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We construct the quantum gravitational density matrix p(g &,g'&) for compact three-geometries

by integrating out a set of unobserved matter degrees of freedom from a solution to the Wheeler-

DeWitt equation %[g &,qz~, «„,]. In the adiabatic approximation, p can be expressed as exp( —l )

where I (g &,g'&) is a specific "distance" measure in the space of three-geometries. This measure

depends on the volumes of the three-geometries and the eigenvalues of the Laplacian constructed
from the three-metrics. The three-geometries which are "close together" (l (&1) interfere quantum

mechanically; those which are "far apart" (I »1) are suppressed exponentially and hence contrib-
ute decoherently to p. Such a suppression of "off-diagonal" elements in the density matrix signals

classical behavior of the system. In particular, three-geometries which have the same intrinsic
metric but differ in size contribute decoherently to the density matrix. This analysis provides a pos-
sible interpretation for the semiclassical limit of the wave function of the Universe.

I. INTRODUCTION AND SUMMARY

If gravitationa1 effects are ignored, then physical in-
teractions can be studied in a fixed, Aat, Lorentzian
spacetime. When the gravitational field is present this
situation changes drastically. Since we cannot distin-
guish between the effects of gravity and that of a curved
spacetime we can no longer work with a Aat spacetime.
Moreover, changes in the energy density of matter fields,
which are inevitable in any nontrivial dynamical situa-
tion, will lead to a time-dependent spacetime structure.
We have, therefore, to treat spacetime as a dynamical en-
tity.

Classically, this can be done by using Einstein's equa-
tions. A classical solution to Einstein s equations will de-
scribe a dynamical spacetime evolving in consonance
with the energy density of the matter fields.

Such a picture, however, cannot be completely correct.
We know that the matter fields are described by a quan-
tum theory and not by a classical theory. In particular,
the laws governing the matter fields are of a probabilistic
nature. The gravitational field produced by such a source
should necessarily display this probabilistic character at
some level.

The only consistent way of introducing such a proba-
bilistic character into the description of spacetime is to
quantize gravity as well. ' In a fully quantized version of
the theory, we expect the Universe to be described by a
grand wave function ql(g„, q„) which depends on both
the gravitational degrees of the freedom g~ and the
matter (field) degrees of freedom q„. Broadly speaking,
we expect the quantity ~%(g~, q„)~ to be proportional to
the probability of occurrence of the values [g„]and [q„]
"simultaneously. " (To define the notion of simultaneity
we have to use some matter variable as a "clock"; it is as-
sumed that this nontrivial task can be accomplished. ) We
also hope that the expectation values of physical observ-

ables can be computed from 4 in the usual manner.
This wave function satisfies the Wheeler-DeWitt equa-

tion which can be written, in a concise notation, as

[——,'1 V +1 V(g„)+H (p„,q„,g„)]%(g„,q„)=0,

where g~ stands for the metric g &(a,P=1,2, 3) on the
three-space, V is the Laplacian in the superspace of
three-geometries constructed using the DeWitt metric,
V is the superspace potential, I is the Planck length, and
H (p„,q„,g„) is the matter Hamiltonian. While Eq. (1)
offers a formal solution to the problem of quantizing
gravity, it is not of much practical value. In addition to
the technical difficulties in solving (1), which are formid-
able, we are also faced with several nontrivial interpreta-
tional issues.

Consider, for example, the fo1lowing situation. Let 'P&

and qlz be two solutions of Eq. (1). We will assume that
these two solutions are characterized by the following
feature. The expectation values of a commuting set of
physical observables, 0; (i = 1,2, . . . , X), are macroscopi
cally difterent in these two states. That is, we assume
('It, ~O, ~%', ) and (iIIz~O; %'2) to be measurably different
for all i = 1,2, . . . , X. So, if the Universe is in state ~%', )
or 4'z), that fact can be easily ascertained by measuring
the observables 0;.

But notice that the Wheeler-DeWitt equation is linear
in O'. If ~qt, ) and ~%2) are solutions of (1) then so is
~%') =a~%', )+b~'It~). This is a state which is obtained by
superposing two different states which macroscopically
different values for certain physical variables. There is no
a priori reason why the Universe could not be in this
state. But our experience shows that this is not the case;
the Universe behaves almost classically as far as macro-
scopic observations are concerned. Any sensible model
for quantum gravity should attempt to explain this pecu-
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liar situation. This paper attempts to discuss this issue in
some detail.

(One should be careful not to read too much into the
notation used in the last two paragraphs. This notation
is, of course, borrowed from standard quantum mechan-
ics and has the connotations of a Hilbert space. It is not
known whether such a Hilbert-space structure exists in a
quantum cosmology; see the work of Hartle in Ref. 10.)

One can offer "explanations" for the above
phenomenon at several different levels. For example, one
can argue that this question is really one of "initial" or
"boundary" conditions. Several suggestions exist in the
literature explaining how one can choose a particular
solution of Wheeler-DeWitt equation among all possible
solutions. Such suggestions, however, do not provide a
real "explanation" unless the specific choice for the
boundary condition can be motivated by an independent
physical reason of compelling nature. The boundary con-
ditions suggested in the literature so far do not seem to
satisfy this criterion.

Another "explanation" involves the "collapse of the
wave function. " It is motivated by the following kind of
argument. "The issue which is being raised has nothing
to do with quantum gravity. We never see any system in
a state which is a superposition of states with macroscop-
ically different parameters. " For example, cats are never
seen in states of the kind a alive ) +b

~
dead ) . Similar

considerations should apply to gravity. " This argument
does contain a grain of truth; indeed, we do not observe
cats in such peculiar states. Probably we can understand
the wave function of the Universe if we first understand
cats.

The reason for the classical nature of cats is still con-
troversial and is hotly debated among those who work in
this subject. There are, essentially, two schools of
thought. The first one advocates the "collapse of the
wave function. " In this interpretation, the wave func-
tion merely quantifies the amount of information we have
aboot the system; it is only natural that the wave function
should change if we acquire more information about the
system. Thus, according to this interpretation, the wave
function evolves in two different ways: continuously, via
the Schrodinger equation and discontinuously, when the
measurements are performed on the system.

The second school of thought does not recognize such
dichotomy. According to this school, any system with a
large number of degrees of freedom will "automatically"
behave as a classical system. This result arises from the
dynamics (suppression of the oft'-diagonal elements of the
density matrix) and, indeed, has been explicitly demon-
strated for several simple systems.

(It is probably worth making a brief comment at this
stage regarding the "many worlds interpretation" of the
wave function. This interpretation merely replaces the
ad hoc nature of the collapse by the untestable branching
of one world into many. It does not add anything to the
predictive power of the formalism and is devoid of any
dynamical machinery. Therefore, as far as this paper is
concerned, it is not necessary to discuss this approach
separately. )

The continuing controversy among experts in this field

suggest that, as far as cats are concerned, it is difficult to
decide which interpretation is correct. The situation,
however, could be different as regards the Universe.
There are some serious difficulties in using the approach
based on the "collapse of the wave function" to interpret
the quantum state of the Universe. It seems more natural
to adopt the second interpretation, based on dynamics, in
discussing the wave function of the Universe. There are,
essentially, two reasons for this. (i) In the scenarios
which use the "collapse interpretation, " it is always tacit-
ly assumed that the information about the system is being
acquired by an external agency in an irreversible manner.
This is clearly not the case with the Universe. (ii) The
collapse of the wave function requires a description in-
volving temporal evolution. It is not easy to introduce
this feature in a solution to Wheeler-DeWitt equation,
which is a "timeless" equation. Because of these reasons,
it seems worthwhile to consider the second approach seri-
ously and work out its consequences for quantum gravity.
This is what we plan to do in this paper.

The work described here is motivated by some recent
papers by Zeh, Kiefer, and Joos. Zeh and Kiefer con-
sider the emergence of a semiclassical time coordinate due
to the "continuous measurement" of a scale factor of a
Friedmann universe by other degrees of freedom. This
work is done in the context of minisuperspace models and
supplements the work of several others' '" on the emer-
gence of semiclassical time coordinate. Zeh and Kiefer
however do not consider the emergence of classical space-
time from a general wave function. The paper by Joos
does address this question but only in a qualitative
manner using nonrelativistic concepts. The work de-
scribed here may be considered as a generalization of the
ideas which are implicit in the above papers. (For anoth-
er recent application of these ideas in quantum cosmolo-
gy, see Ref. 12.)

The basic idea and. the result of the present work is as
follows. Consider a solution to the Wheeler-DeWitt
equation which can be adequately approximated in the
form

where y & is the three-metric on a compact three-space
and fk's describe the degrees of freedom of all the matter
variables populating the Universe. Among these matter
variables there will be a large number of modes which are
unobserved. It is therefore necessary to use a density ma-
trix while describing the quantum nature of the three-
geometries. Such a density matrix for the three-
geometries, p(y &, y'&), can be obtained by "tracing out'
the unobserved matter degrees of freedom. We compute
this density matrix in the adiabatic approximation and
show that its off-diagonal elements, corresponding to
"widely different" three-geometries, are strongly
suppressed. It is well known that such a suppression of
off diagonal elements reduces the density matrix to a
decoherent sum and signals classical behavior. This is
how we obtain classical spacetime from the wave func-
tion of the Universe.

It is, of course, necessary to make precise what is



2926 T. PADMANABHAN 39

meant by three-geometries which are "widely different. "
This requires a notion of some metric in the space of all
three-geometries. An interesting feature of this work is
the following. The analysis automatically provides such a
metric. This metric is constructed from the three-
geometries in the following manner.

Let us use natural, dimensionless, angular coordinates
on the compact three-geometries. Then the metric y &
will have the dimensions of (length) . We scale this out
by writing y & as R g & where R is the volume of the
compact three-space. From the dimensionless metric g &
we construct the three-dimensional Laplacian operator.
Let the eigenvalues of this operator be [vk] where k is a
labeling index. We have thus associated with every
three-geometry the following set of numbers: (R, vt, ).
We now define a positive-semidefinite, symmetric "dis-
tance" between any two three-geometries by the expres-
sion

(R Qvk —R '+ vk )
i =

—,'gin 1+
k 2RR 'Qvk Qvk

Two three-geometries will be considered 'widely
different" if "distance" l between them calculated using
the above expression is large compared to unity. Such
three-geometries contribute decoherently to the density
matrix and hence are macroscopically distinguishable. In
contrast, the three-geometries between which the dis-
tance l is small compared to unity retain their phase re-
lation and interfere quantum mechanically. We have
thus a precise characterization of three-geometries which
are classically distinguishable.

Note that the distance l defined above depends both
on the "size" (R) and on the "shape" (vk's). Previous
work by Zeh, Kiefer, etc. , was based on specific minisu-
perspace models in which the shape is fixed. For exam-
ple, suppose we consider only the three-geometries which
are three-spheres. Two such three-geometries will differ
in R but will have the same intrinsic eigenvalue spectrum
[vk]. The distance between two such three-geometries
will depend only on the sizes. In this particular case we
will recover the results of Kiefer.

The most commonly used metric in the space of three-
geometries is the DeWitt metric. It is not clear whether
l is related in any simple manner to the DeWitt metric.
This issue is stil1 under investigation.

The plan of the paper is as follows. The key idea
behind the principle of dynamical decoherence is re-
viewed in the next section. It is applied to the wave func-
tion of the Universe in Sec. III and the results are dis-
cussed in Sec. IV.

II. DYNAMICAL ORIGIN OF CLASSICAL
BEHAVIOR IN MACROSYSTEMS

To understand the basic idea behind this approach, let
us first consider a simple example from quantum mechan-
ics. Consider a system S described by a Harniltonian
H(Q, P). Let us assume that this system is interacting
with a bunch of N other degrees of freedom each de-
scribed by a Hamiltonian h;(q, ,p, , Q). (The presence of Q

in h, signals the coupling between the systems. ) We can,
for example, think of S interacting with a measuring ap-
paratus which is classical; most classical systems will
have large number of degrees of freedom. The total
Hamiltonian for our discussion will be, therefore,

N

Hto„&=H(Q, P)+ g h;(p;, q;, Q) .

We can describe this total system consisting of S and the
measuring apparatus by a single Schrodinger equation
corresponding to H«, ». The state of the system will be
described by a wave function g(Q, q;) at any given time,
which can be expressed as a superposition

4(Q q; ) = g c.f.(Q q; )

in terms of some suitably chosen basis. We can associate
with this pure state the density matrix

p(Q Q'q; q,")=g& c. c:f.(Q, q;)f'(Q', q ) . (4)

Let us suppose that we are primarily interested in the ob-
servables of the system S. Then, we can construct from
(4) a "reduced" density matrix in the Q-space by "tracing
out" the q s. We will then obtain

N

p„(Q,Q')= g c„c*f g dq f„(Q,q; )f'(Q', q, )
n, m

= g c„c*F„(Q,Q') .
n, m

This reduced density matrix preserves all the phase corre-
lations which were originally present in the quantum
state P(Q, q;). Expectation values of observables belong-
ing to the system S, computed using p„d, will be identica1
to those obtained using g.

Consider now an entirely different density matrix, p,1„,
which is deftned as

p)... (Q, =)& (Q—Q') g lc„ I'F„.(Q, Q) .

This density matrix, clearly, represents a mixed state.
The quantity ~c„~ gives probability that our system can
be found in the state represented by f„;the quantity F„„
gives the probability that our variable has the same Q,
when the system is in the nth state. Thus p,»» is a
decoherent sum of probabilities and represents a classical
situation.

The central issue in the quantum theory of measure-
ment is, of course, the following. Since the Schrodinger
equation evolves pure states into pure states, we can nev-
er obtain p,1„, as a result of the Schrodinger evolution
from a pure state. However, macroscopic observations
invariably suggest a description in terms of p,»». Faced
with this dilemma, Von Neumann and Heisenberg sug-
gested that the density matrix changes to p,I„, due to
"uncontro11able external influences" which accompany a
measurement. (This is equivalent to assuming the "col-
lapse" of the wave function. ) Since we plan to dispense
with this idea, we have to provide an alternative resolu-
tion of this dilemma.
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This can be done as follows. Let us suppose that the
true density matrix of the system is indeed p„d of Eq. (5).
But suppose our quantum state is such that

J +dq;f„(Q, q, )f*(Q',q;)=5„F„„(Q,Q'), (7)
l

where F„„(Q,Q') is a sharply peaked function of
(Q —Q ) . Then it will be impossible to distinguish the
true density matrix p„d from the p,i„,. Equation (7)
directly suppresses all the off-diagonal correlations' in

Pred
In the case of simple quantum-mechanical models, it

has been shown that such a suppression does take place.
In these models, the q s are essentially the degrees of
freedom of the measuring apparatus. There are several
people who believe that this is the proper approach to
classical limit to quantum systems. Systems which we
consider to be classical are merely those which are in
constant interaction with other systems containing large
number of degrees of freedom. Thus, the environment
constantly "measures" a given system with which it is
coupled and thus forces it to be classical. Rigorously
speaking, the density matrix does not become exactly di-
agonal; but it becomes a very sharply peaked function of
(Q —Q')'.

The problem is thus reduced to understanding the con-
ditions under which we will be led to the behavior sug-
gested in (7). We have to first understand which quantum
states lead to (7). After identifying them we have to ask
ourselves whether these states are sufficiently generic to
be of some value.

Let us illustrate, in the present, familiar setting the
kind of states we will be working with in quantum gravi-
ty. To do this we go back to the Schrodinger equation
describing our full system:

H(P, Q)+ g h, (p;, q;, Q) g(Q, q; )=Eg(Q, q; ) . (8)
i=1

We look for approximate solutions to this equation which
can be written in the form

N

0(Q q') =to(Q) g n. (q Q)
i=1

where Po and each of the g, 's satisfy the equations

(9)

h;(p;, q; )rt;(q, , Q) =e, (Q)ri, (q, , Q),
1V'

H(P, Q)1lo(Q)= E —g e; itjo(Q)=Etio(Q) . (11)

The nature of the approximation is clear from (10) and
(11). Equation (10) treats h;(p;, q;, Q) is a time-dependent
Hamiltonian in which Q enters merely as a parameter.
This allows us to define approximate energy eigenvalues
g;(q;, Q) which also depend on Q only as a parameter.
This approximation is valid as long as the variable Q
evolves adiabatically. To arrive at the second equality in
(11)we have ignored the g e; term in comparison with E.
This is equivalent to ignoring the "back reaction" of q s
on Q and can be done if the two parts of the Hamiltonian
differ widely in scale. We may assume that this is the
case.

Let us now work out the reduced density matrix
p(Q, Q') corresponding to the state 1b in Eq. (9). We have

p(Q Q') =A(Q)A*(Q') H f dq;n;(q;, Q)~,*(q;,Q')

=go(Q)ito(Q') Q &;(Q,Q') . (13)

Everything depends on the behavior of the product in
(13). Classical behavior will arise if this term is sharply
peaked around Q =Q'. It is clear that

A;(Q, Q) = f dq;g;(q;, Q)g,'(q, , Q) =1 (14)

In the quantum-mechanical example considered above
we used two separate systems, a "quantum" system S and
a "classical" system with N degrees of freedom, where N
is a large number. In this particular context one could
have thought of these two as separate systems external to
each other, but coupled. Such a qualification, however, is
completely unnecessary. We can uery well think of the
Hamiltonian in (2) as describing a single system with
(N+1) degrees offreedom. The crucial properties of the
system which went into our results of the last section
were the following. (1) There were large numbers of de-
grees of freedom in the system which were unobserved,
and hence, had to be traced out in computing the expec-
tation values and (2) there was an intrinsic disparity be-
tween the Q and the q,. 's in the following sense: Q
influenced the q s adiabatically while the back reaction
of q,. 's on Q was an ignorable, higher-order, effect.

These two features exist in the case quantum gravity as
well. The wave function of the Universe, in principle, de-
pends on all the degrees of the freedom of the matter in
the universe. It is clearly impossible to observe all of
them. Therefore our system does contain several degrees
of freedom which are unobserved, satisfying the first cri-
terion.

The second feature depends on the nature of the Ham-
iltonian describing the system. The Hamiltonian in the
Wheeler-DeWitt equation (1) separates nicely into two
sets of terms: HwD =Hg„„;,„(p„,g~ )+H (p„,q„,g~ )

where

H „„;,„=[ ,'l V +l V(g„)]—— (15)

depends only on the gravitational variables and H de-

since g s are normalized wave functions depending on Q
merely as a parameter. Thus the product in (13) will be
unity at Q =Q' for all N. If

~ A;~ decreases sufficiently
rapidly as Q moves away from Q', then the classical be-
havior will be assured for large N. In this case, the prod-
uct in (13) will consist of N terms each less than unity.
Thus the product will decrease rapidly, as we move away
from Q =Q', if N is large. This is precisely what happens
in the situations which we shall consider.

We shall now apply the above considerations to the
quantized gravitational field.

III. CLASSICAL SPACETIME FROM QUANTUM
GRAVITY
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+(gA V ) +0(gA W(gA (16)

pends on both the matter variables and the gravitational
variables. These two parts scale differently because of the
appearance of an explicit length scale I in H . It has been
shown by several people' '" that the existence of such a
relative scale allows one to obtain approximate solutions
to Wheeler-DeWitt equation of the following type:

of the compact three-space.
Under these circumstances, the line element is

ds' ——dt' —R'g. dx~dx~

and the action in (20) becomes

~ =-,'fdtd'x. &g R'(j' R —'g -pa.yap).

(21)

(22)

where 'Po(g„) and g(g„,q„) satisfy the equations We shall expand the scalar field using the normal modes
of the three-dimensional Laplacian. We write

Hs+o(g~ ) = —e+0(g~ ) =o

H P(g~ ~. )=eW(g~ e. )

(17)

(18)
P(t, x)= g f„(t)Q„(x), (23)

Equation (18) deserves comment. Using an expansion in
powers of l, we will be able to obtain the Schrodinger
equation for the matter fields in a given background
geometry ("quantum field theory in curved spacetime").
Such an equation will be the same as (18) with the right-
hand side replaced by the "time derivative":

Bingo
l =GABa= Bg, agB

(19)

If the background geometry is not violently varying in w,

then it is admissible to introduce approximate stationary
states as in (18). This is the assumption of adiabaticity
which we invoke. [In addition, we have ignored the
"back reaction" of the matter fields on gravity by setting
the right-hand side of (18) to zero. This approximation,
however, is not very crucial to what follows. ] The simi-
larity between (18), (19), and (10), (11) is apparent.

The assumption of adiabaticity introduces the neces-
sary disparity between the gravitational and rnatter de-
grees of freedom. To investigate the emergence of classi-
cal spacetime, we have to compute the reduced density
matrix for the three-geometries. This, in turn, involves
identifying a set of X degrees of freedom among the
matter variables and evaluating the product

where Q„'s are the normalized eigenfunctions of the La-
placian operator corresponding to the three-metric g &
with some eigenvalue v„:

7 Q„+v„Q„=O .

The normalization condition implies that

fdx &g Q„Q =5„ (25)

A=+ —,'R fdt(f„—R v f ) (26)

Note that the geometry of the spacetime enters into this
matter Hamiltonian essentially through the eigenvalues
v„. Because of our assumption of adiabaticity we can treat
these eigenUalues as constant. In such a situation the
quantum state of the matter field can be written as a
direct product of the harmonic-oscillator eigenstates for
each of the modes. Let the kth harmonic oscillator be in
a state labeled by the integer nI, . Then the full wave
function of the system will be given by

Substituting (23) into (22) and using (24) and (25) we can
easily express the scalar field action as that of a bunch of
harmonic oscillators:

N

H fdci;4*(g~ ti;)it(g~ ti;) .
+(g P [fk])=+0(g P) II 0 „(fk wk)

k

(27)

Classical behavior is assured if the oF-diagonal elements
in this product are strongly suppressed. We shall attempt
this task next.

Among the various matter fields which populate the
Universe, let there be a massless scalar field P(t, x) de-
scribed by the action

3 =
—,
' f dt d x& gg'"d, Qdkp . — (20)

We shall assume that the three-space is compact and has
some metric y &. We shall work in a gauge in which
lapse function is unity and the shift functions are zero.
For the sake of convenience we shall treat the spatial
coordinates x on the compact three-space to be some
suitably chosen, dimensionless, angular coordinates. This
will give y p the dimensions of (length), which we will
scale out by writing y &=R g p where R is the volume

I

where wk stands for the combination R vk and p„arenI

the harmonic oscillator wave functions:

P„k(fk, Wk)

=(2 "nk!)' (win)' H„(+w fkk)exp( ,'wfk) . ——

(28)

The spacetime geometry enters these wave functions only
through the combination wI, =R vI, . Let us now divide
the matter modes [fk] labeled by k into two sets: those
which are observed, [ak] and those which are not ob-
served and hence traced out [bk]. Suppose there are N
unobserved degrees of freedom. The reduced density ma-
trix for the observed degrees of freedom and the space-
time geometry can be easily found from (27) by integrat-
ing over the unobserved degrees of freedom:

p(g p g p ak ak )=+0(g p)+o(g'p) Q l „(ak wk W.*„(ak wk ) II f dbk4. „(bk wk )4:„(bk*wk )
k=1

(29)



39 DECOHERENCE IN THE DENSITY MATRIX DESCRIBING. . . 2929

The %fold product in the above expression determines
the decoherence between two geometries g & and g'&.
Such a decoherence will be indicated if the %fold product
is a sharply peaked function around (wk = wk ).

Let us first consider the case in which all the unob-
served modes are in the ground state. (We will discuss
the general case in the end; the same results are obtained
in the general case as well. ) Then the integral over each
bk contributes the quantity

Ak= Jdbkfo(bk&wk)$0(bk&wk)
1/4

wk wk Wk+Wk
dbk ~2 2

exp

(QWk Qwk )1+
2+Wk Qwk

—1/2

(30)

Therefore the product, containing X such terms, will be
NP=g Ak

k=1

N (Qwk Qwk )
=exp —

—,
' g ln 1+

k=1 2+wk+wk

N
=exp —

—,
' g p„

k=1
(31)

We are now in a position to decide which spacetime
geometries appear decoherently in the reduced density
matrix. To each compact three-geometry 9 we associate
a scale R ("size") and a set of eigenvalues of the Lapla-
cian [vk ] (which depends on the "shape"). Two macros-
copically difFerent geometries 9 and 0' will have very
different values for these parameters, and hence, very
difFerent set of wk's. The sum gpk will be a large posi-
tive quantity for such geometries, making the exponential
very small. Such off-diagonal elements in the space of
three-geometries are strongly suppressed in the density
matrix.

Note that the above analysis can be turned around to
provide a rigorous definition of macroscopically distin-
guishable spacetimes: Two spaceti'mes are macroscopical-
ly distinguishable if the sum gpk is large compared to
unity for these two geometries Such a pair. of spacetimes
will exhibit negligible quantum interference. In fact, this
sum provides an interesting "distance measure" in the
space of three-geometries. The distance is clearly posi-
tive semidefinite and symmetric. [However it is not
necessary that the set (wk) uniquely specifies a three-
geometry. This issue and further properties of gpk are
under investigation. ]

There is one particular case about which definite state-
ments can be made. Consider two geometries which have
the same intrinsic metric but differ in the overall scale.
(For example, there could be two three-spheres of radii
R, and Rz. ) In this case the vk's are the same and the
wk's diB'er only because of R. Each term pk in the sum

g pk is a constant independent of k and is equal to

where we have suppressed the subscript k for simplifying
the notation. The form of such integrals can be deter-
mined using (28) and the generating function for Hermite
polynomials. A tedious but straightforward calculation
shows that Ak can be written in the form

' —1/2

(Qwk +Wk )
Ak= 1+

2+wk +wk
(33)

where

k

T

Wk Wk

Wk+ Wk
(34)

and Fk's are a set of functions of the indicated argument
E'k. The detailed form of Fk is irrelevant except for the
fact that Fk(0) is unity. When we take the product of
Ak s we will recouer a term identical to that in (31), multi-
plied by the product of Fk's. Whenever the vacuum term
sup presses the off-diagonal elements (with w A w') the
Fk's will be effectively reduced to unity and will not con-
tribute anything significant to the product. Thus we see
that the decoherence is essentially due to the factor in
(31).

Since we assumed the quantum state of matter fields to
be a state of Axed energy, we have used energy eigenfunc-
tions of the harmonic oscillator in characterizing the
wave functional. One can relax this assumption and redo
the computation with an arbitrary superposition of ener-

gy eigenstates for each oscillator. The basic character of
the results remain unaltered.

We shall now study the implications of the above re-
sult.

IV. INTERPRETATION, DISCUSSION, AND OUTLOOK

Let us examine the various assumptions and in-
gredients which have gone into the above result. This
will allow us to determine the exact domain of validity
and identify issues which are still open.

Our centra1 philosophy regarding the emergence of
classical spacetime from the wave function of the

(R i
—R2)—ln 1+

2 2R1R 2

Clearly the sum increases monotonically with X. Thus
the exponential factor suppresses off-diagonal elements
differing in scale strongly. The width of the exponential
decreases as &X. We can therefore conclude that corn
pact three geo-metries diQering in uolume but hauing the
same intrinsic geometry contribute decohevently to the
density matrix. This is an interesting generalization of
previous results known in the case of Friedmann
Universes.

To obtain the above results it is not really necessary to
assume that the modes bk's are in the vacuum state. If
the kth mode is in the state labeled by the integer nk,
then we will need to calculate, instead of (30), the integral

I„= x, w, x „*w',x, 32
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Universe was the following. The wave function of the
Universe, by its very definition, depends on all the de-
grees of freedom in the Universe, to determine this quan-
tum state uniquely it is necessary to measure a complete
set of commuting observables. In particular every free
quantum field in the Universe will provide a large number
of such modes. From a practical point of view it is im-
possible to observe all the operators which characterize
this quantum state. It is necessary, therefore, to integrate
over unobserved degrees of freedom and obtain a reduced
density matrix. Classical behavior for the spacetime
geometry will arise if the off-diagonal elements of this re-
duced density matrix are strongly suppressed.

The above analysis certainly seems to vindicate this
basic philosophy. The crucial fact which goes into the
analysis is that every degree of freedom in the Universe
contributes to energy and hence couples to gravity. Thus
integrating over any such modes leaves its mark on the
gravitational sector of the density matrix.

The form of the density matrix which we obtain will, in
general, depend on the form of the wave function we start
with. In this paper we have considered only the wave
functions which can be expressed approximately in the
form

where g,d;,(y &,fk) is obtained in the adiabatic approxi-
mation. It is necessary to identify the role and relevance
of this assumption.

The wave functions as the one in (35) have been studied
by several people' ' " and the prime candidates for
describing the semiclassical limit. It is unlikely that any
wave function that does not allow the separability as-
sumed in (35) will be successful in describing the semi-
classical limit. We may say that (35) is indeed a necessary
c:.':i;-dition for semiclassical behavior. This is the major
rn-, l:ivation for starting our investigation with the wave
functions of the form in (35).

There is, however, a lot more to the issue of semiclassi-
cal limit. The %0 in (35) will not usually be peaked
around any single three-geometries. Hence it is difficult
to interpret the wave function directly in the
configuration space. Halliwell, " for example, has sug-
gested that the semiclassical interpretation should be at-
tempted in the phase space using the Wigner function. If
%'o is a WKB solution, then the Wigner function will be
peaked around a set of classical trajectories in the phase
space.

Our analysis suggests another possible interpretation of
the semiclassical limit for 4 using the density matrix.
The density matrix, unlike the Wigner function, can be
defined in the configuration space itself. Further the
decoherent contributions to p come from specific classical
configuration rather than from sets of classical trajec-
tories.

Another point worth noting about our analysis is the
following. While (35) may be necessary for classical inter-
pretation, it was not a priori clear whether it is also
sufhcient Our analysis sh. ows that it is, provided we fol-
low the approach outlined in this paper to obtain the
classical limit. Note that we made absolutely no assump-

tion regarding the actual form of %0 in (35); it need not,
for example, be a WKB solution.

A natural generalization of this work will be the com-
putation of p for more general wave functions. It will
probably be best if we write down the equation satisfied
by p and look for its approximate solutions. This
work —easier said that done —is in progress.

Let us next consider some details regarding the "unob-
served modes" which were integrated out. To begin with,
we have to settle whether the number of such modes is
finite, countably infinite, or uncountably infinite. The to-
tal number of modes defined on a compact three-
geometry will be, in general, countably infinite. (We have
a natural upperbound on the wavelengths because of the
finite size of the three-space, but we have no a priori
cutoff' at the lower end. ) Among these modes we declare
a set of X modes as unobserved. Whether this number 1V

is finite or not is obviously linked to the reason why we
do not observe these modes. One can take different
stands in this matter.

The simplest assumption would be to say that these
modes are not observed because of technological limita-
tion. All the observations available today are confined to
energies below, say, 100 CieV. We can therefore say that
we have no information about the modes with frequencies
higher than 100 GeV. These could, of course, be a count-
ably infinite number of such modes. It is not very clear
whether we should integrate over an infinite number of
such modes. One may feel that the assumption of adiaba-
ticity breaks down at Planck energies and that our
analysis should not include modes above Planck frequen-
cies. In such a case the quantity X which appears in Eq.
(28) onward will be a finite number. (This point, howev-
er, is not quite settled. It is possible that the adiabatic
approximation is actually valid for high frequencies but
breaks down at lower end; see the work of Halliwell and
Hawking in Ref. 10.) On the other hand we may not like
to introduce such an artificial cutoff at Planck frequencies
but instead consider all the infinite number of modes. In
such a case our results depend crucially on the conver-
gence properties of the sum +pi, which occur in (31).
Let us suppose the eigenfrequencies are arranged in as-
cending order. Depending on the nature of the three-
geometries which are considered this sum may be finite or
divergent. Any two three-geometries for which this sum
diverges will be eliminated from the density matrix, i.e.,
off-diagonal elements which are "far away" are complete-
ly suppressed. It is possible that there exist some three-
geometries which are sufficiently "close together" for this
infinite sum to converge to a finite value. Such
geometries will exist in the density matrix with coherent
phase relations and hence will not be macroscopically dis-
tinguishable. In other words, they exhib&t quantum in-
terference.

There is another reason why we may have to integrate
over certain modes. It is possible that there are regions
of three-space which are unobservable because of the ex-
istence of horizons. Suppose a three-space S is the union
of two regions A, and Ai. The mode functions defined
globally in S may not be appropriate for observes
confined to, say, A, . Such observers may use two
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separate sets of modes defined in the regions 1 and 2 and
connected with the globally defined modes by some Bogo-
liubov coeScients. In such situations one wi11 naturally
integrate over one set of modes. The resulting density
matrix, evaluated in a given, fixed, classical spacetime, is
known to exhibit thermal character in some well-known
situations. In the present context we are likely to obtain
some decoherence of the wave function describing the
spacetime as well. This idea needs to be worked out in
detail and could provide an important link between the
physics in the presence of horizons in a spacetime and
quantum gravity.

Another interesting feature which arises from our
analysis is the following. Consider a compact three-space
with a positive definite metric g &. We associate with
this metric the set of eigenvalues [vk] and a length scale
R which may be taken to be the cube root of the volume
of the compact three-space. From R and vI, we construct
the set [wk] where each w„ is defined as 8 vk. We can
now define a metric in the space of three-geometries by
the relation

&'(g p, g'p)

N Qwk(g p ) Qwk(g p )

g ln 1+
k =1 2+Wk+Wk

2

(36)

In arriving at the 1ast step we have used the well-known
property that the functional integral can be expressed in
terms of the determinant of the Laplacian operator and
hence is only a function of the eigenfrequencies. Now
consider the functional derivative of the above expression
with respect tog &. We get

f2)f exp —,
' fd'x fV f

5g p

where N is some specified value which could even be
infinite. (We are assuming that the eigenfrequencies are
ordered in some meaningful way. ) This metric is clearly
symmetric, positive semidefinite, and vanishes only if all
the eigenfrequencies match. This is clearly a metric in
the space of eigenfrequencies for finite N and, if the sum
converges for at least some sets of m's and m"s, possibly
even for infinite N. But in order to qualify as a useful
metric for three-geometries we would also like to estab-
lish some uniqueness relation between the three-
geometries and their corresponding m's. It is not di%cult
to show that the two metrics which differ infinitesimally
cannot have the same set of m's. To see this, consider the
following functional integral over functions f(x) defined
in the three-space:

2= f2)f exp ,' f d x —fV f =I([wk]) .

where T I3 is the "energy-momentum tensor" in three-
space:

~~p =Iaaf p ,'g—.p—f"f„ (38)

where f stands for (Qf/Bx ), etc. Let us now suppose
there exist two metrics which differ infinitesimally but
have the same set of eigenfrequencies. If this is possible
then the value of the functional integral I([wk]) cannot
change under the infinitesimal variation in (38). This, in
turn, means that the functional average of T p in (38)
should vanish. In particular the functional average of the
trace of T & should vanish. But this is impossible be-
cause the trace is ( ——,'f f ) which is negative definite.
Therefore infinitesimal changes in the metric invariably
leads to changes in the eigenfrequencies.

This shows that eigenfrequencies provide a good char-
acterization of the metric "locally. " The above proof, of
course, does not rule out the possibility of two widely
different geometries having the same set of eigenfrequen-
cies. In fact, it is quite likely that the metric is not
uniquely determined by the eigenfrequencies. This opens
up the possibility that two widely different metrics could
still contribute coherently to the density matrix if they
have the same scale and eigenfrequencies. In the present
context, however, this is to be expected since the scalar
field couples only to these parameters of the geometry.

Another peculiar feature about the metric in (36) is
that it may associate infinite "distance" between several
geometries if we decide to sum over all eigenfrequencies.
These are the geometries for which the sum in (36)
diverges. Such divergence, of course, enhances the
decoherence and reinforces classical behavior. Three
geometries with the same intrinsic structure but differing
in volume belong to this class; for such geometries, as we
have seen before, the "distance" given by (36) increases
monotonically with N and diverges for infinite N.

The metric in (36) also gives an operational criterion
for deciding which three-geometries interfere in quantum
gravity. These are precisely the ones for which the "dis-
tance" as defined in (36) is small compared to unity. As
far as the author is aware of, this is the first time such a
clear operational criterion has been established in quan-
tum gravity.

Lastly, it is interesting to conjecture about the effect of
our increasing knowledge on the wave. function of the
Universe. As more and more modes are observed we will
be left with lesser and lesser modes to "trace out. " This
would reduce the decoherence and the quantum interfer-
ence between geometries will become more and more ap-
parent. In other words, the classical nature of the space-
time will tend to disappear as we observe more and more
matter modes. Probably, ignorance is bliss.

=f2)f T pexp ,' f d3x f—V f (37)
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