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Exact Langevin equation in a cosmological setting
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Recently, various authors have used Langevin equations to model physical processes in the early
Universe. Much of this work is based on a flat-space effective potential, neglecting potential compli-
cations associated with a curved spacetime. This paper considers a simple statistical-mechanical
model of time-dependent, bilinearly coupled oscillators, which leads to an exact Langevin equation
that mocks a field theory in a time-dependent background. This equation exhibits a nonlocal time-

dependent change in the effective potential which vanishes identically when the oscil&ators are time
independent.

I. INTRODUCTION

Langevin equations and their associated Fokker-
Planck realizations have been used for many years in sta-
tistical physics to model various dynamical processes
which include dissipative eff'ects. In the past several
years, these equations have also made their appearance in

quantum field theory. One obvious example is stochastic
quantization. ' Another more recent application has been
to problems involving quantum field theory in the early
Universe, impacting, e.g., on phase transitions or
Starobinskii's paradigm of stochastic inA@tion. Closely
related to this arg phenomenological models which it is
believed could mimic the "dynamical relaxation" of a
quantum system in a cosmological setting. And finally,
there is a recent suggestion that simple statistical models
of a coupled "subsystem" and "bath" could shed light on
the "quantum-to-classical transition" in the early
Universe.

Much of the aforementioned work in a cosmological
context is based on Aat-space field theory, the effects of an

expounding universe being allowed for only in a phenome-
nological way. However, it has been argued that Aat-
space effective potentials, upon which these analyses are
based, could in fact miss important curved-space contri-
butions.

To assess the validity of such criticisms, it is very use-
ful to have some model, however simplistic, in which an
exact Langevin equation can be derived without any phe-
nomenological assumptions. One such model, which per-
mits the derivation of an exact Langevin equation in a
time-independent setting, has been considered by several
authors ' in the statistical-mechanics literature. In its
simplest form, this model considers a test particle im-
mersed in a "bath" of field oscillators to which it is cou-
pled via a bilinear mode-mode coupling.

The purpose of this paper is to generalize Zwanzig's
treatment of this model by allowing for explicit time
dependences in the oscillator frequencies and mode-mode
couplings. With suitable cb.vices for these time depen-

dences, this should enable one to model in a reasonable
way the modes of some field in an expanding universe. It
will be seen that this time dependence does in fact lead to
a new, and potentially significant, effect, namely, a finite
shifting of the effective potential, which would not have
been incorporated into the most naive generalizations of
an ordinary Langevin equation.

Section II of this paper considers this generalized mod-
el for generic time-dependent couplings and frequencies.
Section III then discusses possible applications of the
model in a cosmological setting.

II. A SIMPLE MODEL

The model to be analyzed here is a variant of one that
has been studied extensively in the past, in which one
considers a system of interest, the "subsystem, " interact-
ing with a "bath" of oscillators. Previous studies have fo-
cused on such problems as the evolution of the dynamical
variables of the subsystem, and on the derivation of non-
linear Langevin equations. It is this latter aspect, con-
sidered several years ago by Zwanzig, which is of pri-
mary interest here. Specifically, what Zwanzig studied
was the evolution of a test particle in an arbitrary poten-
tial, immersed in a sea of oscillators to which it is con-
nected via a time-independent, bilinear mode-mode cou-
pling. His principal result was the derivation of an exact
nonlocal Langevin equation for the test particle which, in
certain cases, could be well approximated by a Markovi-
an equation. The object here is to generalize this simple
model to a situation in which all the potentials and mode
couplings are permitted to manifest a more or less arbi-
trary time dependence.

Consider a system characterized by the Hamiltonian

H pv U(xqt ) g gpk +g 2&k(gk ) kx l&k )
k k

where &uk and yk are arbitrary smooth real functions of
time t, and the potential U(x, t) is also allowed an explicit
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time dependence. This leads immediately to equations of
motion

X =U
t

u= —aU/ax+yy„(q, y—, / 2)
k

yk(s)y/ (t)
Ak(s, t)=

&p (s)

and its time derivative

Bk(s, t)= A/, (s, t),

(9)

(10)

and

Jk ~k9k+7 k+
2

(2) the memory functions then assume the forms

K(s, t)=g Wk(s, t) A/, (s, t)
k

The object here is to solve formally for the evolution of
each q(t) in terms of x and u at past times s (t, and, by
inserting that formal solution back into the equation for
O(t), to obtain a nonlocal evolution equation.

Let Sk(t) and Ck(t) denote two linearly independent
solutions to the homogeneous equation

d f/, (t)
+co„(t)g„(t)=0,

dt2 (3)

qk(t) =q, (0)C, (t)+p, (0)S„(t)
+ f ds yk(s)x(s)[Sk(t)Ck(s) Sk(s)C&(t—)] .

(4)

By substituting (4) into the equation for u(t), one obtains
the desired Langevin equation.

The integral in (4) contributes to the "memory term"
in the equation for u(t), and, as such, it is inconvenient
that the integrand vanishes in the coincidence limit s~t.
This difficulty can be avoided by replacing S/, (s) and
C/, (s) by —

Sk /teak and —Ck/cuk and then integrating by
parts. By grouping terms together suggestively, one then
sees that

BU(x(t), t )

X

which, without loss of generality, may be assumed to
satisfy initial conditions C/, (0)=S/, (0)= 1 and
Sk(0)=Ck(0)=0. If the cok's were time independent,
these would simply be sines and cosines. And, presuming
that cok%0, but that ~tok ~

is not too large, they will still
be oscillatory. In terms of Sk and Ck, one then verifies
exactly that

and

M(s, t)= —g 8'k(s, t)Bk(s, t) .
k

Note that, whereas M(t, s) vanishes when yk =uk =0,
K(t, s) does not. Indeed, in this limit (5) reduces to the
Zwanzig form

u(t) = — ' —f ds K(t —s )u(s)+F, (t),BU(x(t), t)
Bx 0

where

(13)

and

K(t —s)=g (yk/tu/, )cost@/, (t —s )
k

(14)

sincok t
F, (t)=g yk Q/, (0)coscokt+pk(0)

k
(15)

By contrasting Eqs. (5) and (13), one sees that time-
dependent frequencies and mode-mode couplings induce
a systematic but nonlocal x-dependent force which, in a
field-theoretic setting, could be interpreted as a time-
dependent effective mass (although this "mass" need not
be real).

Consider, by way of illustration, an ensemble of initial
conditions for which

(g„(o)) =(p„(o)) =o,
so that (F,(t)) =0, and suppose further that the second
moments ofpk and Qk are initially thermal, so that

(pJ(0)p/, (0) ) =~J(0)tu/, (0)( gJ(0)g/, (0) )

=k~T6 k—f ds [K(t,s )u(s) —M(t, s)x(s)]+F,(t),
0

where the "stochastic force"

(5)
and

(g, (o)p„(o))=—o .

F, (t)=g y/, (t)[g/, (0)Ck(t)+p/, (0)Sk(t)] (6) It then follows exactly that

Qk(0)—:qk(0) —yk(0)x(0)/cok(0) .

In terms of the Wronskian of solutions

8'k (s, t )—:S& (s)Ck ( t) —Ck (s)Sk (t),
and the function

(7)

involves only initial conditions at time t=O. Here the
quantity

(F,(t)F, (s) )

C/, (t)Ck(s)—g y/, (t)yk(s)kt/T 2 +Sk(t)S/, (s)
k cok (0)

(19)

In the limit that yk and cok are independent of time,
one sees that the autocorrelation function (19) is in fact a
function only of

~
t —s ~, and indeed, one concludes that
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(F,( t)F, (s) ) =k~ TK( t —s) . (20)

This implies that the model system under consideration
here would in fact satisfy a fluctuation-dissipation
theorem, the autocorrelation function (20) providing a
"diffusion" that precisely balances the "dynamical fric-
tion" in (12) (Ref. 8). The existence of such a
fluctuation-dissipation theorem, and even the fact that
(20) is a function only of ~t

—s~, is, however, a special
consequence of time-translation invariance, so that, in
general, when yk and/or tiik&0 and the Hamiltonian is
not time independent, no simple analogue of (20) will ob-
tain.

The exact equation (5) can simplify significantly in the
limit that Sk(s) and Ck(s), and hence W(s, t), is a rapidly
oscillating function of s. Specifically, if the Sz's and C&'s
oscillate rapidly and the distribution of frequencies is
"generic, " one might anticipate that K(t, s) and M(t, s)
will be non-negligible only when ~t

—s~ is small. It then
seems natural to assume that

and

K(t, s) =K(t)5(t —s)

M(t, s) =M(t)5(t —s),
(21)

The model considered in this paper, albeit simplisitc,
appears robust with respect to the solutions obtained in

in which case one is led to a "local" equation of the form

0(t)=- aU(x (t), t ) +M(t)x(t) K(t)u(t)+—F, (t) .
x

(22)

The further assumption that (F,(t)F, (s) ) may also be
treated as nearly delta correlated in time, i.e., proportion-
al to 5(t —s), then implies a truly Markovian description.
(Strictly speaking, the validity of such a Markov approxi-
mation must of course be checked explicitly for any given
choice of frequencies and couplings. ) Equation (22) is an
approximate Langevin equation involving a new efFective
potential U, it

= U —
—,
' M( t )x and a time-dependent

viscosity term K(t)u. Note that, whereas K is intrinsical-
ly positive, the correction to the effective potential can be
either positive or negative, depending on the detailed
time dependence of the yk's and mk's.

It is clear that the initial thermal distribution assumed
above for the "bath" of oscillators may not be trivially
justifiable for a quantum field in the early Universe.
However, one might argue plausibly, in the spirit, e.g., of
Vilenkin and Ford, that particles created very early on
will thermalize quickly, and that this model will be
reasonable after this thermalization. ' Note also that, al-
though this model is classical, its quantum generalization
is completely straightforward: all that one need do is
reinterpret the dynamical variables as Heisenberg opera-
tors. In this case, the formal dynamics are essentially un-
changed although, in the low-temperature limit, "quan-
tum fluctuations" analogous to those described by Ford,
Kac, and Mazur can lead to qualitatively different
effects.

III. DISCUSSION

the senses (1) that no explicit form was assumed for the
potential U and (2) that one did not need to solve explicit-
ly for the modes of the field.

The key point simply is that time dependences in the
frequencies and couplings will lead generically to poten-
tially significant effects which could alter predictions
based on a naive "jazzing-up" of a time-independent
model. Thus, e.g. , if the potential U is fine tuned to yield
a "slow roll" or some other desired features, this fine-
tuning could be lost completely in the effective
U, ff U pMx (recall, e.g. , that the fine-tuned effective
potential in inflationary scenarios must be assumed to be
very fiat). This suggests, but certainly does not prove,
that the study of phase transitions and the like in the
framework of quantum field theory in a time-dependent
background may, as has been argued before, require
more than the most obvious extensions of earlier work in
flat spacetimes.

In this regard, it is useful to comment on the issue of
how some simple analogue of this model might be real-
ized in a realistic cosmological setting. The obvious point
is that, for a homogeneous and isotropic cosmology, such
as that assumed for the simplest power-law or exponen-
tial inflaton, the "natural" modes of a free field evolve in-
dependently. There is no mode-mode coupling at all.

Aside from allowing simply for nonlinearities in the
field equation, which will not lead to the sort of bilinear
mode-made couplings assumed in Sec. II, there are at
least two mechanisms by which the desired couplings
could arise. (1) Following Vilenkin and Ford or Bran-
denberger, one can consider a pair of bilinearly interact-
ing fields, a "bath field" 4& and a "subsystem field" g.
With de Sitter space as the background spacetime, this
may be interpreted as modeling the interaction of an
"infiaton field" with some background radiation. (2) Al-
ternatively, if the Universe is not static up to an overall
scale factor (as it is for a homogeneous and isotropic
universe), perturbations therefrom will induce effective
mode-mode couplings of this general form. "

One may note that this sort of Langevin equation can
also be derived quite generally, ' for more or less arbi-
trary initial conditions, by considering a free field in an
inflating universe and, following Starobinskii, by intro-
ducing a time-dependent splitting of the field into short-
and long-wavelength components. Such a setting is, how-
ever, very different from that considered here, the
effective interactions arising in that case as a consequence
of the fact that what one means by "system" or "bath" is
in fact time dependent.

Note also that, although this has not been done here, it
is straightforward to use the Markov limit (22) of the
Langevin equation (5) to formulate a Fokker-Planck
description. This would seem a worthwhile exercise if
the model were more constrained, i.e., if U were chosen
for some specific inflationary model and realistic values
for other parameters such as the yk's were known.

And note finally that the principal limitation of the toy
model considered here, namely, the linearity of the oscil-
lator equations of motion and the simple bilinearity of the
couplings between the "subsystem" and the "bath, " can,
at least in principle, be relaxed. This may be of funda-
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mental importance since the model Hamiltonian (1) im-
plies, perhaps unrealistically for a quantum field in the
early Universe, that the "bath field" is essentially free and
linear. It has been assumed (cf. Ref. 2) that this sltould be
approximately true for the shorter-wavelength modes
even for a nonlinear field theory (e.g., a A,@ theory) but
that this assumption can be justified is not completely ob-
vious.

In any event, what really underlay the possibility of
formulating the desired Langevin equation here was the
implementation of a formal splitting of the system into
"subsystem" plus "bath, " each of which satisfies a closed
"subdynamics, " whereby nonlocal evolution equations
for Ix(t), v(t)I involve Iqj, (s),p1, (s)I for s &t only
through the propagation of an initial condition
tqk(0), pi, (0)I refiected in the stochastic force. For the

simple linear model treated here, this was well nigh trivi-
al; but, even in more complicated nonlinear settings, this
splitting should be implementable quite generally through
the introduction of appropriate projection operators.
The net result thereof will be a more complicated nonlo-
cal I.angevin equation, which one can again hope to ana-
lyze approximately.
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