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We discuss the manner in which the gravitational field becomes classical in quantum cosmology.
This involves two steps. First, one must show that the quantum state of the gravitational field be-
comes strongly peaked about a set of classical configurations. Second, one must show that the sys-
tem is in one of a number of states of a relatively permanent nature that have negligible interference
with each other. This second step involves decoherence —destruction of the off-'diagonal terms in
the density matrix, representing interference. To introduce the notion of decoherence, we discuss it
in the context of the quantum theory of measurement, following the environment-induced super-
selection approach of Zurek. We then go on to discuss the application of these ideas to quantum
cosmology. We show, in a simple homogeneous isotropic mode1, that the density matrix of the
Universe will decohere if the long-wavelength modes of an inhomogeneous massless scalar field are
traced out. These modes efFectively act as an environment which continuously "monitors" the scale
factor. The coherence width is very small except in the neighborhood of a classical bounce. This
means that one cannot really say that a classical solution bounces because the notion of classical
spacetime does not apply. The coherence width decreases as the scale factor increases, which has
implications for the arrow of time. We also show, using decoherence arguments, that the WKB
component of the wave function of the Universe which represents expanding universes has negligi-
ble interference with the collapsing component. This justifies the usual assumption that they may be
treated separately.

I. INTRODUCTION

It is one of the undeniable facts of our experience that
the world about us is described by classical laws to a very
high degree of accuracy. In classical mechanics, a system
may be assigned a quite definite state and its evolution is
described in a deterministic manner —given the state of
the system at a particular time one can predict its state at
later time with certainty. And yet, it is believed that the
world is fundamentally quantum mechanical in nature.
Phenomena on all scales up to and including the entire
Universe are supposedly described by quantum mechan-
ics. In quantum mechanics, because superpositions of in-
terfering states are permissable, it is generally not possi-
ble to say that a system is in a definite state. Moreover,
evolution is not deterministic but probabilistic —given
the state of the system at a particular time, one can calcu-
late only the probability of finding it in another state at a
later time.

If quantum theory is to be reconciled with our classical
experience, it is clearly essential to understand the sense
in which, and the extent to which, quantum mechanics
reproduces the effects of classical mechanics. This is an
issue that assumes particular importance in the quantum
theory of measurement. ' There, one describes the
measuring apparatus in quantum-mechanical terms; yet
all such apparata behave in a distinctly classical manner
when the experimenters eye reads the meter.

Early Universe cosmology provides another class of sit-
uations in which the emergence of classical behavior
from quantum mechanics is a process of particular in-

terest. In the infIationary universe scenario, for example,
the classical density fluctuations required for galaxy for-
mation supposedly originate in the quantum fluctuations
of a scalar field, hugely amplified by inflation. This is, in
a sense, an extreme example of a quantum measurement
-process, in that the large-scale structure of the Universe
we see today is a meter which has permanently recorded
the quantum state of the scalar field at early times. The
manner in which this quantum to classical transition
comes about has been discussed by numerous authors. '

A more fundamental situation of interest, and the one
with which this paper is primarily concerned, is quantum
cosmology, in which one attempts to apply quantum
mechanics to closed cosmologies. Since this involves
quantizing the gravitational field, one of the goals of this
endeavor should surely be to predict the conditions under
which the gravitational field may be regarded as classical.

The point of view we will take is that there are at least
two requirements that must be satisfied before a system
may be regarded as classical. The first requirement is
that it must be possible to say that the system is in one of
a number of definite states, where by definite we mean
that the states are of a relatively permanent nature and
that the interference between different states is exceeding-
ly small. This involves the notion of decoherence-
destruction of the off-diagonal terms in the density ma-
trix, which represent interference terms. Note that this
does not preclude the possibility that our knowledge of
the system's state is not precise —we may have only pro-
babilistic information, as in classical statistical mechan-
ics. In fact, this is generally the case. The second re-
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quirement is that evolution should to a very good approx-
imation be described by classical laws. This means that
the wave function, or some distribution constructed from
it, should be strongly peaked about a classical config-
uration, or a set of such configurations. One can show, in
fact, that certain wave functions that are frequently de-
scribed as "classical" exhibit a strong correlation between
coordinates and momenta. For want of a concise word,
and to draw the analogy with the quantum theory of
measurement discussed below, we shall refer to this
second requirement as correlation

Certain previous discussions on interpretational issues
in quantum cosmology, including that of the present au-
th6r, have been lacking in that they consider only the
second requirement, and possibly do not even recognize
the need for the first. It is the purpose of this paper to
concentrate on the first requirement: that is, to discuss
decoherence of spacetime in the context of quantum
cosmology.

The quantum theory of measurement is a well-studied
area in which, as noted above, the emergence of classical
behavior from quantum mechanics is very important.
We therefore begin, in Sec. II, by discussing it in some
detail to introduce the notion of decoherence, following
primarily the approach of Zurek. The basic ideas are
outlined here. As a result of interacting with the system
it is measuring, the states of the measuring apparatus be-
come correlated with the states of the system being mea-
sured. The apparatus-system pure-state density matrix,
however, contains nonzero off-diagonal terms which
represent interference between different possible out-
comes of the measurement. It is only when these off-
diagonal terms become small that one can say that the
measuring apparatus has recorded a definite outcome.
However, this means that the pure-state density matrix
must evolve into a mixed-state diagonal density matrix,
which cannot be achieved by unitary evolution. The
resolution of this difficulty comes from the realization
that the apparatus and system must necessarily be in in-
teraction with the rest of the Universe, summarily re-
ferred to as "the environment. " If one includes the state
of the environment in the initial pure-state density ma-
trix, then one finds that the reduced density matrix, ob-
tained by tracing out the environment states, can evolve
nonunitarily, taking an initial pure state to a final mixed
state. The fact that the apparatus appears to be in a
definite state, therefore, may be thought of as a conse-
quence of the fact that it is continuously "monitored" by
the environment. There is a further issue concerning the
basis in which the density matrix becomes diagonal.
That is, what are the states of a relatively permanent na-
ture that the apparatus ends up in? Again the environ-
ment determines this —they are the states that are not
disturbed by the interaction of the apparatus with the en-
vironment; that is, they are eigenstates of the operators
which commute with the apparatus-environment interac-
tion Hamiltonian.

In Sec. III we discuss the application of these ideas to
quantum cosmology, drawing analogies with the quan-
tum theory of measurement. Solutions to the Wheeler-
DeWitt equation, the analogue of the Schrodinger equa-

tion, are typically oscillatory in certain regions of in-
terest, of the form e', where S is a solution to the
Hamilton-Jacobi equation for the system. Such wave
functions exhibit a strong correlation between coordi-
nates and momenta of the form p =VS. This relatio~ be-
tween p and q defines a first integral to the field equations,
and thus the wave function may be regarded as being
peaked about a set of classical solutions. This however, is
just one of the two requirements for the system to be clas-
sical: namely, correlation. We still need decoherence.
To achieve this, we need to introduce an environment.
Since the entire Universe is, by definition, a closed sys-
tem, it has no external environment. However, one is
never interested in observing more than a tiny fraction of
the potentially measurable observables. One may, there-
fore, concentrate on just some of the variables describing
the state of the Universe and regard the rest as the envi-
ronment. For example, one may regard an inhomogene-
ous matter field as an environment for the homogeneous
components of the metric.

A model of precisely this type is described in Sec. IV.
We consider the de Sitter minisuperspace model, which is
a homogeneous isotropic model described by a single
scale factor a, and driven by a cosmological constant.
For the environment, we take the inhomogeneous modes
of a massless scalar field. We calculate the reduced densi-
ty matrix obtained by tracing over the scalar field modes.
Certain technical difficulties arise because there are an
infinite number of such modes. We show, however, that
to achieve decoherence, it is sufficient to trace over the
long-wavelength modes only, which are finite in number.

In Sec. V we consider the case in which the wave func-
tion is a sum of two WKB components, representing a su-
perposition of sets of collapsing and expanding solutions.
We show, again using decoherence arguments, that the
interference between these components is negligible. This
justifies the usual assumption that they may be treated
separately. Finally, in Sec. VI we discuss the implications
of these considerations for the arrow of time and for clas-
sical solutions which undergo a nonsingular bounce.
Connections with the work of other authors is also dis-
cussed.

II. THE QUANTUM THEORY OF MEASUREMENT
AND THE RALE QF THE ENVIRONMENT

To introduce the notion of decoherence, we begin by
discussing it in a familiar context: namely, the quantum
theory of measurement. ' We follow primarily the ap-
proach of Zurek.

Consider a system S described by a set of state vectors
I f S„)I, in interaction with a measuring apparatus A,
with states vectors I f A„)I. Let the initial state of the
system be a superposition of states with coefficients c„,
and the initial state of the apparatus be

f Ao). Then the
initial state of the combined system SA is

The "first stage" of the measurement process involves
bringing the system and apparatus into interaction, re-
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suiting in a correlation between states of the system and
states of the apparatus. A typical such interaction will
cause the initial state (2.1) to evolve into a final state of
the form

(2.2)

The final state of the combined system SA is then given
by

=pe ls &a (2.4)

where IS ) are the relative states, and are defined by
(2.4). In this new basis, it appears that the apparatus
states

I
A ) have become correlated with the system

states Is ) —that the measuring apparatus finds itself in
one of the states

I
A ) and has measured the system to

be in the state IS ). So what has actually been mea-
sured? Measuring apparatuses are macroscopic objects
which are not observed in superpositions. Clearly only
one of the above is correct. But what is it that picks out
a particular basis?

The difficulties are further highlighted if one considers
the pure-state density matrix corresponding to the final
state (2.2):

n, m

(2.5)

It involves nonzero off-diagonal terms. We are seeking to
maintain, however, that the combined system's final state
is a definite state in which each system state IS„) is
correlated with the apparatus state

I A„),with probabili-
ty Ic„I

of finding the system in state IS„). Such a situa-
tion can only be described by a diagonal mixed-state den-
sity matrix of the form

(2.6)

One might wish to interpret (2.2) as indicating that the
apparatus state

I A„)has become correlated with the sys-
tem state IS„)—that the apparatus has "measured" the
system and finds it to be in state IS„) with probability
Ic„I

. However, the general formalism of quantum
mechariics, which is assumed to apply to the measuring
apparatus, allows for an arbitrary change of basis. In
particular, one may introduce a new orthonormal basis
for the apparatus, defined by

(2.3)

tion the pure-state density matrix (2.5) will evolve into
the mixed-state density matrix (2.6). It is for this reason
that in conventional approaches to quantum mechanics
one invokes the "second stage" of the measurement pro-
cess: namely, the "collapse of the wave function. " This
is the process whereby one projects the state vector (2.2),
a superposition of states, down onto just one of the states
of the superposition. One thus obtains the state
IS„) I 3„)with probability Ic„I

. Since in this final situa-
tion the apparatus and system are assumed to have
achieved definite, classical states, the ensemble of possi-
bilities may be represented by the diagonal density matrix
(2.6). The collapse of the wave function is thus essentially
the transition from (2.5) to (2.6).

One can find many reasons for objecting to this pro-
cess, but consider just two. First, it puts part of the act
of measurement outside the realm of quantum mechanics.
This is contrary to the hypothesis that quantum mechan-
ics is universally applicable. The difficulties are particu-
larly acute when one attempts to apply quantum mechan-
ics to the entire Universe. Second, it does not single out a
preferred basis, that is„it does not tell us what we have
measured; yet in a realistic measurement situation, this is
surely known. Enumerable papers have been written on
this subject, and it is not the purpose of this paper to dis-
cuss all of them. There is, however, one particular sug-
gestion, which is perhaps the most compelling, and is
readily applicable to quantum cosmology. This is the
environment-induced superselection approach pioneered
by Zurek.

The key point is that no macroscopic system can real-
istically be considered as closed and isolated from the rest
of the Universe (with the possible exception of the entire
Universe itself —see the next section). Laboratory
measuring apparatuses interact with surrounding air mol-
ecules; even intergalactic gas molecules are not isolated
because they interact with the microwave background.
Let us refer to the rest of the Universe as "the environ-
ment. " Then it can be argued that is is the inescapable
interaction with the environment which leads to a con-
tinuous "measuring" or "monitoring" of a macroscopic
system and it is this that causes the wave function to
"collapse. " More precisely, the environment causes the
off-diagonal terms in p„„„to become exceedingly small,
so that it is well-approximated by p;„,d. This is decoher-
ence.

Let us study this in more detail. Consider once again
the combined system SA considered above, but now take
into account also the states f I

6„)} of the environment C.
Let the initial state of the total system SA 6 be

(2.7)

(2.6) and (2.5) dift'er by the presence of off-diagonal terms
in (2.5), which represent interference between the
different outcomes of the measurement. It is only when
these interference terms can be neglected that the corn
bined system may be said to be in a definite state.

There is no way that under unitary Schrodinger evolu-

As a result of the measurement interaction, this may
evolve into a final state of the form

(2.8)
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In this state, not only have the system and apparatus be-
come correlated with each other, but they have also be-
come correlated with the environment. One is not in-
terested, however, in the state of the environment. This
is traced out in the calculation of any quantities of in-
terest. The object of particular relevance, therefore, is
the reduced density matrix, obtained by tracing over the
environment states:

n, m

(2.9)

The density matrix ~4& ) (4& ~
of the total system evolves

unitarily, of course. The reduced density matrix (2.9),
however, does not. It, therefore, holds the possibility of
evolving from an initial pure state to the final mixed state
described by (2.6). In particular, if, as can be the case,
the inner products (C~ ~8„)are very small when num,
then (2.9) will be approximately of the desired form (2.6).
If this happens then one may say that the environment
has caused the density matrix to decohere. It has caused
the system-apparatus combination to end up in one of a
set of noninterfering states. We do not necessarily know
exactly which of the states

~ A„)the apparatus is in —we
have only probabilistic information. But these are classi-
cal probabilities and the probabilistic element is no more
mysterious than that of classical statistical mechanics.

This, however, is only part of the story. There is still
the issue of finding the preferred basis. Decoherence
occurs generically, in the sense that the entropy associat-
ed with the reduced density matrix, S= —Tr(p lnp), gen-
erally increases. The pertinent question to ask, however,
is in which basis does p become diagonal? That is, in
which basis do the inner products ( 6

~
6„)become very

small for num? According to Zurek, this depends quite
crucially on the particular form of the interaction be-
tween the system and the environment. In particular,
one may define a "pointer observable" to be any observ-
able which commutes with the interaction Hamiltonian
between the system and the environment. The preferred
basis, the "pointer basis, " is then the set of eigenstates of
the pointer observable. Basically the idea is that if the
system is in one of the eigenstates of the pointer observ-
able, it is not disturbed by the interaction with the envi-
ronment, so it may be regarded as being in a definite
state. If, on the other hand, it is not in a pointer observ-
able eigenstate, it may not be regarded as being in a
definite state, because its state will change as a result of
the interaction with the environment. Moreover, super-
positions of pointer basis states will not be observed be-
cause, as we have already discussed, the environment has
destroyed the interference between different such
states —hence, the description "environment-induced su-
perselection" coined by Zurek. We have found, there-
fore, the states that we called defi'nite states in the
Introduction —states of a relatively permanent nature
that do not interfere. Note that the environment plays
two roles in the measurement process: (i) it causes
decoherence; (ii) it determines the preferred basis.

In a typical model of the measurement process, the en-

vironment will couple to the system through the position
of some quantity, q, say. The system-environment in-
teraction Hamiltonian will, therefore, commute with po-
sition, and thus the pointer basis is the position basis.
The density matrix, therefore, diagonalizes in the posi-
tion basis. (In fact, this will generally be true in many sit-
uations of interest, not just measurement situations.
Fields generally couple to each other through their
configuration-space coordinates, and not their momenta. )
However, to say that something is classical, one would
expect not only that the position takes reasonably sharp
values, but the momentum also, to a degree consistent
with the uncertainty principle. How can this come
about? The answer lies in the self-Hamiltonian of the sys-
tem. Recall that for the system to become classical, in
addition to decoherence, one needs a strong correlation
between coordinates and momenta q and p. If q becomes
reasonably definite, therefore, p will become reasonably
definite also, because it is correlated with it. Moreover,
the uncertainly principle is not violated because the den-
sity matrix does not diagonalize exactly in position. No
measurement can fix the position with arbitrary pre-
cision. The density matrix diagonalizes in q, but with a
nonzero width —it is strongly peaked about q=q' and
very small for q far from q'. This nonzero width peak al-
lows p to be reasonably sharp also, to a degree consistent
with the uncertainty principle.

Since we have now argued that both q and p become
reasonably definite, the claim above that the environment
determines the preferred basis perhaps seems to be in
question. The point is, however, that Zurek's claim is
directed at quantum measurement situations in which the
system evolves on a time scale much longer than the time
scale of the system-environment interaction. The follow-
ing example will hopefully clarify the situation. Unruh
and Zurek considered a model involving a harmonic os-
cillator in interaction with an environment consisting of a
scalar quantum field. The oscillator coupled to the sca-
lar field through the oscillator's position. The reduced
density matrix was found to diagonalize in position very
rapidly, in accordance with the claim above that position
is the preferred basis. However, the subsequent evolu-
tion, due to the self-Hamiltonian of the oscillator, caused
correlations to develop between position and momentum
(on a much longer time scale), leading to the momentum
becoming reasonably definite also. So although it is posi-
tion that is initially measured by the environment, the os-
cillator Hamiltonian cauqes a rotation of the state in
phase space, and the final preferred basis states are in fact
some kind of coherent states.

III. QUANTUM COSMOLOGY

We now apply the ideas introduced in the previous sec-
tion to quantum cosmology. First of all, a few remarks
are in order concerning their applicability. One might
get the impression from the way these ideas were present-
ed that they are very much tied to the Hilbert-space
structure of quantum mechanics. If this is the case it
would represent an immediate difhculty because quantum
cosmology is not at present known to possess such a
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(H +H )4=0, (3.1)

where H and H are, respectively, the gravitational and
matter Hamiltonians. Equation (3.1) is functional
differential equation on sup erspace. Because of the
difficulty in solving it, one is frequently interested in the
minisuperspace approximation, in which one restricts the
three-metric and matter fields so that they are described
by a finite number of functions q (t) (Ref. 13). A purely
gravitational minisuperspace model would then be de-
scribed by a Wheeler-DeWitt equation of the form

H %(q) = [——,
' V + U(q)]%(q) =0, (3.2)

where V' is the Laplacian on rninisuperspace.
The solution to the Wheeler-DeWitt equation may be

broadly described as either oscillatory or as exponential,
depending on the region of minisuperspace. Whether or
not the wave function is exponential or oscillatory in a
given region will depend on the boundary conditions.
The oscillatory regions are normally regarded as corre-
sponding to classically allowed regions. One can show, in
fact, that an oscillatory wave function is strongly peaked
about particular classical configurations. This is not true
of the exponential'regions, which are regarded as classi-
cally forbidden. We will have no more to say about the
exponential region.

Let us concentrate more on the oscillatory region. One
can solve the Wheeler-DeWitt equation in this region us-

ing a WKB expansion, in which one writes

eSS (3.3)

where S is a rapidly varying phase and C is a slowly vary-
ing prefactor. S obeys the Hamilton-Jacobi equation

—,'(VS) + U(q)=0

and C satisfies

(3.4)

structure —there is no notion of external time, of inner
products on a surface of constant time, of normalizable
wave functions, etc. ' We are assuming, however, that
the key features described in the previous section tran-
scend the Hilbert-space language we used to describe
them. Justification for this assumption could well come
from a path-integral treatment, which is thought to apply
to situations more general than those for which there ex-
ists a Hilbert-space structure. ' Still, it may be that we
are making some kind of logical jump. An example of
the sort of problem that might arise is that since the wave
functions in quantum cosmology are not normalizable in
all of their arguments; the trace operation is difticult to
define. We avoid this sort of difficult quite simply by not
attempting to calculate quantities which are obviously i11

defined.
We now briefly review the formalism of quantum

cosmology. "' The quantum state of the Universe is
represented by a wave function 4'[h;~, 4], a functional on
superspace, the space of three-metrics h;, and matter
fields N on a three-surface. The wave function satisfies
the Wheeler-DeWitt equation

It may be shown that a wave function of the form (3.3) is
strongly peaked about the region of phase space for
which

p =VS, (3.6)

where p is the conjugate to q (Ref. 5). Using the fact
that S satisfies (3.4), one may show that (3.6) defines a
first integral to the classical field equations. It is in this
sense that (3.3) is said to be strongly peaked about a set of
classical solutions.

It is convenient to introduce the tangent vector to the
set of solutions (3.6):

d==VS-V
dt

(3.7)

[——,'V + U(q)+H (q, C&)]%(q,C&)=0 . (3.8)

Some models of this type are described in Refs. 15—17.
We will assume that 4 constitutes a small perturbation
on the rninisuperspace background q . We, therefore,
seek a solution to (3.8) of the form

Here, t is nothing more than an aKne parameter which
labels the points along the trajectories about which the
wave function is peaked. We will, of course, eventually
deduce that it is "time. " This may not be deduced, how-
ever, until it is established that the q, from which t is
constructed, are definite classical quantities, whose
different values are noninterfering.

The q describe a system analogous to the combined
system SA in the previous section, and what we have
achieved so far is closely analogous to the first stage of
the measurement process —the process of correlation.
We have shown that WKB wave functions (3.3) exhibit a
strong correlation between certain variables, namely, p
and q, through the relation (3.6). As should be clear from
the discussion of the previous section, however, this is
not sufficient. It is also necessary to demonstrate that the
metric, represented by q, may be regarded as definite—
that it is in a state of a relatively permanent nature which
does not interfere with other such states.

Let us introduce, therefore, an environment which con-
tinuously monitors the metric. As pointed out in the In-
troduction, the entire Universe cannot by definition have
anything external to it. It is, therefore, necessary to re-
gard some of the variables describing the Universe as the
system, and the rest as environment. The environment
should be some kind of large reservoir into which infor-
mation about correlations can be dissipated. It should,
therefore, have a large number of modes. Since minisu-
perspace usually involves the homogeneous modes of the
fields, the inhomogeneous modes, which have so far been
ignored, are a natural candidate for the environment.
One can use the inhornogeneous modes of either gravita-
tional or matter fields. Here we shall use matter fields, al-
though the case of a gravitational environment is very
similar. '

Consider the Wheeler-DeWitt equation (3.1) with
three-metric components q and inhornogeneous matter
modes 4:

VS V(lnC)+ —,'V S =0 . (3.5) %(q, 4&)=C(q)e' ''i'y(q, 4&). (3.9)
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Inserting (3.9) in (3.8), one once again obtains (3.4) and
(3.5) for S and C. In addition, one obtains the following
equation for g:

iVS Vy=H y . (3.10)

p(q, q') = fXl@p(q, @,q', @), (3.12)

where p is the pure state density matrix for the total sys-
tem, obtained from the wave function (3.9) (there is also
the possibility that p may be a mixed state, but we do not
consider that here' ). There is, however, some ambiguity
in how p should be defined. This is because there is some
disagreement about the probability measure one should
use in interpreting the wave function. Hawking and
Page, for example, advocate that probabilities should be
proportional to

~
4

~
d V, where d V is the volume element

on superspace. Since the diagonal elements of a density
matrix are probabilities, this corresponds to taking the
dcnslty matrix to bc

p(q, @,q', @')=4 (q, @)%(q',N') . (3.13)

This definition of the probability measure is analogous to
that used for systems described by a time-dependent
Schrodinger equation. The Wheeler-DeWitt equation,
however, has the form of a Klein-Gordon equation, for
which the appropriate probability measure is the "time-
like" component of the conserved current:

J=i(VV+*—O' V%') . (3.14)

This point of view has been advocated primarily by Vilen-
kin ' (see also Ref. 22). It is not immediately obvious
how one should construct a density matrix which reduces
to this latter probability measure on the diagonal. One
could perhaps consider a point-split version of (3.14).
Since J is a vector, however, one would expect to en-
counter difficulties similar to those encountered when
generalizing the Wigner function to curved back-
grounds. This technical problem is probably not insur-
mountable, but will not be pursued in this paper.

Because of the difficulty with the density matrix associ-
ated with the Klein-Gordon current, we will use the den-
sity matrix (3.13). In doing so, however, we do not wish
to give the impression that we necessarily favor the prob-
ability measure ~4~ in preference to that constructed

From (3.7), one may see that (3.10) is a time-dependent
Schrodinger equation along the trajectories (3.6) about
which the wave function is peaked. Although solutions
to the full Wheeler-DeWitt equation (3.8) are generally
not normalizable, the solutions of interest to (3.10) usual-
ly are, and one may introduce an inner product

(x„x,)= f&+xl(t, +)x,(i,c). (3.11)

Equations (3.10) and (3.11) describe the familiar quantum
field theory in curved spacetime for N, in the functional
Schrodinger picture. '

Given the solution (3.9), we may proceed to construct
the reduced density matrix obtained by tracing out the
environment 4:

from (3.14). This choice is merely for mathematical con-
venience.

In terms of (3.9), the reduced density matrix is

p(q, q') = C "(q)C(q')e

x fx)Nx*(q, @)x(q',@) . (3.15)

V=QCke
k

(3.16)

where Sk and CI, are solutions to (3.4) and (3.5). A par-
ticular example is the Hartle-Hawking wave function
which is claimed to be real:

l(I)I —Ce CS+ C 4 ~ lS
HH (3.17)

This wave function corresponds to a superposition of ex-
panding and collapsing universes which are clearly quite

The trace over N can be made well defined because the
wave functions X(q, N) are normalizable. The fact that 4
may involve an infinite number of modes will cause prob-
lems, but this is not an obstacle of principle, and is dis-
cussed in the next section. Note, however, that the trace
over the metric components q is probably not well
defined, because the wave function is not normalizable in
q. We will not attempt to trace over q at any stage.

Given (3.15) the object is to show that the TrX'X term
is very small if q'Wq, and thus that the reduced density
matrix decoheres. This would mean that there is no in-
terference between diQ'erent values of q. One should ask,
however, whether this is the correct basis —that is, is q
the variable in which one would expect the density ma-
trix to decohere? The interaction Hamiltonian between
the three-metric and its environment is the matter Hamil-
tonian, H (q, 4). This is a function of q but not its con-
jugate; thus q commutes with FX (q, N) and is, therefore,
the "pointer observable. " This means that the "initial"
tendency is for the density matrix to diagonalize in q.
The woId initial ls ln quotes bccausc lt implies tlIDc evo-
lution of the quantum state which does not exist in quan-
tum cosmology, because there is no external time. Time
is already in there among the metric components q .
This makes it difficult to separate the processes of
decoherence and correlation, as one can in ordinary
quantum mechanics using thc fact that they occur on
di6'erent time scales, as described at the end of Sec. II.
All that one can say here is that these processes occur in
certain regions of minisuperspace. Again the fact that
the density matrix does not diagonalize exactly in q
means that p may become reasonably sharp also; and
again one would expect the "final" basis states to be the
analogue of coherent states, but this is probably much
more difficult to justify explicitly in quantum cosmololgy,
mainly because of the difficulty of constructing the ana-
logue of coherent states. We hope to give a more satis-
factory discussion of this awkward point in a future pub-
ll cation.

One can go further using the approach described here.
Solutions to the Wheeler-DeWitt equation are not gen-
erally of the precise form (3.3) but are rather a sum of
WKB components:
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distinct macroscopic states. In any interpretation of the
wave function, it is always assumed that distinct WKB
components may be treated separately; that is, it is as-
sumed that they do not interfere. One would hope to
show this explicitly using decoherence arguments. One
thus considers solutions to (3.9) of the form

%(q, N) =QC„(q)e " y„(q,4&),
k

(3.18)

where yk is a solution of the Schrodinger equation (3.10)
with Hamilton-Jacobi function Sk. The reduced density
matrix then takes the form

p(q, q')=QCk(q)C (q')e
k,j

X 4gk q, C g~ q (3.19)

IV. THE DE SITTER MINISUPERSPACE MODEL

To see how the density matrix diagonalizes, and the ex-
tent to which this occurs, it is of interest to study a par-
ticular model. The model we consider is the de Sitter
minisuperspace model. ' It is described by the metric

ds =I [ Ndt +a (t)dQ—3], (4.1)

where l =2/3~m and d03 is the metric on the unit
three-sphere. The Einstein-Hilbert action with cosmolog-
ical constant for this metric is

The object here is to show not only that the Tricky term
is very small for qWq' when k =j, but also that it is very
small when kAj for all q, q', including q =q'. If this is
the case, then one might say that there is a superselection
rule which forbids superpositions of distinct WKB wave
functions.

It is notoriously difIicult to offer general arguments
concerning decoherence in quantum theory and the two
examples above are no exception. However, it may be
demonstrated explicitly in a particular model, and this is
the subject of the next section.

4(x, t ) =gf„l(t)gp (x) .
nlm

(4.6)

Here, the Ql~(x) are eigenfunctions of the Laplacian on
the three-sphere with eigenvalue (n ——1). In addition
to the eigenvalue label n, the eigenfunctions are labeled
by degeneracy labels Im which run over n values. The
homogeneous mode n = 1 is problematic in that it is not
normalizable, and will, therefore, be excluded from our
considerations.

Following Ref. 15, for example, one may show that the
Hamiltonian for 4 is

2

H =
—,
'a= g — +(n —1)a f„l

nlm ~fnl

(4.7)

The total Wheeler-DeWitt equation for the model is now

(Hg+H )%(a,+)=0 . (4.8)

One might have thought that the scalar field modes
would excite metric fluctuations, which may not con-
sistently be neglected. We are assuming, however, that
all the scalar modes are small, and that we are working to
quadratic order in inhomogeneities in the Hamiltonian.
At this level of approximation, the metric fluctuations do
not couple to the scalar field and may, therefore, be
neglected. '

Equation (4.8) may be solved by writing

%(a,4) =C(a)e ' "y(a,N), (4.9)

where $(a) is given by (4.4) and y satisfies the time-
dependent Schrodinger equation

The solutions are expanding or collapsing components of
de Sitter space a (t) =H 'cosh(Ht). For the moment we
will concentrate on the solution e ' which corresponds
to the expanding half.

For the environment we will take certain modes of a
massless minimally coupled inhomogeneous scalar field
4(x, t ) (we will be more precise below). The scalar field is
most conveniently handled by expanding the spatial
dependences in harmonics on the three-sphere. One thus
writes

I=—' f dt N — +a Ha-aa 2 3
2 X

(4.2) ax
H, g=i (4.10)

where H =A/3. The associated Wheeler-DeWitt equa-
tion is

=1 a'
H %(a)= +H a a+(a)=0 . —

2a pa 2
(4.3)

The WKB approximation in the oscillatory region is val-
id for Ha &) 1. The two linearly independent WKB solu-
tions are of the form e —', where

t is defined in terms of a through (4.5). We will use t and
a interchangeably. Since the different modes do not in-
teract, (4.10) may be solved by writing

X(+ @) QX I (t f.l,.) (4. 1 1)
nlm

Each wave function y, l thus satisfies the Schrodinger
equation

(H g —1)3i~1

3H
(4.4)

2

—,'a — +(n —1)a f„l y„l =i2 4 . +nlm

Qf 2

—aa =p =+ =+a(H a —1)'
a (4.5)

The wave function is, therefore, peaked about solutions
to the field equations satisfying the first integral

We will look for solutions of the form

= A„(t)exp[ B„(t)fl ] . —

(4.12)

(4.13)
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ia A„=B„A„,
ig 8„=——,'(n —1)g +282 .

(4.14)

(4.15)

Re(B„)must be positive for (4.13) to be normalizable.
Substituting (4.13) in the Schrodinger equation one finds
that A„andB„satisfythe equations

P„and Q„arearbitrary constants. B„depends only on
the ratio Q„/P„. Choice of this ratio corresponds to
choosing a particular vacuum state for the field. For sim-
plicity we make the choice Q„=O,although it would be
of interest to study other choices also (see Sec. VI). With
this choice, B„maybe written

The normalization condition (y„t,y„& )=1 fixes A„up
to a phase:

2 n +i (H g 1)'—8„=—,'(n ' —1)g 2

n +Ha —1
(4.19)

—1/4(8 +8 e )1/4e '+n t
n n n (4.16)

where u„(ri)is given by

u„(g)=P„e'""1 ——tang

The phase a„is then determined by (4.14).
The general solution to (4.15) may be given in terms

of conformal time ri, where dt =g dri and g(ri)
=(H cos2)) '. It may be written

ig 1 dun 1 dg
(4.17)

2 uq d'g g dri

We are interested in the reduced density matrix calcu-
lated using (4.9). '

This will be proportional to a product
over nlm of terms of the form

(4.20)

Inserting (4.13) and (4.16), this yields
—ia„(a)+ia„(a')

Pnlm =e

[B„(g)+8„*(g)][8„(g')+8„'(g')]
X [8„'(g)+8„(g')]

(4.21)

+Q„e '"~ 1+—tang
n

(4.18) Inserting the expression for 8„,(4.19), one may show, at
some length, that (4.21) reduces to

' —1/4
(g 2 g &2)2 [g2(H2g &f2

1 )1/2 g &2(H2g2 1 )1/2]2
Pnlm 4a a' 4n a a'2 2 ~2 (4.22)

where in (4.22), we have ignored phases.
Let us now be more precise about what we are taking

to be the environment. One could take the full infinite
number of modes of the scalar field as the environment,
in which case the reduced density matrix is of the form
(3.15), with q representing g. The trace part is then given
by

@y* a, 4 y a', 4 = p„l
n=2 lm

(4.23)

Since ~p„i ~

~ 1 with equality only when g =g', it is easy
to see that (4.23) is equal to one if g =g' and is equal to
zero if gag'. This means that the reduced density ma-
trix has diagonalized perfectly. However, this is rather
unsatisfactory, as should be clear from the discussion in
Sec. II. It means that the scale factor has been perfectly
measured, which is clearly unrealistic. It also means that
the momentum conjugate to a must have an infinite
spread, so the system cannot really be said to be classical.
This has happened because due attention has not been
paid to the field-theory aspects of the problem —to the
fact that we have an infinite number of modes, and need
to introduce a regularization scheme. The most naive
way of regularizing is to introduce a cutoff in (4.23) at

some very large value of n, n =X, say. The product will
then be dominated by the very-short-wavelength modes,
and a straightforward calculation yields

N/ g p, t =exp( (4.24)
n=2 lm

where g =(g+g')/2, b, =~g —g'~/2, and A, =g/2V is the
wavelength of the cutoff. Equation (4.24) is a Gaussian of
width o =A, / g ' . Not surprisingly it depends on the
cutoff. A reasonable value to choose for A, might be the
Planck length (A, =l in our units), in which case the
coherence width o. is much less than a when a is much
greater than the Planck length, giving very effective
decoherence. This should not be regarded as an approxi-
mation to the case of an infinite number of modes, how-
ever, because such noncovariant regularization schemes
are well known to give misleading or incorrect results. '

A more sophisticated approach is to use covariant field-
theory methods and these yield peaks of nonzero width
about the diagonal, independent of any cutoff.

The approach that we will take here, however, is to
note that there is a natural cutoff in the sum over modes
at a much more modest scale than the Planck scale.
Each mode has a wavelength g/n. There are a finite
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number of modes whose wavelength is outside the hor-
izon, i.e., a/n & 1/H. Since these will be unobservable, it
is natural to try tracing over these modes only. Consider,
therefore, the quantity of the form (4.23), but with the
product over n not from n =2 to n = ~, but from n =2
to a number of order Ha. With this choice of environ-
ment, the reduced density matrix is

p(a @ a' q&' )
—e+/S(a) —/S( a)+e( @ )

Xy, (a', N,')F))(a,a'), (4.25)

n=2 lm

2
Ha

(
2 2)2 H2( )21+ +

n =2 4a a' 4n

(4.26)

F» =exp
Z 2a +6

12 —2
+const

(4.27)

In the region 0 & 6 (&a, F& &
has the form

where g, is the wave function of the short-wavelength
part of the scalar field N„with @, defined to be (4.6) with
n summed from Ha to infinity. F]] is the trace over the
long-wavelength modes N/, with @/ defined to be (4.6)
summed from n =2 to Ha. F» is given by

F))(a,a ) = J d@/y/ (a, @/)y)(a, @'/)

there is a strong correlation between p, and a in this re-
gion, we may conclude that p, becomes sharp also. We
may now safely conclude that the scale factor behaves
classically in the region Ha »1.

Note that the density matrix does not diagonalize in
This is because our chosen environment does not in-

teract with the short-wavelength modes of the scalar
field. These modes, therefore, remain quantum mechani-
cal in this model.

V. THE INTEFERENCE BETWEEN EXPANDING
AND COLLAPSING COMPONENTS

We have shown that the scale factor decoheres in a
simple model for the case in which the wave function
consists of just one WKB component (4.9). As discussed
in Sec. III, however, a typical solution to the Wheeler-
DeWitt equation will be a sum of such components. We
would like to show that the interference between such
components is very small. This will justify considering
each component separately, which is what one normally
does. To study this problem in generality, one would
need the general solution 5& to the Hamilton- Jacobi
equation and then needs to solve the Schrodinger equa-
tion along the trajectories to which each solution corre-
sponds. This would be rather difficult. Here we will
study just one particularly simple case.

Consider the model of the previous section. Since the
Wheeler-DeWitt operator is real, if the WKB wave func-
tion (4.9) is a solution, then its complex conjugate is a
solution also. We will, therefore, study the real solution

%(a,@)=C(a)e ' "y(a, C&)

F„=exp(—,', H ab. ) . — (4.28)
+C*(a)e+' "y*(a 4&) . (5.1)

We see from the above that near the diagonal, the re-
duced density matrix has a Gaussian peak of width 0.,
with o /a =(Ha )

~ . Away from the diagonal, it decays
more efFectively than a Gaussian. The off-diagonal terms
will be exponentially smaller than the diagonal terms for
Ha » 1. The reduced density matrix, therefore,
decoheres in this region, and the scale factor becomes
reasonably sharp. Since we have already shown that

I

The Hartle-Hawking proposal supposedly picks out a
wave function of this form (see, however, Ref. 2S). The
first term represents an ensemble of expanding universes
and the second, a set of collapsing ones. We seek to show
that these components do not interfere. We do this by re-
peating the calculation of the previous section for the
wave function (5.1).

It is not difficult to show that the reduced density ma-
trix is a sum of four terms. It is

/()(a, 4„a',N,')=e+' " ' ' 'y,*( aC&, )y, ( 'a, 4,') „F( ,aa) ++e' "+' ' 'y,*( @a, )y,*( aN,') F( ,aa)

+e ' " ' ' 'y, ( @a, )y, ( 4a')F (a,a')+e ' "+' ' 'y, ( 4a, )y,*( aC&')F (a,a'),
(5.2)

where F» ( =F22) is given by (4.26), and F,2 ( =F2, ) is given by

F)2(a, a')= JdC'4'/(a, C'/)X/(a', 4 /) . (S.3)

F,2 is the object of interest, because it represents the interference between expanding and collapsing components of the
wave function.

Following the details of Sec. IV, one may show that

[B„(a)+B„(a)][B„(a')+B„(a')]
(a,a')= + +e

n=2 lm [B„(a)+B„(a')] (5.4)
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Inserting the explicit form for 8„(a),one obtains

Ha (a —a' ) [a (H a' —1)' +a' (H —1)' ]F,z(a, a')= + + 1+ +
n=z rm 4& & 4n a a'

' —1/4

(5.5)

where we have ignored phases. Each term in the product
differs from (4.22) in that the minus sign between the two
square-root terms in (4.22) has become a plus sign in
(5.5). This has the crucial consequence that, in the region
a, a ))H, each term in the product in (5.5) is strictly
less than one, euen when a =a'. This means that the in-
terference terms F,z(a, a'), Fz, (a,a') are smaller than the
diagonal terms F»(a, a),Fzz(a, a). In particular, one
finds that

Pi~=exp. — H a ln
1

12
+6 +const

a —6
(5.6)

This expression is valid for all ranges of 6, including
6=0. The cross terms are, therefore, exponentially
smaller than the diagonal terms. One may, therefore, ig-
nore the interference between expanding and collapsing
parts of the wave function.

VI. DISCUSSION

We have discussed the essential requirements for the
emergence of classical behavior in quantum cosmology.
These are correlation and decoherence, in close analogy
with the quantum theory of measurement. We first dis-
cussed how the WKB wave function predicts a strong
correlation between p, and a, showing that the wave
function is strongly peaked about sets of classical solu-
tions. It was then shown, in a simple model, that the
long-wavelength modes of a massless scalar field provide
an environment which destroys the quantum-mechanical
interference between different values of the scale factor.
This environment also destroys the interference between
the expanding and collapsing WKB components of the

wave function. We again emphasize that both correlation
and decoherence are necessary before one can say that a
system is classical. Many previous discussions of the em-
ergence of classical behavior from quantum theory in a
cosmological setting concentrated only on the first
element —correlation. This has been rightly criticized
by Unruh and Zurek.

To what extent does the way in which gravity becomes
classical depend on cosmological boundary conditions?
Boundary conditions enter in two ways: (i) they enter in
the solution to the background Wheeler-DeWitt equa-
tion, determining the regions in which the solution is os-
cillatory or exponential, and thus determine the extent to
which there is a correlation between p and q; (ii) they
enter in the solution to the Schrodinger equation for the
quantum state of the environment, which in turn deter-
mines the coherence width of the density matrix. It is
possible to investigate this second point in greater detail.

In Sec. IV we calculated the reduced density matrix
after having made a particular choice for the quantum
state of the environment. In particular, we took Q„=Oin
(4.18). This is obviously not the only choice. One could
calculate the reduced density matrix with arbitrary Q„.
However, the resulting algebra turns out to be rather
messy, and it is easier to do the following. The reduced
density matrix is proportional to a product of terms of
the form (4.21). Close to the diagonal,

dB~B„(a')=8„(a)+(a—a') (a),
da

and the derivative with respect to a may be calculated us-
ing (4.15). Writing 8=8, +iBz (dropping the lable n),
where 8, and Bz are real, one finds that, close to the di-
agonal, (4.21) is given by

t

) 168 Bz n —11+ +Pnlm —
484B P 8 2

2(8 8)—
a4

(6.1)

The point now is that B& and B~ are essentially arbitrary.
The solutions to the equation for 8, (4.15), are param-
etrized by a single complex parameter, which may be tak-
en to be the value of B at a particular value of a. From
(6.1) it is easily seen that the coherence width of the re-
duced density matrix will depend quite crucially on B&
and Bz, thus the extent to which the scale factor becomes
classical may depend quite crucially on the boundary

conditions. This conclusion is in consonance with the
suggestion of Gell-Mann, Hartle, and Telegdi that the
fact that the Universe is described so well by classical
laws is a consequence of a law of initial conditions.

We showed in Sec. IV that the reduced density matrix
has a coherence width o =a (Ha )

~ . This width is
much less than the scale factor when a ))H '. When a
is close to 0 ', however, the width will not be small and
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S(t)= —Tr(p inp) . (6.2)

S(t) increases when the variables over which one has
traced in (6.2) decohere. The direction in which this
occurs is the thermodynamic arrow of time. It is charac-

there will be interference between different values of the
scale factor. Now the classical solutions about which the
wave function is peaked are de Sitter space, which has a
bounce at a=H '. The point to be made, however, is
that one cannot say whether or not a classical bounce
occurs, because the scale factor may not be regarded as
classical in the neighborhood of H '. This is perhaps
not a surprising conclusion, and possibly not new —one
might well have guessed it from looking at the wave func-
tion alone. However, one can be more confident in draw-
ing this conclusion from the behavior of the reduced den-
sity matrix. Note that it depends on the fact that we
have taken only the long-wavelength modes to be the en-
vironment. Including some shorter-wavelength modes
would have localized a to a much smaller width.

There is another feature of interest concerning the
coherence width. This is that it decreases as a increases.
This has possible implications for the thermodynamic ar-
row of time. One might wish to associate entropy with
the degree of coherence of the scale factor. In particular,
one could associate increasing entropy, and hence the
thermodynamic arrow of time, with the direction of de-
creasing coherence. This means that entropy increases
when the Universe expands and decreases when the
Universe contracts, in this model. This idea was first dis-
cussed in the context of quantum cosmology by Hawk-
ing. Hawking claimed that the wave function defined
by the Hartle-Hawking proposal is peaked about sets of
classical solutions which have the property that entropy
decreases during the collapsing phase. It was pointed out
by Page, however, that this claim relies on the assump-
tion that the classical trajectories about which the wave
function is peaked are time symmetric. While the set of
solutions is time symmetric, most individual members of
the set are not. Page's objection does not obviously apply
here in that the classical trajectories are de Sitter space,
which are time symmetric. Moreover, Hawking and
Page were concerned with models which have an expand-
ing phase followed by a collapsing phase, which is not the
case here. Hawking's suggestion may, therefore, make
sense in the simple model considered here. In their origi-
nal discussions of the arrow of time in quantum cosmolo-
gy, Hawking and Page discussed entropy in a very heuris-
tic manner —they did not discuss the reduced density
matrix. The ideas concerning decoherence discussed in
this and other papers cited below could make the argu-
ments of Hawking and Page much more concrete, open-
ing the way for a more precise discussion of the arrow of
time in quantum cosmology. Some preliminary steps in
this direction have been made by Fukuyama and Mori-
kawa.

A difficulty that occurs in a more precise discussion is
the definition of entropy. In ordinary quantum mechan-
ics, decoherence is a process which occurs in time. One
may define an entropy for the reduced density matrix at
time t:

teristic of quantum cosmology, however, that there is no
external time. Time is an intrinsic variable which is al-
ready contained among the components of the three-
metric or its conjugate momentum. In certain cir-
cumstances, one may take time to be the scale factor, for
example. In discussing the decoherence of three-metric,
therefore, we are discussing the decoherence of time
itself w—e are showing that there exists a variable which
labels the order of events and whose different values do
not interfere, as one implicitly assumes about t in quan-
turn mechanics. It is not obvious, therefore, what the
analogue of (6.2) should be in quantum cosmology. That
is, on which side of Eq. (6.2) does the scale factor
belong —does it play the role of time on the left-hand
side, or is it traced over on the right-hand side'7 We have
given a heuristic discussion of entropy increase by exam-
ining the behavior of the coherence width of a as a func-
tion of a itself; but a more concrete discussion cannot be
given in the absence of an expression of the form (6.2).
For the purposes of discussing the arrow of time it would
be useful to have a model which possesses more degrees
of freedom —e.g., a homogeneous mode of a scalar field,
or extra scale factors. One could then try regarding one
of the degrees of freedom as "time" and trace over the
rest in an expression of the form (6.2). We hope to return
to this point in a future publication.

Finally, we discuss the related work of other authors.
Decoherence of spacetime was discussed in a reasonably
heuristic fashion, without using quantum cosmology, by
Joos. ' Decoherence in quantum cosmology appears first
to have been discussed by Kiefer' and by Zeh. Kiefer
considered a massive scalar field minisuperspace model
and took the environment to be the infinite number of in-
homogeneous modes of the metric and scalar field. He
also considered a model in which the environment was
ferrnionic. Mellor and Moss considered a Kaluza-Klein
model and took the environment to be the perturbation
modes on the internal space. Morikawa and Fukuya-
ma and Morikawa considered similar models but gave a
more careful treatment of the infinite number of modes of
the environment, using field-theory methods. They also
discussed the arrow of time. The paper most similar to
this one is that of Padrnanabhan, who took a massless
scalar field as an environment, but in a general spacetime
background. A very general discussion involving
decoherence in cosmology is that of GeH-Mann, Hartle,
and Telegdi. Sakagami has discussed the destruction of
quantum coherence of scalar field fluctuations in
inflationary universe models Other discussions of the
emergence of classical properties through decoherence in
nonrelativisitic quantum mechanics are those of Joos and
Zeh and Unruh and Zurek. Unruh and Zurek also dis-
cuss scalar fields in infiationary universe models. The pa-
pers of Zurek have been particularly influential in the
present work.
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