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EfFective electromagnetic form factor of the neutrino
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The conceptual difBculties affecting the definition of the neutrino electromagnetic form factor are
brieAy reviewed in the context of the standard model. It is then shown that the radiative correc-
tions 6' '"{q ) and 5( '"'{q ) relevant to v-lepton and v-hadron scattering in the renormalization
scheme in which sin 8~=1—m~/mz, can be separated into two finite and gauge-invariant parts.
One part t), ' '(q ) is target independent and the associated function f(q'): —q'6—"(q )/(2m ~) can
be interpreted as an effective electromagnetic form factor of the neutrino in the framework of the
low-energy theory derived from the standard model at invariant mass scales &&m~. The observa-
bility of this quantity and its dependence on the top-quark mass and the neutrino flavor are dis-
cussed. Updated estimates of the hadronic contributions to 6' '{q ) are given. A strategy to search
for v structure beyond the standard model is outlined.

I. INTRODUCTION

( 2) 6 f
elf q =0

by comparing cr(v„e ) and o (v e ) with other weak-
interaction processes not involving neutrinos. On the

As neutrinos are some of the most intriguing particles
of nature, it is not surprising that physicists have long
been interested in their properties. In particular, at-
tempts to evaluate their electromagnetic form factor
f (q ) go back to the pioneering work of Bernstein and
Lee' who placed particular emphasis in the case g~= 1

(gii, is the gyromagnetic factor of the W). As their
analysis was carried out in the framework of a nonrenor-
malizable theory, they employed a nonperturbative ap-
proach by considering the sum of all Feynman diagrams
of arbitrary order in e but only second order in the weak
coupling g. Applications to v-electron scattering were
discussed in Refs. 2 and 3. In the standard model (SM),
e and g are, of course, intimately related, g~=2, and
moreover the theory is renormalizable; so, it is natural to
search for a perturbative answer. As f (q ) must vanish
as q ~0, it has long been recognized however that, in
the context of the SM, virtual photons interacting with
neutrinos give contributions to scattering processes
which are generally of the same order of magnitude as ra-
diative corrections to Z mediated amplitudes, Z —y
mixing graphs, and box diagrams involving exchanges of
pairs of 8 s or Z 's. Because of this fact and associated
problems of non-Abelian gauge invariance discussed in
Sec. II and Appendix A, the separate consideration of
f(q ) lost much of its appeal for many years. Recently,
however, there has been a revival of interest in the con-
cept. Thus, an experimental paper has set limits on the
neutrino mean-square charge radius

other hand, the theoretical situation in the framework of
the SM, as portrayed in the literature, is somewhat
confusing. Thus, for example, a paper of long standing
concluded that ( r ) is divergent and not a physical quan-
tity in the present theory. On the other hand, more re-
cently, some theorists claimed to have either estimated
or accurately calculated (r ) in the SM. A diff'erent

point of view was taken by Lucio, Rosado, and Zepeda
who emphasized the problems of non-Abelian gauge in-
variance involved in the definition of (r ) and proposed
a generalization, the "electroweak radius" (r )Ew pro-
portional to 1 —tr("'" (0), where tr' '" is a radiative correc-
tion factor in the v-lepton scattering amplitude intro-
duced in Refs. 9 and 10. Because tr' "(q ) is an observ-
able quantity, (r )Ew satisfies the crucial requirement of
being finite and gauge invariant. In contrast, Ref. 7 con-
sidered only the proper vvy vertex diagrams. As these
contributions are, by themselves, g dependent (g is the
parameter that specifies the gauge within the class of re-
normalizable gauges), the corresponding results cannot
be identified with physical, observable quantities in the
SM. It has also been suggested that relatively large
nonzero values of ( r ) may arise from "nongauge"
8 8'y interactions associated with compositeness. " Un-
fortunately, the theoretical status of the corresponding
one-loop calculations seems very uncertain. For exam-
ple, the electromagnetic gauge invariance and the scheme
independence of the regularization procedure is not clear
and, at least by elementary power counting, the degree of
divergence increases very rapidly with the number of
loops so that the neglect of higher-order terms is very
questionable.

In this paper we restrict ourselves mainly to the SM.
We first discuss once more the difhculties that arise in
defining f (q ) as a physical quantity by focusing on the
non-Abelian gauge dependence of a class of contributions
to neutrino scattering processes. Restricting then the dis-
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cussion to the domain in which the kinematical variables
are small relative to m~, we point out that the radiative
corrections L3

' '(q ) and 6'"' '(q ), relevant to v-lepton
and v-hadron scattering ' in the renormalization
scheme in which sin t9~—= 1 —m~/mz, can be separat-12 . 2 2 2

ed into two finite and gauge-invariant parts. One part,
6' '(q ), is independent of the nature of the target. As
we will see, b,"(q ) cannot be thought of as arising from
a vvy interaction in the context of the SM but it does ad-
mit that interpretation in the framework of the effective
low-energy theory which emerges at invariant-mass scales
«m~ when the intermediate-vector-boson degrees of

freedom are integrated out. This leads to the concept of
the elfective electromagnetic form factor f (q )= —

q b, ' '(q )/(2m', ) of the neutrino, a finite, gauge-
invariant function that can be associated with all "low
energy" neutrino scattering processes. Comparison of
f (q ) and the associated mean-square radius with the re-
sults reported by other authors, as well as its dependence
on the v Aavor and the top-quark mass m„are briefly dis-
cussed.

A second, more practical, aim of this paper is to pro-
vide an updated estimate of the uncertainties in the ha-
dronic contributions to f (q ) or, equivalently, w(q ) as
these quantities are important for the precise determina-
tion of sin 0~ from v-lepton scattering processes. Final-
ly, a strategy to search for v structure beyond the SM is
briefly discussed.

w, '
/

W

(0} (b}

2

(c) (d)

2
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FIG. 1. Electromagnetic proper vertex, yz mixing, and relat-
ed counterterm diagrams in. v scattering.

II. GAUGE PROPERTIKS
OF RADIATIVK CORRECTIONS

TO NEUTRAL-CURRENT v SCATTERING PROCESSES

A general and convenient discussion of radiative
corrections to neutral-current v scattering processes in
the domain in which the kinematical variables are much
smaller than m~ has been given in Ref. 9. The analysis
in that work was carried out in the simple renormaliza-
tion framework of Ref. 12, in which the basic renormal-
ized parameters of the theory are taken to be e (the con-
ventionally defined charge of the positron) and the physi-
cal masses m ~,mz, while the weak-interaction angle is
defined by sin Oii =1—mii /mz. For definiteness the
particles from which the v's are scattered, as well as those
emerging in the final state (with the exception of photons)
will be referred to as the target system.

At first sight it might seem that in order to evaluate the
electromagnetic form factor of the neutrino one should
consider the sum of all Feynman diagrams in which the
v-scattering process is mediated by a photon. Examples,
depicted in Figs. 1(a)—1(c) include vvy proper vertex dia-

l

grams and the yZ self-energies. One must also include
the counterterm diagrams of Figs. 1(d)—1(f) as described
in detail in Ref. 9. However, a closer examination reveals
that this procedure is not sufficient to obtain a sensible
answer. For instance, in order to obtain a convergent re-
sult in the renormalizable gauges, it is necessary to in-
clude the part proportional to (f~Jir'~i ) in the vertex
correction to the Z exchange amplitude [Figs. 2(a) and
2(b)] where J~~ stands for the electromagnetic current as-
sociated with quarks and leptons and ~i ) and

~f )
represent the initial and final states of the target system.
%'ith these additions, the answer is convergent in the re-
normalizable gauges but, alas, not gauge invariant.
Indeed, as shown in detail in Appendix A, what happens
is that the W-W box diagram [Fig. 2(c)] (which is conver-
gent in the renormalizable gauges) contains g-dependent
parts necessary to cancel identical terms arising from Fig.
1(b). In order to analyze the W-W box diagram in the g
gauge, it is convenient to write the corresponding ampli-
tude in compact form:

- 4

,D„.(k)D,p(k q) J d'x e""(f~T~[Jg (—x)Jgt(0)]~i )
~/2 (2m )

X jd x'e '"' ( v~ T [lg, (x')lg~(0)]~v), (2)

where

D„(k)= i [g„—k„k (1 —I /g)(k m—ii, /g) ''](k—2 —m ~~)
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is the W propagator, /g the leptonic current coupled to 8; and Jg, the corresponding current in the target system. As
indicated in Appendix A, the g-dependent parts can be greatly simplified, for arbitrary q, by using the appropriate
Ward identities. However, as we are interested in this section in the domain Iq I «m~ (as well as m &&mdiv, where m
stands for a generic lepton or quark mass either in the neutrino or target lines) it is sufficient to set q =m =0 in Eq. (2)
and retain the leading terms as k ~ ~ in the two-current correlation functions. This leads to

k~ e" Pk&f d'x e'"'&flT[JIv(x)Ji'v(0)]li &= —i, (g"'g' g "g—"'+g'g"')(f
I J,'" lt &—,&f I J,"'lt &+ (3)

C3= 0 —I
In deriving Eq. (3) we have neglected small corrections induced perturbatively by the strong interactions. ' lf the target
is a lepton, J' ' and J' ' are replaced by the corresponding leptonic currents. The result for

f d x'e '"'" (v'IT[l~(x')lg(0)]lv&

is obtained from the right-hand side (RHS) of Eq. (3) by identifying J' ' and J' ' with the leptonic currents and inter-
changing p~v.

Inserting Eq. (3) and the corresponding expression for

f d x'e '"' (v'IT[lg, (x')l~~(0)]Iv&

into Eq. (2), the g-dependent parts of the propagators, proportional to k„k and k„kti, cancel when contracted with the
e" P terms. Thus, the terms involving e" P tensors are separately gauge invariant. On the other hand, a simple calcu-
lation shows that the contribution to b,M~ iv arising from the first term in Eq. (3) is given by

where J' ' and J' ' are the third current of SU(2)t and the V —A current of U(1), respectively. Specifically, if the tar-
get is a hadron, J' '—= QC3y a P and J' '=ply a g where g is a column vector itj—:(uctdsb), a =(1—ys)/2, 1 is
the 6 X 6 unit matrix and, calling I the 3 X 3 unit matrix,

I 0

4 4

(2~) (k —mii, ) 2 k

1
2 1 ——

2Igrk—

'2
k
4

2 2
P7l gk—

where Lt'=u 'y~a u and the superscript 3 on the LHS reminds us that Eq. (4) is the part of the WW box diagram
proportional to the J' ' current. Evaluation of the integrals leads toP

4

KMii, '~= (f J"'Ii &Lt'[ ,'+g (g)], — (5)
64m m~

where g (g) = —2+ —in//(g —1)+—,'( I+ 1/g). As expected g (1)=0 ('t Hooft —Feynman gauge) and g (0)= ~ (unitary
gauge).

A similar analysis shows that the Z-Z box diagrams are separately gauge invariant, a fact that can be readily under-
stood from the associated Ward identities. In fact, as the equal time commutator of Jz and Jg vanishes (Jg is the fer-
mionic current coupled to Z„), contractions with the k four-vectors from the propagators also lead to a null result
when terms proportional to current divergences are neglected.

In summary, examination of the box diagrams shows that, to leading order in 1/m~, their gauge-dependent part is
contained in Eq. (5). Recalling that

J' '=2(Jz+sin Ou, J~)

detailed examination (see Appendix A) shows that the term proportional to

g(g)&flJ', li &

in Eq. (5) cancels against an identical contribution from Fig. 1(b). We conclude that the minimal set of contributions
proportional to (f I J~z Ii & which is finite and gauge invariant includes Figs. 1(a)—1(f), and the corresponding terms aris-
ing from Figs. 2(a) and 2(b) and Eq. (5) with J' '~2 sin Ou, (J ) . Combination of these results leads to
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where

2

b, ( '(q )= R&(q ) ——,'(26c + —", —),9s ) — ( ,' ——3c )inc + ,'+—[I,(c ) —I2(c )]
2&$ 2s 2$

+ H (g) cH—
2$ C

2

g (h;()( 2)+C yz q +C
S 2 $2

' g (h;l)(m 2
)

2Olz

W ~(h~()(m ~2)

2

In Eq. (7),

s =—sin 8)i„c —=cos 0))„g—=mH/mz,
1

R&(q )= —,'+2I dx x(1—x)ln{m)i /[m& —
q x(1—x)])

I

e6'ects induced perturbatively by the strong interactions
in the case of hadronic targets' are separately gauge in-
variant and, if retained, can be incorporated into 6'".
Neglecting such small contributions, comparison with
Ref. 9 leads to

g(v;t)( 2) g(v)( 2)+g(t) (8)

where t =l, h specifies whether we are considering a lep-
tonic or hadronic target. We also note that the small

(m& is the mass of the charged lepton associated with v&),

H(g), I, (c ), and Ii(c ) are functions discussed in detail
in Refs. 9 and 12 (numerically, for s =0.23, I, =1.768,
I2=0. 147) and A zz Azz A)i",)i,

' represent the sum of
the hadronic and leptonic contributions to the yZ, ZZ,
and 8'8' self-energies, respectively. Their detailed ex-
pression for general values of m, can be obtained from
Ref. 9. We note that R((q ) involves m(, as a conse-
quence, b, '"'(q ) depends on the neutrino ffavor.

An important property of b, ( '(q ) is its independence
of the quantum numbers or other properties of the target.
It diff'ers from the functions b.""'(q ) and 4' '"(q ), ap-
propriate to v-hadron and v-lepton scattering, in that
the latter include contributions to the Z-Z and 8'-8 box
diagrams arising from the e" )' terms in the two-current
correlation functions. In the case of hadronic targets, the

(' contributions can be expressed in terms of J~~, Jg
and two additional induced currents, not present at the
tree level. Furthermore, the coefficients of (fjJ~&~i )
and (f)Jpz~(i ) in these contributions are diff'erent from
hadronic and leptonic targets. Taking this into account
we may write

(h)

2+$2 c' (9a)

(() a y 5

2ns2 c' (9b)

where a and c are numerical constants given in Eqs.
(19e) and (20f) of that work. Numerically, for s =0.23,
a =1.15, and c&=1.56. Thus, employing a(mii )= »„
6' '=1.3X10, 6'"=4.2X10 . Using Jegerlehner's
analysis of hadronic vacuum-polarization contributions'
(see Appendix B), we find in the case of the muon neutri-
no v„, for m, =45 GeV and mH = 100 CxeV:
6"(0)=(3.3+2) X 10 . Recalling Eq. (8) and the

( v, I)
numerical value of 5(" we see that b, "' (0)

(v;i)=(7.5+2) X 10 and correspondingly ~ "' (0)
=1—b "' (0)=0.9925+0.0020 (Ref. 15).

For other neutrino Aavors one must add, at q =0,
(a/3ms )ln(m„/m() which equals 1.79X10 for the
electron neutrino v, and —0.95 X 10 for the ~ neutrino
v, . Thus 6( '(0) =(2.12+0.2) X 10 for v, and
6( '(0) = —(6.2+2) X 10 for v,. For values of

~ q ~
))4m, the liavor dependence becomes negligible and

b, '"'(q ) approaches a single universal function for all
neutrino species. The m, dependence of a(0), and there-
fore b, ' '(0), can be obtained from Ref. 9. It is illustrated
numerically in Ref. 16 and Table I of this paper.

III. EFFECTIVE KI.KCTROMAGNKTIC FORM FA,CTOR
OF THE NEUTRINO

As explained in Refs. 9 and 12, by a suitable
redefinition of the Z„and 2„ fields the counterterm dia-

(a) (b) TABLE I. 6' )(0) for v=v„and mB=100 GeV, as a function
of m, . For v=v, and v=v„+1.79 and —0.95 must be added
to all entries, respectively. The estimated error in the second
column is +0.20.

W

(c)

FIG. 2. Relevant vertex corrections to Z -mediated ampli-
tudes and box diagrams in v scattering.

m, (GeV)

45
60
90

120
150
180

10'a"(0)

0.33
0.39

—1.04
—2.16
—3.29
—4.53
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gram of Fig. 1(d) can be effectively transformed into addi-
tional contributions to Figs. 1(e) and 1(f). The latter can
be obviously thought of as arising from vvy photon in-
teractions. The same, however, is not true for the contri-
butions of Figs. 2(a) —2(c). Thus, we reach the conclusion
that b, ' '(q ) cannot be identified diagrammatically with
an electromagnetic form factor of the neutrino in the
context of the complete theory describing the SM.

Consider, however, the effective low-energy theory de-
rived from the SM by integrat;ing out the intermediate
boson degrees of freedom. The remaining underlying
fields are then quarks, gluons, leptons, and the photon.
The theory is described by XQCD plus XQED plus non-
renormalizable four-Fermi interactions, inversely propor-
tional to m~, describing the charged- and neutral-current
weak interactions. Because Eq. (6) is proportional to
(f ~

J~~ ~i ) with a target-independent cofactor b,"(q ), it
is apparent that in this effective low-energy theory 5M
may be interpreted as arising from a nonrenormalizable
Vvy interaction of the form

e(p,y„a—1( )4"(—8')Bg "/(2m~~), (10)

where F "=0 A"—0"A is the field-strength tensor, e is
the positron charge, and b, ' '( —8 ) the operator obtained
by substituting q ~ —c} in b,"(q ). On the other hand,
the target-dependent parts 5' cannot be described by a
term analogous to Eq. (10); thus, they must be treated as
explicit renormalizations of sin 0~ in the effective four-
Fermi interactions of the low-energy theory.

Integrating Eq. (10) by parts in the action and writing
= —ej"A„, where j" is the effective electromagnetic

current of the neutrino, we have the identification

j"=b, ' '( —8 )(8 g" —8"8 )(P,yea g, )/(2m ) .

(1 la)

than Refs. 1 —3. As a consequence, our f (q ) and (r )
are defined to be a factor of 2 larger than in those papers.
Because the probability of disintegration into virtual par-
ticles via electroweak radiative corrections is very small,
these results should not be interpreted as describing a
physical size for the neutrino (cf. Ref. 2). Note also that
the neutrino charge density p(r) is not positive definite; as
a consequence, ( r ) can be positive or negative. We also
point out that the replacement 6' '(q )~A' '(0) is valid
when —

q (&4m for I =p, ~ and —
q &(4m, for 1 =e.

For larger values of —q, the contributions from Figs.
l(a) and 1(c) vary significantly with q and one should use
the complete expressions.

Our results are of the same order of magnitude as those
presented by other authors in the past, but the physics
behind them and the detailed answers are significantly
different. In particular we have included the large ha-
dronic contributions to Figs. 1(c)—l(f). Although sepa-
rately finite and gauge invariant, there is no theoretical
reason for excluding them in the definition of f (q ) or
(r ). In fact, for m, =45 GeV we find large cancella-
tions between these hadronic contributions and the
characteristic 1n(m@, /m&) terms arising from Figs. 1(a)
and 1(b). As a consequence of these and other
differences, our (r ) are generally smaller, in absolute
value, thorn the results of calculations that retain only the
ln(mii, /m& ) contributions. This is particularly true for v„
where our

~
( r )

~
value is smaller by a factor of =7. For

v„ the In(mii, /m, ) contribution is more dominant and
our ( r ) is only smaller by a factor =2.

It also should be stressed that our (r ) values depend
sensitively on m„particularly for v„and v, . For exam-
ple, for m, =90 GeV and mH=100 GeV, we find

(r ), = —(13.4+3.6) X(10 ' cm)

& v'I j", I
v & =f(q ')i7. y"

1 j 5
V (1 lb)

we obtain
2f (q') = — &"(q')

2m~
(1 lc)

The corresponding effective mean-square charge radius is

( 2) 6 f q

Bq
b, ' '(0) . (11d)

3

q =0 m~

Inserting ming=81 GeV, (r ) = —17.8b, ' '(0)(10
cm) . Employing the b, ' '(0) values of Sec. II, which cor-
respond to m, =45 GeV and mH =100 GeV, we obtain

—(37.7+3.6) X(10 ' cm) for v, ,

(r ) = —(5.9+3.6)X(10 ' cm) for v&,

+(11.0+3.6) X(10 ' cm) for v, .

(12)

In Eq. (11b) we have used a difierent normalization

Defining the effective electromagnetic form factor of
the neutrino by the relation

( r 2 ) = + ( 18.5+3.6 }X ( 10 ' cm }

(r ) =+(35.4+3.6)X(10 ' cm)

values significantly different from Eq. (12). Again, this
sensitive dependence can be traced to the fact that for
some values of m& and m, there are important cancella-
tions of rather large terms; relatively moderate changes in
the hadronic contributions due to a shift in m, can then
induce substantial modifications in (r ). The m, depen-
dence can be derived by combining Eq. (11d) and Table I.

There appears also to be considerable confusion in the
literature regarding the sign of (r ). We point out that
in our calculation the 1n(mz, /m&) terms from Figs. 1(a)
and 1(b) have the same sign as in the classical paper of
Ref. 1. This is as it should be because these terms are
finite and gauge-invariant contributions from Fig. 1(a)
and do not depend on the underlying theory describing
the electromagnetic properties of 8'.

How can f (q ) be measured? By performing solely ex-
periments on v-lepton and v-hadron scattering, the exper-
imental physicist can determine the effective parameter
sin 8' (q )=—x' '"(q )sin Oii(t =l, h). In order to find
~'"'"(q ) one needs to extract, sin Oii, = 1 —mii, /mz from
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2G~'»») zo.(v„e)=o (v„e)+ " s iimi(ir )

—1+Ssw

3
+—s~m ir( r )9 (13b)

where cr includes all the contributions (lowest order and
radiative corrections) not contained in (r ) and p, and

p2 are the four-momenta of the initial v„and e. Com-
plete expressions for cr(v„e) and cr(v„e) can be found in
Ref. 10.

Let us finally consider the possibility that, for some un-
known reason associated with physics beyond the SM,
the v has an additional electromagnetic interaction de-
scribed phenomenologically by a mean-square charge ra-

other observables such as m ~, mz, or p decay, which do
not involve v scattering. One then obtains b, ' '"(q )
=1—x"'"(q ) and, using (8), (9), and (llc), determines
f (q ). Clearly, measurements of sin Oii with relative er-
rors small in comparison with 6' '(0) are needed, both in
v scattering and the other observables. Table I indicates
that for I =p one requires relative errors in sin 0~ of less
than 1% if m, 590 GeV and less than 4.5% if m, =180

' GeY.
The effect of f (q ) or (r ) in the v-scattering cross

sections can be readily obtained by noting that it amounts
to a renormalization of sin H~.. one simply replaces in
the tree-level cross sections

sin Oii, ~sin Oiv[l —b, ' '(q )]

2mii f (q )
=sin Hp 1+

q

in the general q case or sin Oir~sin Oii(1+ —,
' mi(ir ))

in the small-q case. Thus, for example, neglecting terms
proportional to m, /(p, p2) and assuming —

q ((4m
( —)

the total cross section for v „escattering is of the form

2G
o(v e)=o. (v„e)+ "(p, .p 2) siimii(r )

3m

2

(13a)

dius ( r )„~„(the subscript reminds us that we are consid-
ering here structure effects associated with new physics).
In this case, the eA'ective phenomenological parameter
sin 8' (q ) determined in v„e scattering no longer equals

(v;e)
the SM value ic

"'
(q )sin Oii, but rather

sin 8' (q )=ic "'
(q )sin Oir(l+ —,'m~(r )„h) . (14a)

3 sin 8'(q )(r')„,h=
mii' ic " (q )sin Oir

(14b)

Therefore, by measuring sin 8' (q ) in v„e scattering,
determining sin Oz, from mir, mz, or p decay [see previ-
ous discussion concerning the measurability of f (q )](v, e)
and employing the SM calculation of ic

"'
(q ), the ex-

perimental physicist can attempt to determine (r )„h
via Eq. (14b) and, in this way, search for v structure asso-
ciated with new physics.
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APPENDIX A: g'-DKPKNDKNT CONTRIBUTIONS

In this appendix we give, in integral form, the
dependent part of the contributions proportional to
(f~J~& ~i ) arising from Figs. 1 and 2. The q values are
arbitrary but terms proportional to lepton or quark
masses have been neglected (the cancellation of the latter
requires the inclusion of additional diagrams in which un-
physical Higgs scalars are coupled to the external fer-
mions). Extensive use has been made of the Ward identi-
ties associated with the algebra of the electr oweak
currents. The g-dependent parts have been defined so
that they cancel individually for g= 1 ('t Hooft —Feynman
gauge). Defining

2e2

2

d "k
(2m. )" (k —

mar )(k —mir/g)

d "k krak~
—gq~m~2

~ (2~)" (k~ —m~2)(k' —mii, /g)[(k +q)' —mii ]

(g ' —
1)krak s

(2') (k' —m' )(k' —m' /g)[(k +q)' m~] (k+—q) mwC

we obtain
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( lc)=N

(la)= —N A»,
q

(lb)= N— ( —2A&&+28»+q C»),
q

1 1

~ [q ( —A»+28»+q C»)+(q —mz)( —A»+2B»)],2 2 2

q
—mz q

(2a) = —N

(2b) = N—
1

2 ~~a
q

—mz
1

, ( 2A„—+2m»+q C»),2

Ulz

(2c)=N C» .

APPENDIX B: HADRONIC VACUUM-POLARIZATION
UNCERTAINTIES

There are computational uncertainties in the hadronic
loop corrections to y, 8' and Z propagators as well as
y-Z mixing. They stem from low-frequency contribu-
tions where QCD perturbation theory is not applicable
and present ignorance regarding the value of the top-
quark mass m, . The latter is presumably temporary,
since we anticipate m, will be determined in the not too
distant future. Once m, is known, the top-quark contri-
bution to loop effects will be reliably known (provided m,
is not so large as to invalidate perturbation theory). The
dependence of b' '(0) on m, is illustrated in Table I.
Low-frequency hadronic loop effects are another matter.
There, we are fortunate that they can be related to mea-
sured cross sections, cr(e e ~hadrons), via dispersion
relations. One finds, in fact, that existing data provides
quite a precise determination of the low-frequency part
with relatively small uncertainties. In this appendix we

( v. ;1)
update the hadronic corrections to )4),

' '(0) and ~ "' (0)
(Ref. 17) by employing the results of a detailed phenome-
nological analysis of e +e ~hadrons data by Jeger-
lehner. "

The hadronic radiative corrections in Eq. (7) at q =0
can be parametrized by

[b,ir(()(mz ) shvrg)(mz )]-
s

b, '"'(0)„,d

CX

2%$

2 16$
3 9

ln
5+-

mz 6

3c inc 8' +G( 2~ 2)
a(m )

2$ 2 ITS

The left-hand sides in the above equation indicate the
appropriate diagrams in Figs. 1 and 2. In the renormal-
ization scheme of Ref. 12, the counterterms appearing in
Figs. 1(d)—1(f}are gauge invariant so that these diagrams
are g independent. As expected the sum of (la) through
(2c) vanishes. In particular we note that the finite contri-
bution (2c) from the W-W box diagram is needed to
cancel an identical term from the vvy proper vertex
(lb). In the limit q~O, (2c) coincides with the last two
terms of Eq. (4) when the substitution J' '

2~2 sin Oi),(Jr ) is made.

2 g2
2} mz ) + ~ dsR(s)

12ir 4~' &') s (s —mz }

0 (e+e —+hadrons)R s-: + — +cr(e+e ~@+)M )

(B3}

with the understanding that weak-neutral-current contri-
butions to R (s) at large s have been subtracted. Employ-
ing existing measurements of R (s) up to E) =40 GeV
and computing R (s) perturbatively at higher energies,
Jegerlehner found, for mz =91.84 GeV (corresponding to
sin 8)i,=0.23 and m, =45 GeV),

b, m. |'5)( mz~ ) = —0.3108+0.0028+0.0075, (B4)

where the errors are statistical and systematic, respective-
ly. i)Ve note that b, irI'sr)(mz ) can be used to obtain the ha-
dronic corrections to the 8 and Z mass shift parameter

r d , , b 4m'abmI's)(. m. z) =2.85%.
In the case of b, ir r(mz), the direct experimental ana-

log of R (s) does not exist. However, assuming SU(3)s,„«
symmetry for u, d, and s and an Okubo-Zweig-Iizuka
(OZI) suppression rule for heavy flavors c and b, a stra-
tegy already suggested in Sec. III C of Ref. 9, Jegerlehner
has shown that

bm3$(m )= —'bnrr(mz)„„, +—', barr(mz),

+ 43~irrr(mz }b

I

where G(m, /mz) is a complicated function of the top-
quark mass that has been normalized such that 6 (0)=0
and a(m)i, )=—„', is the running fine-structure constant.
The first term represents contributions from the 6ve
known quark flavors u, d, s, c, and b to y-Z mixing. We
have followed the notation of Jegerlehner where

(q„q„—q g„)m'r(q )

i Id—x e'~' (O~T~[J„'(x)Jr(0)]~0),
(82)

b ~'r(mz )
—=Reir'r(mz ) —n'~(0),

with J~ the hadronic component of the electromagnetic
current and J„ the SU(2)L hadronic component of the
weak neutral current. [In Ref. 17 a similar notation was
used: m (q )=—ir r(q ) —s irrr(q ) was denoted as
ft rz(q ).]

b, irI'sr)(mz ) can be determined by employing the disper-
sion relation
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where the subscripts denote the different Aavor contribu-
tions. Dividing R (s) into its distinct fiavor contributions
then gives, via (85),

Am(f)( m z ) = —0. 1481+0.0013+0.0035 .

The errors in (86) and (84) are of course highly correlat-
ed, since they were obtained from the same data. There-
fore, one finds (for s =0.23)

Air(q~)(mz) —s birI'~r)(mz)= 0—07.66+0 00.19

for the combination relevant in (Bl). Combining that re-
sult with G(m, /mz) =3.83 X 10 for m, =45 GeV,
s =0.23, and the other terms in (Bl) then leads to

6"(0)i„q„„;,= —0.0195+0.0008

(m, =45 GeV) . (88)

That value represents an approximate shift of—2. 7 X 10 when compared with our previous
analysis. ' '

Of course, the error in (88) is only experimental. In or-
der to estimate the theoretical error induced in the
analysis of the u, d, s, contributions by the violation of
SU(3)s„„symmetry we may write in Eq. (82) for i =3

(89)

where the subscripts indicate that we are only consider-
ing here the contribution of the u, d, s fiavors,
Jz =up&u +dyzd +sy&s is a SU(3) singlet, and the el-
lipsis stands for axial-vector terms which give vanishing

contributions to (82). The first term in (89) corresponds
to the first term in (85). The eft'ect of the symmetry
breaking J„may be estimated in perturbation theory
with effective constituent masses m„=m&&m„ leading
to an additional contribution of ln( m, /m„) /727r to
b,m r( mz ). For m, /m„& 4 this amounts to 5 2.0 X 10
and correspondingly to an error of ~ 8X 10 in (88). In
addition, there are uncertainties associated with QCD
perturbation theory for the high-frequency contributions
and higher-order effects that have not been calculated.
Given those uncertainties, we deem it prudent at this
time to increase the total uncertainty in 6' '(0) (for fixed
m, and sin Oii ) to +0.0020. Combining the results of
this appendix with Eq. (7) we find in the case of v„, for
m, =45 GeV, mH = 100 GeV, and s =0.23:

5' '(0) =0.0033+0.0020

(v„; m, =45 GeV; mH = 100 GeV) (810)

and, correspondingly, x ~' (())= 1 —g' '(0) —g(~) (1)

=0.9925+0.0020. Even with our increase in the errors,
the uncertainty in v "' (0) is relatively small and well
below the precision of ongoing or contemplated experi-
ments.

We note that the above analysis can be carried over to
radiative corrections to atomic parity violation. The
value of xpv(0) previously employed' ' is shifted up by
=0.002 and the uncertainty is estimated to be +0.0020.
(Experiments with cesium are aiming for a few percent
uncertainty in the determination of sin Oii, .)
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