
PHYSICAL kEVIEW 0 VOLUME 39, NUMBER 10 15 MAY 1989

Analysis of spatially inhomogeneous perturbations of the FR& cosmologies

Stephen W. Goode
Department of Mathematics, California State University, Fullerton, California 92634

(Received 15 August 1988; revised manuscript received 7 February 1989)

We use Bardeen s gauge-invariant formalism to analyze the behavior of, and relationship be-

tween, various geometric and physical quantities of cosmological interest at the linear level. This
leads to a cosmologically oriented gauge-invariant characterization of the di6'erent perturbation
modes that can arise. In particular a link is made between the existence of gravitational-wave
modes and the conformal curvature of hypersurfaces in spacetime. We indicate how these results
can be useful in the analysis of exact solutions of the Einstein field equations.

I. INTRODUCTION

Simply stated, the cosmological perturbation problem
is concerned with solutions of the linearized Einstein field
equations (EFE's) when the background model is an ap-
propriate Friedmann-Robertson-Walker (FRW) solution.
The first relativistic treatment was given by Lifshitz' and
since then (particularly between the years 1967 and 1980)
thp literature has grown steadily. The last major contri-
bution was the comprehensive paper of Bardeen. The
problem is routinely covered in graduate and undergra-
duate texts such as Weinberg, Landau and Lifshitz,
Raychaudhuri, and Peebles.

The main application of cosmological perturbation
theory has been in attempts to solve the galaxy formation
problem within the framework of general relativity
theory and to the study of the propagation of the mi-

crowave background radiation in a spatially inhomogene-
ous universe. In the galaxy formation problem the quan-
tity of primary physical interest is the so-called density
contrast (or relative density perturbation) 5p defined by

tions, and terminology that are used throughout the pa-
per. In Secs. IV and V we use Bardeen's gauge-invariant
formalism to derive a characterization of the different
perturbation types that can arise. Sections VI and VII
contain a discussion of the relationship between various
geometric and physical quantities of cosmological in-
terest. In the concluding section we indicate how the de-
rived results can be useful in the analysis and interpreta-
tion of exact solutions of the EFE's.

II. THE BASIC EQUATIONS

In this section we set up the standard mathematical
framework for studying cosmological perturbations. This
approach was first introduced by Lifshitz' (see also
Lifshitz and Khalatnikov ) although it will be useful for
the later development to use the notation of Bardeen.

The background spacetime is taken to be one of the
FRW models so that, relative to comoving coordinates,
the background line element can be written in the form
(here and elsewhere greek letters assume the values 1,2,3,
whereas latin letters assume the values 0, 1,2,3)

ds =S (ri)[ dpi + g &(x—)dx dx~], (2.1)

Po

where p and po denote the perturbed and background en-

ergy densities, respectively. It is fairly well known that
the behavior of 5p (and other quantities) sufFers from am-
biguities due to the freedom to perform infinitesimal
coordinate transformations.

Our interest in linear perturbations of the FRW models
stems from their possible help in interpreting the behav-
ior of exact inhomogeneous cosmologies, in particular in
determining when an exact solution of the EFE's can be
considered as approximating an FRW solution over some
epoch. In this paper we use Bardeen's gauge-invariant
formalism to study the behavior of several geometric and
physical quantities of cosmological interest. This enables
us to derive a cosmologically oriented gauge-invariant
characterization of the different perturbation types that
can arise. In particular we link the existence of
gravitational-wave modes to the conformal curvature of
hypersurfaces in spacetime.

The outline of this paper is as follows. Sections II and
III set up the mathematical equations, assumptions, nota-

+( g ti+h ti)dx dx~], (2.2)

where h,b(x') represent the perturbation in the gravita-
tional field. We make the following simplifying assump-
tions as to the source in the EFE's: (1) We restrict our
considerations to the case of a perfect Quid source; (2) we
assume that the equation of state of the Quid in the back-
ground and the perturbed solution is p =(y —1)p for the
same value of y(1 ~ y ~ 2). More general situations have
been considered in the literature (see, for example, Wein-
berg, Bardeen, Press and Vishniac ). However, more
complicated physical assumptions do not alter the
mathematics of the problem significantly, and so for our
purposes the above situation will suf5ce. The EFE's for
the background spacetime reduce to the two equations

where g ~ is the metric of a three-space of constant cur-
vature (K =+1, 0 determines the sign of the curvature in
the usual manner). We write the line element of the per-
turbed spacetirne in the form

ds =S ( il )[—( 1+h oo )d il +2h o d ri dx
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2M
S ~

(2.3) k2=n 2 —2~
n )0 if K= —1,0,
n =2, 3, . . . if E =+1 .

6M
P S3r (2.4)

Corresponding tensor:

g(1)aP 1 k
—1[g(1)alP+ g(1)Pla] g(1) a —0

i =so(1+&i »
u =UOV, uo=S 1(1—21hM),

(2.5)

(2.6)

where 5p and V are first-order quantities and u is ob-
tained from u'u, = —1.

The spatial homogeneity and spatial isotropy of the
background spacetime imply (see Lifshitz' and Lifshitz
and Khalatnikov Appendix J for more details) that an
arbitrary perturbation of the gravitational field can be ex-
pressed as a linear combination of the eigenfunctions
(harmonics) of the Laplace operator in the three-space of
constant curvature with line element (in fact, Lifshitz
made an explicit choice of spatial coordinates and only
considered the case of positive and negative spatial curva-
ture; for the spatially Qat background see, for example,
Weinberg )

ds = g (x )dx dx

that is, solutions of

Ip
rl~ +k g-p

where a vertical bar denotes covariant difFerentiation
with respect to g &. For the current problem we only
need three types of eigenfunctions: namely, the scalar,
vector, and second-rank tensor harmonics. Below we
have listed the definitions of the appropriate harmonics
using the notation of Bardeen.

(I) Scalar harmonics Harmonics .constructed from
solutions of the scalar Helrnholtz equation:

g(0) la+k2g(0) —0Ia

Eigen values:

n )0 if K= —1,0,
k =n —K

n integral if K =+1 .

Corresponding vector and tensor:

g (0) k
—1g (0)

g(0) k
—2g(0) + 13 g(0) g(0) a

aP = laP 3 gaP

(2) Vector harmonics. Harmonics constructed from
divergenceless solutions of the vector Helmholtz equa-
tion:

g(1)alP +k2g(1)a p g(1) la 0Io

Eigen values:

where M is an arbitrary constant, an overdot denotes
d/dri, and the subscript on p.o refers to a background
quantity.

The energy density p and the Quid four-velocity u' in
the perturbed model are written in the form

(3) Tensor harmonics. Traceless, divergenceless solu-
tions of the tensor Helrnholtz equation:

g (2)aP ly+ k 2g (2)aP p
ly

m(&] a —p m[2] IP—pa ~ ~ aP

Eigen values:

(2.7)

k —n —3E
n )0 if K= —1,0,
n =3,4, . . . if %=+1 .

Remark. The separation constant (wave number) k
determines the spatial scale of the perturbation relative to
the comoving background coordinates. The proper
wavelength associated with the perturbation is
) =(2nS/k). [The assumption n&0 in the I(. =0 case
means that we restrict our attention to finite-wavelength
perturbations (kAO). ]

A general perturbation is then expressed as a hnear
combination of these harmonics with time-dependent
eoe+cients. The three harmonic types are completely
decoupled and so lead to the following terminology:
"scalar perturbations" are perturbations constructed only
from scalar harmonics; "vector perturbations" are per-
turbations constructed only from vector harmonics; "ten-
sor perturbations" are perturbations constructed only
from tensor harmonics. The fact that the three harmonic
types are decoupled allows the scalar, vector, and tensor
perturbations to be discussed independently.

III. BARDKEN'S GAUGE-INVARIANT FQRMAI. ISM

x'=x'+P, I@I «I (3.1)

We will refer to this freedom as gauge freedom. If T is
any tensor field and AT denotes a first-order perturbation
in T then it is a fairly standard result (see, for example,
Sachs ) that the transformation (3.1) induces a change in
AT given by

hT'=AT —L~T, (3.2)

where L& denotes the Lie derivative in the background
spacetime. If the perturbation in a tensor field is un-
changed by an infinitesimal gauge transformation then
that quantity is called a gauge invariant. It follows from
(3.2) that the only gauge-invariant quantities are those
that are zero in the background spacetime (or, for scalar
quantities, those that are constant). In the particular case
of interest to us, namely, when the background spacetime
is an FRW model, it follows that the shear tensor, and
acceleration and vorticity vectors of the fIuid congruence
are gauge invariants, as we11 as the electric and magnetic

The coordinates chosen in (2.2) are not unique since we
are free to perform infinitesimal gauge transformations of
the form
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parts of the Weyl tensor, since all of these quantities are
zero in the background spacetime. However the density
contrast 5p:—Ap/pp is gauge dependent. The differences
in the values of 5p resulting from the use of different
gauge conditions has led to much ambiguity within the
perturbation literature over the years.

In an effort to overcome the gauge difhculties inherent
in the cosmological perturbation problem Bardeen has
introduced a formalism based entirely on gauge-invariant
quantities. We find this formalism the most transparent
for the present analysis and hence we describe it briefly
below. The full formalism includes the possibility of
stress and entropy perturbations. However, as stated pre-
viously, we will restrict our considerations to the case of
a perfect fluid with y-law equation of state.

Bardeen's gauge-invariant method involves three dis-
tinct steps: (1) expand all metric and fiuid quantities in
terms of the "spherical harmonics" defined in the previ-
ous section; (2) form combinations of the metric and fiuid
quantities so as to obtain gauge invariants; (3) take com-
binations of the EFE's and conservation equations so as
to obtain "simple" relationships between the gauge in-
variants.

The results of the first two steps are given below. We
refer the reader to Bardeen's paper for full details:

or

Vector perturbations

h(~=0, ho = —8("(g)Q")
())( )Q()) Va V(1)( )Q(1)a

5p=O .
Gauge-i nvariant metric perturbation

Gauge-invariant matter perturbation

V (&) V(&) k
—

&II (&)

V(&) B(&)—V (&) qf
C $

Tensor perturbations

hpp=hp =0,
(2)(~)g(2) Va 0

5@=0 .

(3.4)

Scalar perturbations

Gauge-invariant metric perturbations

y„—= A + B"'+———B(0)
k k S

II '"+
T

(p)

S
(3.3)

(t
—=H +-'H "'+——B")—

k S
1 S H (p)

S

Gauge-invariant matter perturbations

h()()=2A(g)Q' ', h() = —8' '(g)Q' '

&~p=2HL(q)g' ''g~p+2II7' '(ri)Q' '~p,

V = V' '(g)Q' ', u =S '[1—A (g)Q' '],
5)M=5(q)Q' ' .

Gauge-invariant metric and matter perturbation

In this case HT' ' is gauge invariant.
We briefly discuss the gauge invariants e, e . These

quantities were introduced by Bardeen in order to give a
gauge-invariant measure of the density perturbation,
thereby eliminating the gauge problems associated with
the nonuniqueness of the density contrast 5p. However,
there is obviously no unique way of defining such a quan-
tity. The criterion that Bardeen used was that the
gauge-invariant quantity reduce to the density contrast
amplitude 5 as soon as the perturbation comes inside the
particle horizon [as defined by the condition
k '(S/S) ((1). Both e and es satisfy this criterion.
We will restrict our attention to e since we find it the
most natural gauge-invariant variable to use when
describing scalar perturbations (see below). Notice that
in any gauge with B' '= V' ', e reduces to 5, and, since
it is a gauge invariant, we can say that e measures the
density perturbation in any such gauge.

The third step in Bardeen's approach is to take linear
combinations of the EFE's and the conservation equa-
tions, thereby obtaining, for each perturbation type, a
basic differential equation, and a set relationships be-
tween the gauge invariants. The equations that we shall
need are the following:

V (P) V(P) H (P)
s —

k T

Scalar perturbations

Basic differential equation

e =5+ 3y
( V(0) B(0)

)S (poS e )"+(3y —2)—(pP'3e

S
S B(p) yj (p)

k
+ (y —1)(k —3K)— pP'2 (pP'3e ) =() . (3.5)
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Relationships Tensor perturbations

PQS
&m ~

2(k —3K)

0~ = —
PH

(3.6)

(3.7)

Basic differential equation

H ' '+2 H—' '+(k +2K)H ' '=0T S T T (3.1 1)

k()MQS e )

y(k —3K))MQS
(3.8)

Here and elsewhere we will be assuming k %3K in the
scalar perturbation case. According to Lifshitz' this
mode is not physical and so there is no essential loss in
generality:

Vector perturbations

The above equations reduce the number of independent
gauge invariants to three, one for each perturbation type.
They can be obtained by specializing Bardeen's equations
to the case of a perfect Quid with y-law equation of state.

IV. GEOMETRIC AND KINEMATIC QUANTITIES

Basic differential equation

S
V —(3y —4)—V =0.

C S '

Relationship

2l'PQS

k —2K

The k =2K mode is unphysical.

(3.9)

(3.10)

In this section, in order to shed light on the physical
interpretation of the three types of perturbation, we give
the first-order expressions for various geometric and kine-
matic quantities in terms of the metric perturbations and

gauge invariants defined previously.
Direct calculation yields the following expressions for

the kinematic quantities of the perturbed fluid

congruence, the trace and trace-free parts of the Ricci
tensor of the hypersurfaces I g= const I, the Cotton-York
tensor of these hypersurfaces, and the electric and mag-
netic parts of the Weyl tensor, respectively:

P—S—
1( kV (Q)g(Q) P kV (1)g(1) P+H (&)g(&) P) (4.1)

0

e=3S-' —+ H, ——~+—V"' g"'
S L S 3

(4.2)

(4.3)

co P=S 'V IV P W P—=—'(g"' 'P —g"'P )

R =3S '[2K+ ,'(k' 3K)(H—+—'H ' ')g' '—],
S P=S [ k(Hr +—'Hz—' ')Q' ' P+(k +2K)H ' 'Q' ' P]

C* P=2(k2+2K)H (2) Prsg(»

P [k2(P ()() )Q(Q) P+kjPQ(1) P [H (2) (k2+2K)H (2)]g(2) PIS

(4.4)

(4.5)

(4.6)

(4.7)

(4.&)

H~p S ( 2% g ~(~ r/p)Qrs+HT g (~ rip)Qys)
—4 & (1)y i5 (2) (2) yjS (4.9)

We also recall the definition of the gauge invariant e
namely,

( V(Q) B(Q))3 S (4.10)
k S

The expressions for co ~, 8, and S P and the scalar and
vector contributions to o. have been given by Bardeen.
We note that the nonspatial components of the kinemati-
cal quantities and the electric and magnetic parts of the
Weyl tensor are zero to first order. This follows from the
orthogonality of these quantities with the fluid velocity.
We also note that C* p is a gauge invariant (this follows

since it contains no scalar or vector contributions and so
is unaffected by a gauge transformation), but that S p and
R are, in general, gauge-dependent quantities (see the dis-
cussion below).

We see from formulas (4.1)—(4.10) that not all perturba-
tion types (i.e., scalar, vector, tensor) contribute to each
of these quantities. The presence or absence of particular
perturbation types is summarized in Table I. In particu-
lar, it is only o. ~ and E ~ that contain all three perturba-
tian types to first order. It is interesting to note that there
are no scalar perturbation contributions to H ~, and no
contribution to S ~ from the vector perturbations.
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TABLE I. Contribution to various geometric and kinematic
quantities from the diQ'erent perturbation types.

Quantity Scalar modes Vector modes Tensor modes

in this case co ~=O=u ). However in this gauge it fol-
lows from (3.3) and (3.4) that (Bardeen denotes this quan-
tity by (t,„[seehis Eq. (5.19)])

&~n

CO~

Q~

E /3

II.~
R

s.l'

p
a

Yes
Yes

No

Yes

Yes

No

Yes

Yes

No

No

Yes
Yes
Yes
Yes
Yes
No

No

No

No

Yes

No

No

Yes

Yes
No

Yes
Yes

H+ H — =P ———V1 (0) (0)
L 3 T H k S s

and so Eqs. (4.5) and (4.6) imply that in this gauge the
scalar contribution to R and 8 P is

R =3S 2K+ —', (k —3K) pH
———V, ' ' Q' '

e

s.i'= k's —'(t)„-——„—v, "' g").i',

We see from Table I that only the scalar perturbations
contribute to e and that only vector perturbations con-
tribute to co ~. For this reason the scalar perturbations
are often referred to as "matter" perturbations and the
vector perturbations are called "rotational" perturba-
tions. The tensor perturbations do not directly affect the
matter distribution or impact rotation into the Auid.
They are usually referred to as pure "gravitational wave"
perturbations. It has been conjectured by Berger, Eard-
ley, and Olson' that there is a link between the Cotton-
York tensor of hypersurfaces in spacetime and the pres-
ence of gravitational waves. Since only tensor perturba-
tions contribute to the Cotton-York tensor, this conjec-
ture is consistent with the above interpretation of the ten-
sor perturbation modes.

There is a possibility of confusion in the interpretation
of the spatial Ricci tensor R . We first consider its
trace-free part S ~. In the background spacetime,
S ~=0, and it might be expected that S is gauge invari-
ant. However, S ~ is not a uniquely defined geometric
quantity in spacetime; it refers to the family of hypersur-
faces [g=constI in spacetime, and any change in this
family of hypersurfaces (in the perturbed spacetime) will
change S ~. In the Bardeen formalism, the general
infinitesimal gauge transformation can be expressed in
the form

& =~+T(~)g"),
~ta a+L(0)( )g(0)a+I ())( )g(1)a

It follows that S ~ is gauge invariant under spatial coor-
dinate transformations, but not under transformations in-
volving a change in g. This also applies to R. Since the
vector and tensor perturbations do not contribute to the
g-coordinate transformations, there will be no ambiguity
in these cases, and so S and R are gauge invariants. In
the scalar perturbation case the g-coordinate freedom
can be uniquely specified by choosing, for example, a
gauge with B' '= V' '. This choice can always be made
and it does indeed specify the g coordinate uniquely. The
geometrical significance of this choice is that when the
vector perturbations are absent [or if we just consider
scalar (tensor) perturbations], the hypersurfaces
[g=constI are orthogonal to the fiuid congruence (since

(4.1 1)

s* ~= —k's 'y —-1 sv'" g(" p
kS '

+(k~+2K)S 20 (~)g(2) & (4.12)

In any gauge with B' '= V' ', R* and S ~, coincide
with R and S ~. However, S* " is a gauge invariant and
so in general (i.e., in all gauges) gives the trace-free part
of the Ricci tensor of the hyp rsurfaces which are or-
thogonal to the Auid congruence when the vector pertur-
bations are absent. Thus we have a gauge-invariant mea-
sure of the perturbation in &he spatial curvature of the
[ri=constI hypersurfaces. Notice that for KWO, R* is
only gauge invariant under spatial coordinate transfor-
mations. When discussing the spatial curvature of the
[g=const I slices we will always use R * and S* ~.

Remark. Bardeen discusses the scalar contribution to
the perturbation in a number of families of hypersurfaces
including the comoving hypersurfaces which we are con-
sidering.

V. GAUGE-INVARIANT CHARACTERIZATION
OF THK DIFFERENT PERTURBATION TYPES

We have shown in Sec. III that the EFE's with perfect
Quid source reduce the number of independent gauge in-
variants to three, one for each of the perturbation types.
The choice of which independent gauge invariants are
used is somewhat arbitrary. We find it convenient to take
e as our basic gauge invariant in the scalar perturbation
case, and V, in the vector case. The tensor perturbations
are described by the gauge invariant HT' '.

We now use the EFE's to express the geometric and ki-
nematic quantities introduced in the previous section in
terms of the basic gauge invariants. This enables us to
give a gauge-invariant characterization of the different
perturbation types. The results of this section are proved
under the assumptions of a perfect-Quid source with y-
law equation of state. For brevity this will not be explic-
itly stated in each theorem. We note, however, that the

respectively W.e now define the quantities R*,S* ~ in
all gauges by

1'

R *=3S 2K + —', (k —3K) (5H ———V,
'o' Q'o'
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results are also valid in the case when the equation of
state, in both the background and perturbed models as-
sumes the form p =p(p) with p+pAO. It is convenient
to consider the three perturbation types separately.

A. Scalar perturbations

ti =3(y —1)—V, Q"'

~.~=s-' v, m.~,

E P= — p —VQ
2k S

(5.9)

(5.10)

(5.11)

In the case of scalar perturbations all of the gauge-
invariant geometric and kinematic quantities introduced
in the previous section can be expressed in terms of e as

II &= — '"' S- V„()a k2 2~ c~ i(a IP)orb ~

~ =a*=0 S* ~=0=C* ~.
m a a

(5.12)

P PP m
'

(0) P
(k —3K)(y)M0S )

g (0)

k

2(k —3K)
R*=3S [2K+ '(k 3K—)P —]Q' '

S» P k2S —
2y g(0) P

a ~=0 ~ t'=0 C* I'=0a ~ a a

where
'2

(5.1)

(5.2)

(5.3)

(5.4)

(5.6)

The essential property that the vector perturbations in-
troduce is vorticity. Indeed the presence of vorticity is
the characterizing property of the vector perturbations as
the following theorem shows.

Theorem 5.2. There is a vector perturbation contribu-
tion to the perturbed model if and only if a) p%0.

Proof. An immediate consequence of Eqs. (5.8)—(5.12)
and the fact that the scalar and tensor perturbations do
not contribute to co ~.

The following corollary is an immediate consequence
of the previous theorem, Eq. (5.8), and the fact that p0S
is nonconstant.

Corollary 5.2. If {r p=0 then there are no vector per-
turbations.

1 1S. 3+—K+
3K yS 2

S
S &m f. C. Tensor perturbations

(5.7)

Equation (5.1) is an immediate consequence of Eqs. (3.8)
and (4.1). The expression for ic can be obtained in a
straightforward manner from Eqs. (4.3), (3.5)—(3.8), and
Eq. (2.4). Equation (5.3) follows from Eqs. (4.8), (3.6),
and (3.7), whereas the expressions for R' and S' p are
derived using Eqs. (4.11), (4.12), (3.5), (3.7), and (2.3) and
(2.4).

We see immediately that e has definite geometric
significance in spacetime since it completely determines
the time dependence of the Weyl tensor. The importance
of e for scalar perturbations is contained in the follow-
ing theorem.

Theorem 5.1. There is a scalar perturbation contribu-
tion to the perturbed model if and only if e %0.

Proof. A direct consequence of Eqs. (5.1)—(5.7).
The following corollary to Theorem 5.1 will be needed

later.
Corollary 5.1. If o. ~=0, there are no scalar perturba-

tion s.
Proof If o p:0, Eq. . (5.1—) implies that (e~p0S ) =0.

Combining this with Eq. (3.5) implies that e~ —=0 since
p0S is nonconstant [see Eq. (2.4)], and so from Theorem
5.1, there are no scalar perturbations.

B. Vector perturbations

The geometric and kinematic quantities can be ex-
pressed in terms of V, as

o P= — S '[(k 2K) 2yp0S ]V,Q—'" P, —k' —2E
(5.8)

Proof. It follows from (2.7) that the tensor harmonics
satisfy

g(2) IP+k2Q(2)
ai3l p aP

g(2) P 0ol

(5.13)

(5.14)

Assume that

aPrn(2) =0
axial r

Contraction of this expression with g yields

(2) (2)

(5.15)

which implies, on taking a covariant derivative and con-
tracting,

~ (2) Ip g (2) I p ()per I p ppi a

We now use (5.13) and interchange the order of the co-
variant derivatives in the second term to obtain

The tensor perturbation contributions to the geometric
and kinematic quantities (4.1)—(4.12) are already ex-
pressed in terms of the basic gauge invariant HT' '. The
only "new" quantity that the tensor perturbations intro-
duce is the Cotton-York tensor. In order that a corre-
sponding result to Theorems 5.1 and 5.2 can be proved
we need the following lemma.

Lemma 5.1. The tensor harmonics Q' ' p satisfy

q»g"' +0pPlr

provided

k +3K%0 .
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k2g(2) +(g(2) IP +g UP g(2) +g DP g(2) )
—0

)Lt,
0' pp l~ p & vp p 0 pu

where R & & denotes the Riemann tensor in the three-
space of constant curvature. Use of (5.14) together with
the standard expression for R & & yields

(k'+31(..)g")„.=0 . (5.16)

Thus, provided that ( k +3K)%0, (5.16) only has the
trivial solution g' '„=0, and hence all nontrivial tensor
harmonics satisfy

to ~=C* ~=0; (ii) purely vector perturbations if and only
if e =C' ~=0; (iii) purely tensor perturbations if and
only if e =m ~=0.

Proof. Immediate consequence of Theorems 5.1—5.3.
Remarks. Different gauge-invariant conditions charac-

terizing the tensor perturbations have been given by oth-
er authors (see, for example, Hawking' and Niedra' ).

VI. EXACT SOLUTIONS OF THE PERTURBATION
EQUATIONS WHEN K =0

~)sr g (2) +0
I Ply

We can now prove the following.
Theorem 5.3. There is a tensor perturbation contribu-

tion to the perturbed model if and only if C~ ~NO.
Proof. For tensor modes it follows from Sec. II that

k +3EWO. The result now follows from the previous
lemma, Eq. (4.7), and the fact that the vector and tensor
harmonics do not contribute to the Cotton-York tensor.

Remark. The above result certainly lends support to
the conjecture of Berger, Eardley, and Olson mentioned
in the previous section.

The following theorem is also easily proved.
Theorem 5.4. If 0. ~=0 there are no tensor perturba-

tions.
Proof. Suppose that cr ~=0. Then Eq. (4.1) implies

that HT' '—=0, and so from Eq. (3.11), HT' '=—0, since
k +2K%0 for tensor perturbations (see Sec. II).

The results in Secs. VA —VC above can be combined
into the following two theorems, the first of which shows
the importance of the rate of shear tensor in the per-
turbed model, and the second giving a gauge-invariant
characterization of the perturbation types.

Theorem 5.5. There is a nontrivial perturbation to first
order if and only if the rate of shear tensor of the per-
turbed congruence is nonzero.

Proof. The result follows directly from Corollaries 5.1,
5.2, and Theorem 5.4.

Remarks. In the above theorem, "nontrivial perturba-
tion" means a true, physical perturbation (as opposed to
a pure gauge solution).

We note that the previous theorem holds with the
shear tensor replaced by the electric part of the Weyl ten-
sor. However, since none of the other geometric and ki-
nematic quantities considered here have contributions
from all three perturbation types, it follows that only cr ~

and E ~ can be used to characterize a nontrivial pertur-
bation.

In the exact theory the FRW models can be character-
ized by either of the following conditions (Ellis" ): (i)
(r, =0, co, =0, u, =0; (ii) E, =H, =0, assuming an
equation of state of the form p =p (p). Theorem 5.5 and
the remarks of the previous paragraph show how these
characterizations can be weakened in the linearized
theory.

Finally, we give a gauge-invariant characterization of
the different perturbation types.

Theorem 5.6. The different perturbation types can be
characterized in the following gauge-invariant manner:
(i) Purely scalar perturbations if and only if

The solutions of the perturbation equations have been
given by a number of authors using various gauges and
under a number of different assumptions regarding the
sign of the background curvature or the particular y-law
equation of state. When the background curvature is
nonzero, the general solutions of these equations for gen-
eral y are not known; usually some sort of approximation
has to be used in solving the equations (see, for example,
Lifshitz, ' Lifshitz and Khalatnikov ). However, if I(. =0,
then the solutions of the perturbation equations are
known for general y-law equation of state.

In this section we give the solutions of the basic
diff'erential equations (3.5), (3.9), and (3.11), for the E =0
background model. Thus, except where stated otherwise,
we will assume that our background model is a K=O
FR% model u)ith y lau) e-quation of state Some. discus-
sion is given of the contribution to the various geometric
and kinematic quantities considered previously.

The solutions of (3.5), (3.9), and (3.11) in the case of a
E =0 background model with y-law equation of state are
as follows.

1. Scalar perturbations

Equation (3.5) has the general solution

e =r [C+J (c,r)+C N (c,r)], y&1,
=C+g +C

where

c, =—y —1, r:kg, v=-3y+2
23y —2

(6.1)

(6.2)

(6.3)

and C+, C are arbitrary constants. Here and elsewhere
J and X denote the Bessel functions of the first and
second kinds, of order v.

2. Vector perturbations

Equation (3.9) has the general solution

v, =c s"&-",
]. (6.4)

3. Tensor perturbations

Equation (3.11) has the general solution

HT' '=r' [C+J,(r)+C N ( ))]r, (6.5)

where C+, and C are arbitrary constants (we note that

where C, is an arbitrary constant and S

ccrc

~( r ' [see
Eq. (3.3) with K =0].
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the C+ arising in the scalar case and the C+ arising in
the tensor case are independent) and r and v are given in
(6.3).

The solutions (6.1) and (6.2) have been given by Bar-
deen. Solutions of the vector and tensor perturbation
equations (as well as the scalar case) have been given, for
example, by Lifshitz, ' Lifshitz and Khalatnikov, and
Weinberg. Most attention has been concentrated on the
scalar perturbations.

The solutions (6.1)—(6.5) together with the expressions
given in the previous section allow us to write down the
explicit time dependence of the geometric and kinematic
quantities considered. In the scalar (y%1) and tensor
cases, due to the behavior of the Bessel functions, this
time dependence will in general be oscillatory, although
for small values of their argument the oscillatory behav-
ior of the Bessel functions can be approximated by a
power law. In the next section we will discuss the behav-
ior of the geometric and kinematic quantities in this
power-law regime. However we first comment on their
general behavior.

In general the contribution from the scalar and tensor
perturbations to the quantities given in Sec. IV will con-
tain two independent time modes arising from the con-
stants C+, and C . An exception arises in the scalar
case regarding the spatial Ricci tensor of the hypersur-
faces orthogonal to the Quid Aow. When @=1 we find
that only the C+ mode in e contributes to R* and
S* ~. In fact,

g + —4pC S 2g(0) Se p —lpC S—2g(0) p

y=1 . (6.6)

Thus in the case of dust, only one mode of the scalar per-
turbation contributes to the spatial curvature. We note
that the C+ mode in Eq. (6.2) increases into the future, so
that the expressions (6.6) support the conclusion reached
by Liang' (based on the results of Eardley, Liang, and
Sachs, ' and Liang' ) that the increasing mode in 5p,
arises from primordial curvature Auctuations. Using ele-
mentary properties of the Bessel functions it is straight-
forward to show that in general the scalar y&1) and ten-
sor perturbation contributions to S* ~ are, respectively,

S* P= S ' [C J (cr)

+C N„,(c,r)]Q( ' P,

yel
S* P=k S r' '[C+J,(r)+C N, (r)]Q( ' P .

Thus, in general there mill be two independent contribu-
tions from each perturbation type. It should be noticed
that although the order of the Bessel functions is the
same in the above expressions, the arguments of these
functions are different, so that the time dependence does
not coincide in general. The exceptional case is when
there is a stiff equation of state (c, = 1).

We remark that in the sti6'case the time dependence of
the tensor contribution to cr/8 coincides with the time
dependence of e; again this is a curious result. Finally

we also note that the time dependence of the vector per-
turbation modes is independent of k (Lifshitz' was the
first to note that the time dependence of the metric per-
turbations in the vector perturbation case are indepen-
dent of k) and power law in general as follows from Eq.
(6.4).

VII. TIME DEPENDENCE OF
GAUGE-INVARIANT GEOMETRIC AND

KINEMATIC QUANTITIES WHEN K =0 AND r « 1

As noted in the previous section, the Bessel functions
arising in Eqs. (6.1) and (6.5) have power-law behavior for
small values of their argument. Specifically,

Jp(r) ~H, Np(r) ~r (7.1)

where 80 (=3S/S ) denotes the background value of 8.
(We only need the background value since all of the sca-
lars considered are first-order quantities. ) The results of a
straightforward calculation are given in Table II. The
various scalars appearing in this table are defined as

F = 'QF' ''JF—
2 l ''J

Before discussing the results we make some important re-
marks regarding the table.

In the scalar and tensor cases, a typical time depen-
dence is of the form {C+ t ",C t j,. By this we mean
that the time dependence of the corresponding quantity
(in the scalar or tensor case) is a linear combination of the
two given modes, the constant coemcients in this linear
combination being independent of the separation con-
stant k. The constants C+ and C serve only to identify
the origin of the corresponding terms [cf. Eqs. (6.1) and
(6.5)]. For example, when ~(& 1, the scalar perturbation
contribution to o /8 is, to leading order in r,

r3(r —2)/(3y —2) ~ri0 ri (0)aP

y

where C+ and C have been rescaled over their values in
Eq. (6.1). We thus write this time dependence in Table II
as {C+r, C r (r ' ' r ']. We note that in the scalar
case the results given in Table II hold for c,~&&1 [see
Eqs. (6.1) and (7.1)], whereas in the tensor case the results
are valid for r &(1 [cf Eqs. (6.5). and (7.1)]. It follows in
particular that for any fixed k the results will be valid for
g su%ciently small.

for ~ ((1. The corresponding contributions to the
geometric and kinematic quantities from the scalar and
tensor perturbations will also be power law. (Note that
we are again restricting our attention to the K =p back-
ground model. ) Rather than give the time dependence of
the geometric and kinematic quantities themselves, we
have formed dimensionless ratios of (scalars formed from)
these quantities with the rate of expansion scalar. This
enables the relative dynamical significance of the quanti-
ties to be compared. The time dependence of the scalars
themselves can be recovered using

g
—3y'/(3y —2)o~'9
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TABLE II. Behavior of geometric and kinematic quantities when ~ && 1. Here

—= 3(2 r) -=2(3y 4) r=9r 10 s= 12(y 1)
3p 2 3p 2 3p 2 3f 2

Quantity

&m

Scalar contribution

[ C~r', C

Vector contribution Tensor contribution

[C~r, C [C+r, C

0
g

(y —I ) j C+ r', C (y —1)[r'}

E
g2 [C+r, C r ~} [C+r, C

H
g2 j C~r', C

g2
[C~r, C r"}, y%1

[C,HO}, y=1

g2

R*
g2

[C+r', C r"}

g2 j C+r', C r'}

The time dependence in the vector perturbation case,
except that of o /8, holds in general, that is, independent-
ly of the assumption that ~&&1. The time dependence
given for tr/8 does depend on the assumption r « I [see
Eq. (5.8)]. Note that the constant of proportionality fac-
tors omitted in the vector perturbation case in Table II
are dimensionless and that they do, in general, contain
the separation constant k. This follows since, as noted in
the previous section, the time dependence of V, is in-
dependent of k. We discuss the results contained in
Table II for the scalar, vector, and tensor perturbations
separately.

1. Scalar perturbations

The time dependence of e consists of two modes, one
(C+r ) which increases into the future, and one (C t ")
which decreases into the future (except in the case of stiff
matter when it is a constant mode). These two modes are
usually referred to as the (relatively) increasing (C+ ) and
(relatively) decreasing (C ) modes, respectively (Liang'
and Bardeen ). We note, however, that the density con-
trast 5p, will not, in general, contain two such modes
since the behavior of the independent modes is gauge
dependent. For example, in the synchronous gauge when

p =)tt/3 the corresponding modes in 5p are j t, t '~ },both

of which increase into the future.
We see from Table II that all of the nonzero quantities,

except t't/8, contain the same increasing mode. Howev-
er, the behavior of the C mode in R*/8, S'/8, and
u/8 is dependent on the equation of state. Indeed for
y) —", the C mode in R'/8, S*/8 is an increasing
mode, and is a constant mode when y = —", . The behavior
of the C mode in t't /8 is the same about y =—", . The C
mode in all other nonzero quantities coincides with that
of@

The result that e =cr/8 for r « I was first discovered
by Liang (in fact Liang' considered the density contrast
5)tt, but used a gauge in which 5p and e coincide) and
has been discussed, for example, by Bardeen. We see
from Table II that E/0 also has the same time depen-
dence as E and o /8. [That E/8 and e have the same
time dependence actually follows directly from Eq. (5.3).]

2. Vector perturbations

As in the scalar case, whether or not the vector contri-
bution to a quantity increases or decreases into the future
depends on the equation of state. It is remarkable that
when w«1 the exponent in the power of v. of the vector
perturbation contribution to any quantity coincides with
the exponent of ~ of the C mode of the scalar perturba-
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3. Tensor perturbations

Once more any nonzero tensor mode coincides with
the corresponding nonzero scalar and vector modes. In
particular the shear tensor has an increasing (C+) and
decreasing (C ) mode. The Cotton-York tensor is the
only quantity that contains purely tensor perturbations.
We see that the C+-mode contribution to C*/8 is an in-

creasing mode, and that the C -mode contribution is
also an increasing mode for y%1. When y= 1 the C
mode contribution to C*/8 is a constant mode. The
Cotton-York tensor itself contains two decreasing modes
for all y: namely,

r—6/(3y —2) C r3(y 4)/(3y 2—))—
Finally we note that the results of Table II can be ex-

pressed in terms of comoving proper time t in the back-
ground spacetime using

t {&y —2)/3y

VIII. CONCLUSION

In this paper we have used Bardeen's gauge-invariant
formalism to derive a cosmologically oriented characteri-
zation of the different perturbation modes that can arise
within the linearized theory and have also analyzed the
relationship between various geometric and physical
quantities at the linear level. In conclusion we will indi-
cate how the results derived in Secs. III—VII can be useful
in the interpretation of exact solutions of the EFE's.

Consider the k =0 class II Szekeres' solutions of the
EFE's with irrotational dust as source. These solutions
have been analyzed in detail by Goode and Wainwright. '

The line element can be written in the form (Goode and
Wainwright' )

ds = dr +r4/ (dx2+—dy +H dz ) (8.1)

tion contribution to that quantity. The two "new" quan-
tities that arise from the inclusion of vector perturbations
are co ~ and H ~. We see from Table II that the time
dependence of H!8 coincides with the vector contribu-
tion (and C -mode scalar contribution) to (i /8 (provided
y%1). As far as the vorticity is concerned, the time
dependence of co/8 coincides with the C -mode scalar
perturbation contribution to the spatial curvature (pro-
viding y&1). It is worth noting that the vorticity scalar
itself has time dependence given by

~2{3y —5)/{3y —2)

which decreases into the future for y (—,', is constant if
y= —,', and increases into the future if y & —', . [This time

dependence has been derived (using different arguments)
by, for example, Barrow and Tipler' ].

and

H =~ —,9,p+r'/3 —8p r-' (8.2)

A = 1 —
—,'P+ [(x —a ) + (y —5) ] . (8 3)
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In (8.2) and (8.3) P~, a, and 5 are sufficiently smooth
functions of z. Relative to these coordinates the Quid
four-velocity and energy density are, respectively,

4A"=at' "=3H'
and the Einstein —de Sitter model arises when p+ =—0.
Consider a time interval 0 & t, ( t ~ t2 and suppose that

P+ are restricted by

p+&0 0& Ip+lt2'/3&e, 0& Ip

where t„ t2, and e are positive constants. It has been
shown (Goode and Wainwright' ) that, when e « 1, the
above solution can be considered as being, in a well-
de6ned sense, a perturbation of the Einstein —de Sitter
model. In the linear approximation (defined by e « 1) it
is easily shown (using the formulas given in Goode and
Wainwright' ) that the time dependence of all of the
quantities in the above solution coincides with that given
in the first column of Table II of the previous section.
Further, in all of the Szekeres solutions, the slices orthog-
onal to the iiuid flow are conformally fiat (Berger, Eard-
ley, and Olson, ' and Szafron and Collins ). Thus in
these solutions we have co, =C*, =0, and so the
gauge-invariant characterization given in Theorem 5.6
suggests that the above solution should be interpreted as
a scalar perturbation of the Einstein —de Sitter model. A
similar interpretation is also possible for the remaining
Szekeres models. This interpretation is certainly con-
sistent with the results of Bonnor ' on the nonradiative
property of the Szekeres solutions.

It is reassuring that the results from the linearized
theory are reQected in the linearization of exact solutions.
It is worth mentioning, however, that the above solution
does not satisfy the basic assumption of the linearized
theory, namely, that g,b=g, ()+h,b with ~h, b~ &&1, rela-
tive to the present coordinates. Indeed, from (8.1)—(8.3),
we see that, even in the linear approximation mentioned
above, the perturbed and background metrics are diverg-
ing as x +y ~+ ~.
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