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A solution of Einstein s vacuum field equations is presented explicitly in Eqs. (22), (28), and {43).
This completes our stationary metric presented previously and therefore gives the exact solution to
the problem of describing the exterior field of rotating deformed bodies. The metric given here is

equivalent to the general Weyl metric; however, we use prolate spheroidal coordinates for conve-
nience. We investigate the Newtonian and the relativistic (Geroch-Hansen) multipole moments of
the solution and conclude that it describes the exterior gravitational field of a static axisymmetric
mass distribution.

I. INTRODUCTION

The problem of how to describe the gravitational field
of astrophysical objects has long been of central impor-
tance in general relativity, both as an issue of principle
and as a foundation for observational predictions. In a
previous paper' we presented an outline of a stationary
axisymmetric metric which can be used to describe the
exterior gravitational field of a rotating axisymmetric
mass distribution. In this paper we present explicitly all
metric functions of the corresponding static solution.

If we consider astrophysical objects as axisymmetric
bodies and neglect their rotation, then their exterior grav-
itational field can be described by static axisymmetric
solutions of Einstein's vacuum field equations. Weyl
showed that all such solutions can be expressed in the
form

ds'=e'~dt' e "r ~'(dp—'+dz') e '~dy'—-
where (t,p, z, P) are the Weyl canonical coordinates, and
ttj and y are functions of the nonignorable coordinates p
and z satisfying the field equations

contains all static axisymmetric asymptotically fiat solu-
tions of Einstein's vacuum field equations. Here a„,
n =0,I,2, . . . , are constants and P„represents the
Legendre polynomial of order n.

The mass multipole moments represent the deviations
from the spherical symmetry of a gravitational source.
In general relativity they are diAerent from the Newtoni-
an moments because of the curvature of spacetime. Rela-
tivistic and coordinate-invariant definitions of multipole
moments were proposed by Geroch and Hansen, '

Thorne, and Beig and Simon. Although one is led to
these definitions by difT'erent mathematical approaches, it
can be shown that they are all physically equivalent. '

If we are looking for static axisymmetric vacuum solu-
tions with mass multipole moments, then it is clear that
all of them are contained in Eqs. (5) and (6) as special
cases. In particular, the Schwarzschild metric can be ob-
tained from Eq. (5) by choosing the constants a„
(n =0, 1,2, . . . ) appropriately. The choice can be fixed
by calculating the respective multipole moments (cf. the
Appendix) and demanding that all the moments higher
than the monopole moment vanish. Thus, we get (m is
the mass of the source)

~W= Cps+ 0p+ P., —
P

rt, =p(0t',

(2) ao= —m, a& =0 a2= 3w etc .1

(3) The resulting series (5) converges to the well-known ex-
pression

(4)) .=2p4,0. .
r+ +r 2fpz=—ln, r+ =p +(z+m)

2 r++r +2m 'Here P =t)g/c)p, etc.
From Eqs. (3) and (4) we see that the metric function y

can be determined by quadratures from the explicit form
of the function g. Thus a static axisymmetric solution of
Einstein's vacuum field equations is given by a solution of
the two-dimensional Laplace equation (2) for f. Hence,
the general solution

which represents the Schwarzschild metric in Weyl's
canonical coordinates. This form of the metric already
shows that one can use the prolate spheroidal coordinate
x =(r+ + r ) /2m for obtaining a more convenient repre-
sentation of static metrics with multipole moments.

The following point needs to be emphasized: In the
literature the solution (8) is interpreted as corresponding
to the 1Veutonian potential of a strut of length 2m. How-
ever, as Ehlers has shown, ' this intepretation is errone-
ous because it is based on a nonrelativistic definition of

P„(cos8)a„, , r =p +z, cos8=-n+1 r

(6)
(l+1)(n+1) anat&= X l+ 2 t+„+,(Pt+iPn+i PnPt)—I+n+2 r
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the Newtonian limit. Ehlers put forward a relatiuistic
and coordinate-invariant definition of the Newtonian lim-
it which is leading to the conclusion that the metric (8)
corresponds to the Newtonian potential of a spherically
symmetric distribution of mass m according to the usual
interpretation of the Schwarzschild metric. We obtain
the same interpretation by analyzing the multipole mo-
ments of the metric (8) since it possesses only a monopole
moment.

From a physical point of view, the next interesting
metric contained in Eq. (5) is the metric possessing a
mass quadrupole moment. Choosing ao and a& as given
in Eq. (7), we get the following expression for the quadru-
pole moment Mz of the metric (5):

M = —a —
—,'m 3

2 2

Redefining the parameter a2, for instance, as
a2 az=a2 —m /3, the relativistic quadrupole moment
becomes arbitrary. Similarly, one can show that the
metric (5) and (6) can be used in order to describe the
gravitational field of static bodies with arbitrary mul-
tipole moments.

To study the gravitational field of realistic astrophysi-
cal bodies, we have to take their rotation into account.
In this case, the corresponding metric, which describes
the exterior field, has to be stationary. Such a solution
was already presented by the author' [however, without
the function y which is explicitly given in this paper in
Eq. (43)] by using the Hoenselaers-Kinnersley-
Xanthopoulos" method of generating new solutions from
known ones. The stationary metric was given in prolate
spheroidal coordinates which are more convenient than
the Weyl ones for the investigation of multipole mo-
ments. Therefore, we derive in this paper the general
static solution in prolate spheroidal coordinates. This
completes our previous investigation' and gives an exact
solution to the problem of describing the exterior field of
rotating deformed mass distributions in general relativity.

Erez and Rosen' presented a static solution with mass
and arbitrary quadrupole moment in prolate spheroidal
coordinates. Moreover, they extended the solution to the
case of a mass with an arbitrary multipole moment. Fi-
nally, they asserted that a solution in prolate spheroidal
coordinates with more than two different multipole mo-
ments has no physical significance because the solution
does not lead to the respective potential (of a mass with
two or more different moments) in the Newtonian limit.
In this paper we show that the general axisymmetric
solution in prolate spheroidal coordinates corresponds to
the potential of an axisymmetric mass distribution in the
Newtonian limit.

In Sec. II we calculate explicitly the general solution of
the field equations (2)—(4) in prolate spheroidal coordi-
nates. The solution contains an infinite number of arbi'-

trary parameters which are interpreted in Sec. III as the
Newtonian multipole moments of an axisymmetric mass
distribution. The relativistic (Geroch-Hansen) multipole
moments are also calculated and compared with the

Newtonian ones. Some physical properties of the solu-
tion are discussed.

II. THE SOLUTION

Erez and Rosen' used prolate spheroidal coordinates
(t, x,y, P) to obtain a static axisymmetric vacuum solution
with arbitrary quadrupole moment. These coordinates
are related to the Weyl canonical coordinates by
(m =const)

r+=p +(z+m)

x ~1, —1&y &1, (10)

or

p =m (x —1)(1—y ), z =mxy .

The line element (1) takes the form

ds =e ~dt me —~ e r(x —y )
dx

x —1 1 —y

+ (x —1 )(1—y 2)dy 2

and the field equations (2)—(4) become

[4.«' —1)].+[(1—y'W, 1, =o

1
2

y, = [x(x —1)g —x(1—y )1(

(12)

—2y(x —1)g P ],
2

, [y(x' —1W.' —y(1 —y')4,'
(14)

+2x(1—y )1t„g ] . (15)

lim y(x,y)=0 . (16)

Then the function y vanishes at the symmetry axis, i.e.,

y(x, +1)=0 .

Lemma 2. Let f be asymptotically fiat, i.e.,
lim lt(x, y)=0,

+~QO

then the asymptotically Aat solution of the differential
equations (14) and (15) can be calculated by

(18)

y(x, y)=-(x —1)I ' dy,A(x, y)
—&x —y

where

A (x,y)=y(x' —l)itj' —y(1 —y')gy+2x(1 y')Q, Qy . —

(20)

Before we begin to derive the solution, let us present
some lemmas which can easily be proved by using the
field equations (13)—(15).

Lemma 1. Let g and all its derivatives be free of singu-
larities in y and 1 —y, i.e. , 1t,p, it, 1t, . . .WO and ( ~
for all values of y and 1 —y, and let y be asymptotically
Aat, i.e.,
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By introducing polar coordinates (t, r, B,P) into the line
element (12),

r —1, y =cosa, (21)

one can prove the following.
Lemma 3. The line element (12) reduces to the Min-

kowski metric in the limit m ~0, if the metric functions
are asymptotically Aat, i.e.,

lim P(r, 8)=0= lim y(r, 8) .

Now we solve the differential equations (14) and (15)
for the function y. According to lemma 2, the asymptot-
ically flat solution for y is given by the integral (19). Put-
ting Eq. (28) into Eq. (19), we see that the term (x2 —y )

in the denominator does not allow for an immediate in-
tegration. Therefore, we have to rewrite A (x,y) in such
a way that the expression (x —y ) can be eliminated.
We use the identities

1 —y =1—x +(x —y )

Now we calculate the general solution of Eqs.
(13)—(15), Following Erez and Rosen, we make the an-
satz P(x,y)= A(x)B(y). Then, Eq. (13) becomes

g q„P„Q„
n=0

2

q„q P„P Q„Q
m, n =0

[(x —1)A, ],—vA =0,
[(1 y)8~—] +v8=0,

to put Eq. (19) into the form
23a

(23b) y= g ( —1) +"q q„f I "dy,
m, n =0

(29)

where v is a constant. Since these differential equations
are linear, one can write their general solution as an
infinite sum of Legendre P polynomials and associated
Legendre functions of second kind Q, (Ref. 13). Thus,
we get

where

ry "=(x —1)P' Q (2xP„Q„' yP„'Q„)—

+
2 2 [P Q' (yP„Q„' xP„'Q„)—(x —l)2

X
[q,g, (x)+p P,(x)][b,Q„(y)+c P (y)],

v=O
(24)

+P' Q (yP„'Q„xP„Q„')] (—30)

If we put

qo
—1, q( =0, q2%0, qp

—0 (k )2), (26)

and let x~ —x, then from Eq. (25) we obtain the Erez-
Rosen metric

where q, p, b, and c are constants. If we restrict our-
selves to physically relevant solutions, then solution (24)
has to satisfy the conditions of elementary and asymptotic
fiatness. ' Elementary fiatness means that the functions f
and y n1ust be regular at the symmetry axis y =+1. To
avoid logarithmic singularities of g at y =+1, the con-
stant v must be integer positive or zero, ' v= n
=0,1,2, . . . . Moreover, Q„(y =+1)——~; therefore
b„=O in Eq. (24). At infinity (x~ ~ ) we get' Q„(x)-0
and P„(x)-x",then p„=O. Thus, the general elementary
and asymptott'cally flat solution of Eq. (13) is

0= g q„g„(x)P„(y) . (25)
n=0

with

dP„(y )P„'= dg„(x)
and Q„'=

From Eq. (29) we see that only the symmetric partI' "' of I " contributes to y. The second term of I " is
already symmetric with respect to the pair of indices
(mn) We bu. ild the symmetric part of the first term and
obtain

+P' Q (yP„'Q„xP„Q„')] . —(30')

r,'-"'=(x 2 —1)[x(P.'Q. P„g„'+P„'Q„P.Q.' )

—yP' Q P.'Q. ]
2 1

2

+ 2 [P Q' (yP„Q„' xP„'Q„)—
X

1 x —1

2 "x+1
x —1 3+—'q (3y —1) —'(3x —1)ln +—x2 4 (27)

To eliminate the expression (x —y ) in the second
term of Eq. (30'), we use the following recurrence formu-
las" twice:

( —1)"+'q„g„(x)P„(y).
n=0

(28)

The further simplification q2 =0 leads to the
Schwarzschild metric which takes its usual form after the
coordinate transformation (21). From the special cases
given above, we see that it is useful to transform the solu-
tion (25) by x —+ —x. Therefore, we write the general
solution (25) in the form [Q„(—x )=( —1)"+'Q„(x)]

A„=yP„Q„' xP„' Q„=— (x —y)P„' Q„' —8—„—2 2

n

Q,nd

e„x+(1—e„)y8„=—yP„' Q„—xP„Q„' = (x —y )4„+
x —1

(31)

(32)
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Here

[n /2] —1

g
k=0

1 +
n —2k

1 I I

n —2k —1Q —2k —1

1, n =even integer,
0, n =odd integer .

(33) Accordingly we get, from Eq. (30'),
I

I' "'=(x —1)[x(P' Q P„Q„'+P„'Q„P Q' ) yP—' Q P„'Q„]

+(x' —1) (1—e„)S +e„4' +,— P' Q'
m+1

y+(e„+e —2e„e )(x —y )
+(x —1) P' Q g„PQ—' 4„+,+ P Q' P„'Q„' ++1

X
(34)

In Eq. (34) there is only one term containing the expression (x —y ); it can be integrated by means of elementary
functions. For the integration of the other terms, we will use the recurrence relation'

1P„dy= (P„+, P„,)
—(n ~0, P, = —1) .

2n +1 (35)

In order to use this relation in Eq. (34), however, we have to express the products of the form P' P„and P P„as a sum
of Legendre polynomials. This can be done by using the following relations, which can be proved by induction

[n /2] —1

P = g (2n 4k 1)P
k=0

p(In, n )

P P„= g K(m, n, k)P +„2k, l2(m, n )=min(m, n) .
k=0

Here K(m, n, k), m, n, k =0, 1,2, . . . , are the Clebsch-Gordan coefFicients:

(36)

(37)

2m +2n —4k+ 1 am —kakan —k
K(m, n, k)=

2m +2n —2k+ 1 a +n

with

ak= (2k —1)!!
(2k —1)!!=(2k —1)(2k —3) ' ' ', (0)!!=( —1)!!=1 .

(38)

(39)

Using Eqs. (35)—(37), one proves the relations

„+P„P —
(
—1) +"f P„P' dy

k=0 1=0

" (2m —4k —l)K(m —2k —l, n, l) (
4(k +l ) 1

[ m +n —2(k+I) m +n —2(k+I+1)][p —p

B n=B„, = P,', P' dy™
" (2m —4j —1)(2n —4k —1 )K(m —2j —l, n —2k —l, l )

ok

o�)o2(m+n)4(j+k+1)3
m+n —2(j+I'+I) —1 m+n —2(j+k+I) —3)

C„=C „=f yP„'P' dy= f P' [P„'+,—(n+1)P„]dy = —(n+1)A„+B„+)

(41)

(42)

Using Eqs. (35) an (40)—(42), we can immediately integrate the function I' "'. According to Eq. (29), the result can
be written as

where

X (('m (ln
m, n =0

(43)
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I' "'=—ln +(e„+e —2e„e )ln
1 x —1

X

+(x —1)[x(A„Q„'Q + 3 „Q' Q„)—C„Q„Q ]

&n+(x —1) (1—e„)S +e„S +,— [P,„—(
—1) ]0'

+(x —1) Q % „—Q'~ „+ ~ „Q Q„ (44)

1 +
n —2k +1

1

n —2k

+ ~m, n —2k Qn —2k (45a)

[(n l2 —]. jj„=f P' S„dy=—1 k=0

1 1

n —2k n —2' —1

m, n —2k —] ~n —2/ —]

Here we introduced the notations In the Newtonian theory of gravity, the rnultipole ex-
pansion of a mass distribution determines the gravitation-
al potential uniquely. Since the multipole expansion is in
general an infinite sum, it is necessary that this sum con-
verges in a definite region around the source. (The points
where the potential becomes singular are an exception. )

In other words, a divergent multipole expansion cannot
be created by a limited mass distribution. In general rela-
tivity, the Newtonian potential is determined by the
metric tensor component g«. Thus, the gravitational po-
tential of a static axisymmetric solution converges if the
metric function g does so. Using standard definitions and
theorems of the theory of infinite series, one can prove
the following.

Lemma 4. The infinite series

and

(45b)
g= g ( —1)"+'q„P„(y)Q„(x)

n=0
(28)

S„=f S„dy

[(n /2 —1)]

Ic =0

1 1

n —2k n —2k —1 ~q„~~q(~ Vn . (46)

is uniformly convergent in the region E=
[ ~x ~

& 1,
~y ~

~ 1], if the absolute values of the parameters q
(n =0, 1,2, . . . ) are limited:

X[P 2k 1+( 1) ]Q 2k 1 (45c)

Thus, the general static axisymmetric vacuum metric
in prolate spheroidal coordinates is given explicitly in

Eqs. (28) and (43) by means of the Legendre polynomials
and associated functions of second kind and their respec-
tive first-order derivatives. From the results given above,
we can derive some physical properties of this solution.

(i) The general solution for g in Eq. (28) was obtained
by using the conditions of elementary and asymptotic flat-
ness.

(ii) For the calculation of y, we used lemma 2. Thus,
this function is asymptotically flat.

(iii) The function g has no singularities in y
(~P„(y)~ ~ 1), from lemma 1 we deduce that the metric
function y has no singularities at the symmetry axis
(y =+1).

(iv) Putting qo= 1 and introducing polar coordinates
by Eq. (21), an important property of this solution fol-
lows from lemma 3: The metric (28) and (43) leads to the
Minkowski metric for vanishing mass (m =0) regardless
of the value of the parameters q„(n = 1,2, 3, . . . ). (In the
following section we will show that m represents the total
mass of the source. )

The condition (46) does not limit the class of solutions
contained in Eq. (28), and it has a very simple physical
significance. In the next section we will show the param-
eters q„determine the rnultipole moments of the mass
distribution. Hence, condition (46) means that the mul-
tipole moments have to be limited, if the respective gravi-
tational potential corresponds to the potential of a realis-
tic mass distribution as that of an astronomical object.

III. THE MULTIPOLE MOMENTS
OF THE SOLUTION

In this section we calculate the Newtonian multipole
moments N„and the relativistic ones M„(n =0, 1,2, . . . )

of the metric (28) and (43) in order to obtain the physical
interpretation of the parameters q„.

The Newtonian moments can be calculated by using
the coordinate-invariant Ehlers definition' . According to
Ehlers, the Newtonian potential 4 of a given static ax-
isymrnetric vacuum solution can be obtained from the
limit

4&= lim —1J'j(p, z, A, ),1

A, ~O A,
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where A, =c (c=speed of the light) and g(p, z, A, ) is the
metric function P in Weyl's canonical coordinates con-
taining the parameter A, explicitly. That means that P
has to be written in cgs units, for example. It is easy to
see from Eq. (47) that the special case qo=1, qk=0
(k )0), i.e., the Schwarzschild metric (8), leads to the
Newtonian potential of a spherically symmetric mass dis-
tribution 4& = —GM/(p +z )', if we replace the param-
eter m of the coordinate transformation (10) by MGA. .

According to Eqs. (47) and (10), we obtain the
Newtonian potential of the solution (28) by calculating
the limit

oo

@=lim —g (
—1)" 'q„Q„

0 k „0
For A, ~O we have

r++r r+ r

2AGM " 2AGM
P„

(48)

r+ —r
lim y= lim

o a o 2AGM
Z

&p2+z2 ' (49a)

r++r
limx = lim ~ OO

x-0 a o 2A, GM

From Eq. (49a) and the property ~P„(y) ~

~ 1, we get

(49b)

r+—1~ limP„x-0 " 2XGM

r++r
2A, GM

2A, GM
bn +2I + 1

1=0 r+ +r (51)

=P„~1 . (50)
p2+z2

Equation (49b) means that the limit A, ~O is equivalent to
the limit x ~ ~. Thus, it is useful to write the Q„(x) as a
power series of x (Ref. 21):

This is the Newtonian potential of an axisymmetric mass
distribution with the multipole moments

nt
2n+ 1 !!

or, in geometrized units G =c =1,
n n+1nI

(2n + 1)!!

(54)

(54')

This coordinate-invariant calculation of the Newtonian
moments leads us to an understanding of the physical
significance of the parameters q„ in Eqs. (28) and (43).
The parameters qns n=0, 1,2, . . . determine, modulo a
constant factor, the Newtonian multipole moments of a
static axisymmetric mass distribution whose exterior gravi-
tational field is described by the Vacuum solution (28) and
(43).

According to Eq. (54'), the monopole moment is the
total mass m if qo = 1. The dipole moment is
X~ —

—,
' q, m; it can be made to vanish by means of a

coordinate transformation which brings the center of
mass to the origin of the coordinate system. The quadru-
pole moment is N2= —,', q2m and coincides with that of
the Erez-Rosen metric. Taking higher multipole mo-
ments into account, we see that no "cross terms" will ap-
pear in the Newtonian potential. This result contradicts
that of Erez and Rosen who used the limit r ~~ to cal-
culate the Newtonian potential of the solution (28). This
procedure obviously depends on the choice of the coordi-
nate system.

For calculating the relativistic, coordinate-Invariant
Geroch-Hansen multipole moments M„(n=0, 1,2, . . .),
we use the procedure as given in the Appendix. The cal-
culations can be simplified by using the following relation
for the derivatives of the metric function g:

where

(n+2l —1)(n+21)"+"+' 2l(2n+2l+1) "+" ' '

d "g(z, 1)
d- k

=k'm" & ( —I )"+'qnbn+21+1
z=o (n, l)

ntgn
(2n + 1)!!

From Eqs. (50) and (51) we see that the limit of each sum-
mand of Eq. (48) exists and converges. That means that
the sum and the limit in Eq. (48) commute. Using Eqs.
(49a) and (51), we obtain, from Eq. (48),

k=1,2, 3, . . . ,

where (n, l )" means that the sum runs over all positive in-
teger values of n and l which satisfy the constraint

n+2l+1=k .

The resulting relativistic moments can be written in the
form

N= g ( —1)"+'q„P„
M„=X„+R„, n =0, 1,2, . . . . (55)

1 „2XGMX g 11m bn +21+ 11=os-o A r++r
Here N„represent the Newtonian multipole moments
given in Eq. (54'). The R„can be expressed in terms of
the N„as

(52)
RO=R ) =R2=0, R3 ———m iV

Introducing the parameters q„=q„(GA, )" n =0, 1,2, . . . ,
we get R = ——'m X ——"mX

(56)
QO

tt l (PnCOO)S
@—G y ( 1)n+1 + —Mn+1

(2n + 1)!! n+1

Zcose= —, r =&p'+z' .r' (53)

m ~ —~" m~ ~ —~ — m5 q 3 21 2 1 7 1 !OS 1 s ' s

R„=R„(N„2,N„3, . . . , No) .

Here we put qo =1 in order to obtain No =m. Thus the
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relativistic multipole moments can be given as a sum of
the Newtonian moments plus some relativistic corrections
R„. In fact, introducing cgs units (m ~MG/c ) and new
parameters q„=q„(G /c )", n = 1,2,3, . . . and calculating
the limit c~~, we see that the R, vanish; i.e., these
terms have a relativistic character.

We notice that the decomposition (55) is coordinate i??
variant because we used coordinate-invariant definitions
to calculate both the Newtonian and the relativistic mo-
?nents. From Eq. (56) we see that the first relativistic
correction appears in the octupole moment provided a di-
pole (N? ) exists. Moving the origin of coordinates, the
dipole can be made to vanish so that the first relativistic
correction appears in the 16-pole moment. Thus, the pa-
rameters q„, n =0, 1,2, . . . , of the general solution (28)
and (43) determine the Newtonian and the relativistic
multipole moments uniquely.

IV. CONCLUDING REMARKS

The general static axisymmetric vacuum solution given
in Eqs. (28) and (43) describes the exterior gravitational
field of a static axisymmetric mass distribution because (i)
it leads exactly to the gravitational potential of such a
mass distribution in the Newtonian limit, (ii) it possesses
an infinite number of independent parameters q, which
determine the Newtonian and the relativistic multipole
moments of the mass distribution, (iii) it is asymptotically
fiat, and (iv) it has no singularities outside a definite re-
gion which can be "filled" with matter [this can be shown
by investigating the curvature scalars; there are two
singularities: at x = —1(?' =0) and at x =1(r =2m )].

The direct relationship between the metrics (28) and
(43) and (5) and (6) can be found by expressing the coordi-
nate r =m (x + 1 ) of (5) in terms of Q„(x) and comparing
with (28). These two metrics must be equivalent, modulo
a redefinition of the parameters a„. At spatial infinity,
this can easily be seen by introducing the radial coordi-
nate r =m (x + 1) into the metric function (28) and calcu-
lating the limit r ~ ~. In fact, the resulting metric func-
tion coincides with (5) after a redefinition of a„.

Qf course, in order to completely describe the gravita-
tional field of a body, one must know the corresponding
interior solution. This task is under consideration.

The results given in this paper have been checked by
using heavily the computer algebra system REDUCE 3.3
(Ref. 22).
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APPENDIX: CALCULATION
OF THE GEROCH-HANSEN MULTIPOLK MOMENTS

E=f+iQ, 1+E (A 1)

For static metrics f=exp(2$) and fL=0. Let us consider
g= g(x, y) at the symmetry axis y = 1 (Ref. 25). Introduc-
ing the inverse %'eyl canonical coordinate z by

oxy
o. =const=m for static metrics, (A2)

the ' point at infinity" becomes z~0. Furthermore, we
define the conformally transformed potential g by

g(z, 1)=—g(z, 1) .
1

z
(A3)

Hoenselaers showed that the mass multipole moments MI
and the current moments JI of the source can be calculat-
ed by using the simple relation

M? =Re(m? +d? ), J? =Im(m?+d? ),
where

1 d'g(z, 1)m(=

(A4)

(A5)

The second term d&, 1=0,1,2, . . . , is determined by
comparing Eq. (A4) with the original Geroch-Hansen
definition. It can be expressed in terms of mk with
k ~l —1: for example,

dp di —d2 =d3 =0, dg =?mp (??? i m2mp )

d5 =
—,'mp (m2m, —m3mp)+ —m i (m? —m&mp) .

(A6)

Thus, the calculation of relativistic multipole moments
MI and JI is equivalent to the calculation of mI, i.e., the
derivatives of the conformally transformed Ernst poten-
tial g.

Expanding the potential g in powers of z,

(( )
~dg(z 1)

k =1 dz

z—k

(A7)

we obtain, from Eqs. (A5) and (A3),

1 d'+ 'g( 1)
( I + I )! dz? + '

z=0
(A8)

Introducing E in Eq. (AS) by means of Eq. (Al), we get a
useful recurrence formula for calculating m&

..

h

Ernst potential of a given metric and its multipole mo-
ments. In this appendix we present this relation and
derive a recurrence formula which can be very useful for
the calculation of multipole moments of higher order.

For the sake of generality, we investigate stationary ax-
isymmetric vacuum solutions. The Ernst potentials E
and g are defined in terms of the metric functions by

The explicit calculation of relativistic moments, by us-
ing the original method of Geroch and Hansen, is quite
laborious. Hoenselaers found a relation between the with

(A9a)
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aI1d

1 dE
2E

dhl
ht= +2gh, ht, for I ~2 .

dz

(A9b)

(A9c)

To calculate the relativistic multipole moments of sta-
tionary or static axisymmetric solutions, we use the fol-
lowing procedure. (i) Calculate the Ernst potentials E
and g according to Eq. (A 1). (ii) Calculate the quantities
mt by using the recurrence relation (A9). (iii) Use Eq.
(A4) to obtain the respective moments.
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