below], a combination of
e and l, the field-rest-frame specific energy f, is more use-
ful in determining the Aow structure. It is defined as

V m+E'~ E+ ™~~XB =0 (3.26) f=e —V l=yp(a —CV~),

where

(3.34)

that vanishes; i.e., they regard the magnetic field as at
rest with respect to themselves. A comparison of Eqs.
(2.12) and (3.26) gives us an algebraic relation

4mapoy

VI'+P
(3.27)

which relates V& to B~.

8.MHD Sow

For the stationary and symmetric MHD How, since
the FIDO's move along symmetry - directions,
d(everything)/dr =0. FIDO's do not see any changes in
the MHD fIow around themselves. Moreover, associated
with the two KVF's, we have two conserved fiuxes [Eqs.
(3.65b) and (3.69b) of Ref. 10]

(3.35)

Using Eqs. (3.29)—(3.31) we can also write the extrac-
tion rate of g component of momentum, L, and that of
energy at infinity, M, in terms of stream functions l, e,
and k. Consider two flux tubes Si and S2, which are
bounded separately by integral curves C, and C2 of m on
a two-dimensional surface S„with its normal orthogonal
to m (see Fig. 2). Let us assume that S„ is located in a
nearly fIat region, so the total Quxes of generalized
momentum and energy at infinity across it between S,
and S2 can be regarded as the rates of extraction of these
quantities from the strong gravity region, e.g., leaving a
surface Sd „whose normal is also orthogonal to m in-
side that region. Using Eq. (3.29) we see that
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(3.36)

(3.37)

lk(mXdS) VA

4~ sup

On S„,
dS=dx X(md/);

therefore,

L —= aSP dS= f aS dS
SUP g S

UP

M:— aSE dS= f aSz dS
Up

= —f aS~ dS.

Thus inus, in stationary perfect GRMHD t e u t sa
c circuit, guiding ener
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(3.40)

For a Kerr black hole we shrink S to t
dl tS
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C. e wind equation and its solutions
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stream functions Ao, V, k, I, and e or f, whose values
are determined by boundary conditions. From these and
one other algebraic constraint

y (1—V )=1 (3.41)

we can find out all the components of V and B once we
have solved for A &. To solve for A &, we can express V,
8, po, . . . , in terms of stream functions and metric
coefficients, and then substitute them into the remaining
unintegrated force-balance equation. The result will be a
second-order nonlinear partial diff'erential equation. In
general we do not have analytic solutions to this equa-
tion. In the following, as did Phinney (on whose work
our 3+1 analysis is modeled), we will assume that this
equation has already been solved for A& and will leave
the actual solution to numerical work; and following
Phinney we shall concentrate on (3.41) and examine what
constraint it puts on the stream functions in addition to
those demanded by boundary conditions.

More specifically, what we shall do is express V and y
completely in terms of stream functions and metric
coefficients, and then insert them into (3.41) to get a so-
called "wind equation" for V—:~V ~. Actually, it turns
out that, using the components of four-velocity,

VP yVP

(3.42a)

(3.42b)

aklV Cfy+B IIJ—,

akpVP+y BPC2 A2BP
44

(3.43)

Here and below, we are to regard 8 as a function of the
"known" quantity A&, given by Eq. (3.19). By substitut-
ing (3.43) into (3.34), we get an expression for y also in
terms of known quantities and V:

(f+Cl)kpV afB—y=
p( akpV +y PPB C aB )—(3.44)

In terms of V& and V, (3.41) is

2 V2yy ( VP)2 —
1

which can be manipulated into the form

(3.45)

makes the calculation simpler than working with V& and
V themselves. To derive the wind equation, we first use
the definitions for I and f [Eqs. (3.32) and (3.34)] to elimi-
nate B~ and y from Eq. (3.27) and get an expression for
V(..

&ya(a —V'ygCf) B,
Ij,k[(f+Cl )Qy~~ —al ]
~2 C2y

BP
akp

(3.47c)

(3.47d)

Equation (3.46), with (3.47) substituted in, is the "wind
equation" from which we can determine the structure of
MHD Aows. '

For the special case of an "isothermal equation of
state, "

P+Pp= =const,
po

(3.48)

I =I (po» (3.49)

we must use (3.49) to eliminate p from Eqs. (3.43)—(3.45);
and it then may be easiest to use (3.45) directly as our
wind equation. For ease of discussion below, we will as-
sume an isothermal equation of state. This type of equa-
tion of state is of interest also because it includes the
cold-(low limit, p =0 (Ref. 7).

For continuous flows (no shocks) the solutions to the
wind equation (3.45) should extend smoothly from the re-
gion of interest to spatial infinity. However, for an arbi-
trary set of stream functions, D will generally become
singular at critical surfaces where the How speed equals
one of the perturbation propagation speeds inside the sta-
tionary How. We either have no solutions beyond these
critical surfaces, or if energy and momentum conserva-
tion permit, we have shocks. To avoid such situations we
have to constrain the stream functions in such a way that
either these critical surfaces are pushed to or beyond spa-
tial infinity or the solutions pass through the critical sur-
faces smoothly. ' To make our discussion more con-
crete, let us assume that we have parametrized the stream
lines by a parameter y, which can be regarded as the
coordinate length along the stream lines. Then the con-
straint equations for smooth passage through a critical
surface as found by Kennel, Fujimura, and Okamoto'
for special-relativistic How, which are also true general
relativistically, are (see also Chap. V of Ref. 7)

all quantities in the wind equation except V can be re-
garded as known from the solution for 3& and from
boundary conditions. Thus, the wind equation (3.46} can
be solved for V, and the remaining flow structure can be
computed algebraically from Eqs. (3.14), (3.27), (3.43),
and (3.44). Thus, the (low structure is determined from
(3.46} completely. But for more realistic equations of
state

(V F, )(V F)— —
D—:K —(V ) —1=0.

(VP F )2

Here,

(3.46) BD
cyP cyP P Pp 7 (3.50a)

F)=

K= (f+Cl) k y —a k I

ak py
~y„(a+~y„Cf) B,

p,k f(f+CI )Qyg+ al ]

(3.47a)

(3.47b)

BD
P

Qy ~P ~I' P P
(3.50b)

where V, is the liow speed on one of the critical surfaces,
and y, denotes one of the locations of the critical sur-
faces. Solutions with shocks will introduce many in-
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teresting processes into our problem. However to handle
shocks well, more careful analysis is required. In particu-
lar, to determine the structures of shocks, a detailed
analysis of full plasma theory is required (see, for exam-
ple, Ref. 18). Such an analysis is far beyond the scope of
this paper.

IV. CONCLUSION

In this paper the GRMHD equations were rewritten in
3+1 language in a general spacetime. They were ex-
pressed as (i) evolution equations for the FIDO-measured
magnetic field B and fiow velocity V [Eqs. (2.13) and
(2.22)], and the fiuid's rest mass density po [Eq. (2.24)]; (ii)
the frozen-in condition of perfect MHD [Eq.(2.12)]; and
(iii) algebraic constraining equations on the magnetic field
[Eq. (2.6)] and thermodynamic variables [the equation of
state (2.26') or (2.27)]. Then for a stationary, symmetric
Aow in a stationary, symmetric spacetime these equations
were reduced to a wind equation (3.46) from which one
determines V (given 3

&
as known), and the algebraic re-

lations (3.14), (3.27), (3.43), and (3.44) from which one
computes po, V, V~, and B~ for an isothermal equation
of state. With A& given or calculated from a nonlinear
partial difFerential equation derived from (2.22), B is cal-
culated using (3.19).

In a future paper the author will use this formalism to
build stationary, symmetric MHD model magneto-
spheres, and will linearize the evolution equations to
study dynamic perturbations of those magnetospheres so
as to gain insight into the dynamical effects of the cou-
pling of the magnetic field to the gravitomagnetic field.
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