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We consider a recently proposed extended model of inAation which improves upon the original

old inflation scenario by achieving a graceful exit from the false-vacuum phase. In this paper ex-

tended inflation is generalized to include a potential V(P) for the Brans-Dicke-type field P. We find

that whereas a graceful exit can still be had, the inclusion of a potential places constraints on the

percolation time scale for exiting the inflationary phase. Additional constraints on V(P) and the

false-vacuum energy density pF from density and gravitational-wave perturbations are discussed.

For initially small values of (t the false vacuum undergoes power-law inflation, while for initially

large values of P the expansion is exponential. Within true-vacuum regions slow-rolling inflation

can occur. As a result, this model generically leads to multiple episodes of inAation. We discuss the

significance these multiple episodes of inflation may have on the formation of large-scale structure

and the production of voids.

I. INTRODUCTION

Inflation has proven to be so natural an outcome of the
application of particle physics to cosmology that
inAationary scenarios have been raised to the level of a
paradigm for any complete model of the early Universe. '

In model building, one generically employs some varia-
tion on "new" inAation, wherein a scalar field is dis-
placed from the minimum of its potential and slowly
evolves to that minimum. During this slow-rolling evolu-
tion, the (nearly) constant potential energy density of the
field dominates the expansion rate of the Universe and
the scale factor grows exponentially. The Universe exe-
cutes a "graceful exit" from inAation when the scalar
field begins to oscillate about its minimum and finally de-
cays into radiation, reheating the Universe. It is straight-
forward in these scenarios to show how an initially
smooth region of size Ho ' can be made large enough to
encompass the entire observable Universe.

In contrast, Guth's original inAation scenario assumed
that the Universe undergoes a strongly first-order phase
transition with the false metastable vacuum dominated
by the constant energy-density difference between the
false and true vacua. As with new inAation, this constant
energy density implies that the scale factor for the false
vacuum will exponentially grow. The subsequent nu-
cleation and collision of true-vacuum bubbles was sug-,

gested as a means by which a region could be formed to
contain the observed Universe. However, as is well

known, the rate of nucleation of true-vacuum bubbles
cannot keep up with the exponential growth of the false
vacuum so that for old inflation there is no graceful tran-
sition to a radiation-dominated universe.

Recently, the old inAation scenario has been recon-
sidered by La and Steinhardt in the context of a Brans-

Dicke theory of gravity. They note that if the Universe
were to be in a metastable false-vacuum state with energy
density pF, provided by additional physics, and were to
undergo a strongly first-order phase transition, the scale
factor in the false vacuum would not grow exponentially
but rather as a (t) ~ t"+'~ (for t sufhciently large) where
co is the Brans-Dicke parameter. Since ~ & 500 for
Brans-Dicke theory not to conAict with experiment, the
scale factor undergoes strong power-law growth. Since
p(t)=exp[ —g(t —tb)] is the probability that if bubble
nucleation starts at tb, at time t a point will still be in the
false vacuum, a comparison of the power-law growth in
the volume of the false vacuum to p (t) shows that for
gt ) 1 where g is a parameter depending on the ratio of
the bubble nucleation rate to the expansion rate of the
Universe, p (t) is decreasing much more rapidly than the
volume is increasing. The true vacuum percolates the
Universe.

The important new ingredient that "extended
inAation" adds to the original inAation scenario is an
inAationary epoch "soft" enough to allow percolation.
For the Brans-Dicke theory, extended inAation arises be-
cause there is a massless scalar field [with dimensions of
(mass) ] in the theory which regulates the value of the
effective gravitational constant, G,z=+, and which
evolves during inflation. Since 0= ( G,ttpF )

' and
+=p+t /~, H decreases inversely with time, H =cut
Thus the scale factor grows as a large power of
t [a (t)-t ]. Without a potential to provide a fixed vacu-
um expectation value for P, percolation is guaranteed to
occur since the power-law growth of the false vacuum
continues indefinitely while the ratio of the nucleation
rate to the expansion rate increases with time.

Power-law inAation has also been demonstrated for
slow-rolling transitions in induced-gravity theories. In-
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duced gravity bears a strong resemblance to Brans-Dicke
theory though the motivations behind the two are rather
different. Induced gravity is based on the observation in
gauge theories that dimensionful coupling constants
which arise in a low-energy effective theory can be ex-
pressed in terms of vacuum expectation values of scalar
fields. It has been suggested that similarly, gravity arises
as a symmetry-breaking phenomenon induced in an
efFective action derived from some defining action. The
key difference between induced gravity and Brans-13icke
theory is the existence of a potential V(P) for the scalar
field P. Neglecting the potential, the two theories can be
mapped into one another by a simple field redefinition—
since XBD=@R +co(B@) /@, setting 4&=eg /2 and
co=(4c) ' takes XBD~X»=eg R /2 +(BP) /2. The
difference arising from the inclusion of a potential is im-
portant. Because of V(P), at low energies G is strongly
anchored at its presently measured value —for low ener-
gies the theory is identical to general relativity with the
gravitational constant G =(Sn.e'(P) ) '. Gnly at very
high energies does the theory deviate from general rela-
tivity. ' It has been shown in a Ginzburg-Landau model
of induced gravity with V(P)= —,'k&(P —v ), that the
symmetry-breaking transition can be inflationary. In par-
ticular, a slow-rolling transition for P &v, where v is the
vacuum expectation value of P, leads to strong power-law—1

growth, a(t) ~t' ~ where a&&1, while for P) v
("chaotic" inflation" ), the growth is exponential.

In this paper we comment on the consequences to the
extended inflation scenario of including a symmetry-
breaking potential (for global scale invariance) for the P
field. It is our hope that by including a potential we will
uncover effects which have a general applicability to ex-
tended inAation and which do not in general depend upon
the particular choice of potential (see Sec. II). The
specific choice of induced gravity for our analysis allows
us to draw on familiar results concerning inflation in a
particular scalar-tensor theory of gravity. '

In addition to the field P, we introduce a second scalar
field cr whose potential V(P) (see Fig. 1), which we leave
unspecified for now, has a global minimum at o.o and a lo-

FIG. 1. The potential V(o. ) exhibiting a false-vacuum state
at o. =O with vacuum energy pF= V(o. =O) = 8A o'o and a glo-
bal minimum at o =oo.

cal minimum corresponding to a false-vacuum state at
o =0 with energy density pF= V(o =0)=—,'A, Oo. As we
shall see, our results are similar to that for slow-rolling
inflation with induced gravity. For P&(A, pro/A&v )'
=P', using V(P) given above, the growth in the scale fac-
tor is governed by the false-vacuum energy of the o. field
and the Universe undergoes power-law infIation while for

V(P) dominates and the scale factor grows ex-
ponentially. Indeed, in the absence of percolation, the
late-time evolution of P implies that a (r) grows exponen-
tially regardless of the initial value of P (there is a limit-
ing stationary value for P). This places constraints on the
time scale for percolating a true vacuum. If these con-
straints are not satisfied, a second episode of infIation
must (and in this model can) occur.

The paper is arranged as follows. In Sec. II we present
a model for induced gravity plus a scalar field o. whose
potential V(o. ) exhibits a false-vacuum state. We derive
equations of motion for the scale factor a(t) and P and
present approximate analytical solutions to these equa-
tions in the inAationary false-vacuum state. In Sec. III
we discuss the possible scenarios for the infIationary
false-vacuum state and derive constraints on percolation.
Section IV discusses the evolution of the true-vacuum
state and in Sec. V we derive constraints on the model
due to the production of density and gravitational-wave
perturbations. We conclude in Sec. VI with some final
remarks on possible implications of the model, particular-
ly for the formation of large-scale structure and voids.

II. A MODEL FOR INDUCED-GRAVITY EXTENDED
INFLATION

The scenario for extended inAation considered in Ref. 5

involves a scalar-tensor theory of gravity with a potential
V(P) for the scalar field which is identically zero. The
lack of a nontrivial potential is the reason for the well-
known constraints on Brans-Dicke models from present-
day (low-energy) observations. If V(P) is not identically
zero, these constraints may not be relevant to low-energy
physics. At the classical level, a globally scale-invariant
theory described by the Lagrangian X,o =eP R /2
+(BP) /2 allows a potential of the form V(P)-P . The
renormalized one-loop correction to this potential' in-
troduces a mass scale into the theory thereby breaking
the global scale invariance by allowing P to have a
nonzero vacuum expectation value. The behavior of the
theory with this Coleman-Weinberg potential in curved
space V= —,'k&P Iin[max(H, Q )/v j ——,

' J+ —,'A, &v is
similar to that with the phenomenological Ginzburg-
Landau potential mentioned previously both for the
slow-rolling as well as for the present extended infIation
scenario. Models with other potentials can be envisioned.
A monotonic potential which asymptotically approaches
zero from above would clearly not affect the scenario of
Ref. 5 so long as pF is sufficiently large compared to
V(P). This is due to the fact that the evolution of P will
always be dominated by pF in the false o vacuum. Of
course the steepness of such a potential would be limited
in the true vacuum by the magnitude of 6/G. In gen-
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eral, though a potential with minima (of which there
could be several, not all degenerate) at nonzero values of
P and for which V(P) )pF over some range of P would
affect the evolution of the false vacuum.

A particularly simple model which captures some of
these ideas is based on the action'

s = fd'xv' g—[ —,'~—y'z ,'g—„,—a~pa y ,'x—,(y—' v')—'
—

—,'g„.a~aa.a —v(a )],
where e, A,

&
are dimensionless coupling constants and

v =e ' is the vacuum expectation value of P which we
consider to be a fundamental scalar field. In this model,
the effective value of the gravitational constant,
G,s=(8meg )

' can vary at early times. Depending on
the initial value of P, G,s can be either greater or less
than the value measured today, G~ =(8')

Restricting to a Robertson-%'alker metric with scale
factor a (t) which assures that P is spatially homogene-
ous, the Ricci scalar R = 6[a(—t)/a (t)+a(t) /a (t)
+k/a (t) ] with k the curvature signature, overdots
denote derivatives with respect to time, and
V' —g =a (t) r sin8/(I kr )' —. Substituting into the
action and varying, we obtain equations of motion for
a (t), P, and o:

H' 1+ ~/~ = ', [ ,'j' +V(y)-+-,' 'a+V( a)]
3eg'

—k/a (t)

~
2 1 o. , 4

P+3HQ+ +
I+6m

+ V'(P) ——[ V(P)+ V(o )]

(2b)

V($)

FIG. 2. The potential V(P)=(A&/8)(P —v ) with
symmetry-breaking minimum at P= v.

and (2b) reduce to

H = [V(P)+V(a)]—k/a(t)1

3eg

and

(4a)

3HQ= —[V(P)+ V(o')] —V'(P)1 4
I+6m (4b)

In terms of Eq. (4b), the potential P evolves on is

U((b) =—„'X~v'P' ——,'A, a(~)in/ .

U(P) is shown in Fig. 3. For small values of P, the evolu-
tion of the field is controlled by the V(o =0)/P term (the
logarithm term) while for large values of P the quadratic
term dominates. This potential has a minimum at

1/2 1/24ao ) V(a=O)—1

V(/=0)

d+3Ho + V'(o ) =0, (2c) Comparing p' to v we see that p') v so long as we impose

—,'P'«V(P)+ V(o-),

~P'/P~ «3HQ,
P «3HP .

(3a)

(3b)

(3c)

In the regime where Eqs. (3a)—(3c) are valid, Eqs. (2a)

where H =a(t)la (t) is the expansion rate, primes denote
derivatives with respect to the P and a fields in Eqs. (2b)
and (2c), respectively, and V(P)= —,'A&(P —v ) . V($) is
shown in Fig. 2. Comparing Eqs. (2b) and (2c), the equa-
tion of motion for P differs from the usual one by the
terms P /P and [a /P (4/P)[v(P)+ —V(o )]I/(I+6e)
and the factor I/(I+6m). Since (3eg ) '=(8mG, s/3)
the equation for H differs from the standard one by the
additional term (2$/$ )H.

In the false-vacuum state, a =0, o. =0, V(o. =0)
=

—,'A. oo, and we assume A, ao) A&v so that as $~0,
V(cr=0) dominates the energy density. We will make
the following assumptions that the evolution of P is "fric-
tion dominated" (similar to those imposed in slow-rolling
infiation) and establish their validity shortly:

Case II

FIR. 3. The potential U(P) = —'A&v P ——'A, o tin(P) with
minimum P'={A, cro/A&v )'~ and V(P')=0. The arbitrary ini-
tial value of $,$0, is displayed both for P &P' and for P) P'.
These regions correspond to cases I and II, respectively. P,„d is
the value of P at the end of percolation and may have any value
from Po to P' when P & P'.
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p =$0—( —
23 A, &~ )

'/ v t .

Since

(7b)

H = (v2 y2)2+ ~ 4

3eg2

for P & u (P', as P evolves from P =$0 to P the scale fac-
tor grows like

(i+(2.4v )/2(2. 0))/4

X exp ($40 —P4)
32 ga4

A,cro) A, &u . Note that when P=P', there is a constant
energy density

p(Q') = V(P')+ V(a ) = —,'kg[(P' —u')'+v2$'] . (6)

As a result, if P were to come to rest at P', the false-
vacuum state would grow exponentially.

Solutions to Eqs. (4a) and (4b) are straightforward to
obtain [here and in the rest of the paper we will assume
V(o =0) & V(/=0) so that A, oo) A&u and k =0]. If $0
is the initial value of P at t =0 and Po & P' then

p=pO+( 23K, e—)' O tO,

while, for Po & P',

A,~~oa'/a =exp, (t' t —
)

12

If P approaches P' from the right,

a'/a =exp( —,',
~

t' —t
~

) .

In the next section we will consider in more detail the
evolution of P in the false o vacuum.

III. PHYSICS OF THE FALSE o. VACUUM:
INFLATION AND PERCOLATION

Our discussion in this section will divide neatly into
"prenucleation" and "postnucleation" physics corre-
sponding to false and true o.-vacuum physics. We begin
erst by enumerating the "prenucleation" scenarios.

Case I. P&P', ~P
—P'~)e' P'. Here the expansion

rate is dominated by the false-vacuum energy of o.. First,
consider Po-P. As we have pointed out, here the expan-
sion is exponential. Once $0 & ( —', A, e)'/ crot, the scale fac-
tor grows as a power law. In particular, in the region
$0 «P «P', the scale factor grows as

[( 2&g 4)1/2 jy ]e /4te /4

so that a (t) grows as a strong power of t The. total time
required for P to evolve from Po to P' is

t'=( —'A, u e)T

U+ (p2 p2)
~a~o

In this time the scale factor grows by

in[a (t') lao] =—,'e '[ln(P'/Po) —
—,
' ] . (13)

—1

=(Pjgo)' / exp (Po —P )

ln(a'/ao) = 4'e 'In(P' /$0)+ —
8i e '($0 P' —)jP'—(9b)

where a'—=a (P=P'). When P) P', H =(A& /24')' P so
that

4
' 1/2

a (t) jao =—1 ~oo e
(00—0 )

'

A, ~u4
L

=exp[-,'(40 —4')] . (10)

Returning to the assumptions in Eqs. (3a)—(3c), it is
straightforward to show that our analysis is consistent for

When P=P'))v and ~P P'~ &e' P', H-(—X o'o j
24)' Pjg' (using u =e '/ ). In this regime, if P~P'
from the left of P',

The combination of power-law and exponential behaviors
of a (t) is a direct consequence of the variable dependence
of H on P. For P=Po(((v, P'), while Po&( —', A, e)'/ o.ot,
the scale factor behaves as in[a (t)jao] —[V(o =0)/
3ego]'/ t, so in this region one recovers the exponential
solution discussed by La and Steinhardt. Starting from
some initial value $0 « u for the P field, the total increase
in the size of the scale factor as P evolves from Po to {()' is

a(t) jao=exp
1/2

24
6 1/ 2y— (14)

The total time for evolving from /=$0 to p= p' is

t'=( —'A, e) ' —1
po

„2 (15)

Clearly, t' can be made arbitrarily large by suitable
choice of $0.

If percolation does not occur before t' in case I, or for
t ) t' in case II, we must consider the additional evolu-
tion for P in the false o vacuum.

Case III.
=e' P', P will begin to oscillate about P' with frequency
m~&=(3 A&)' u wh,ere m~& is the mass of the P particle in

the false vacuum at P =P'. In a complete theory, one
would expect couplings of P to other fields. The rate for
P to decay to another state I (with mass «m&) is
I

& z&=g m&, where g is the re1evant coupling. '5 The
decay lifetime is then r&=(g m~&) '=[(3k&/4)'/2g2v]
In general, if ~& is the lifetime of the decay channel with
the largest branching ratio, then P will oscillate about P'

Case II. P) P', ~P
—P'~ & e' P'. Here the expansion

rate is dominated by the potential V(P). During the time
that /=$0)&P', Eq. (10) implies that the scale factor
grows exponentially:
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Arp

24@

(16)

If P' ))v this reduces to
1/2

from t = t' to t =~&.
The behavior of a (t) will be determined in this regime

by the coherent oscillations of P (see Ref. 16). Matter
domination [where a (t) cc t ~ ] occurs if anharmonic
terms in the potential, having magnitude 5, satisfy
5&/, '„where P,'„ is the amplitude of the oscillations.
Strictly speaking, soon after oscillations have begun, such
terms cannot be ignored in our discussion if P') v. In
this case the energy density will in general fall o6' more
rapidly than for a matter-dominated universe, i.e.,
a(t) cct", n )—', . Indeed right after oscillations have be-

gun, if P~P' from values less than P', n -e ' /4, while
for late times, due to damping via expansion, n-3.
Similar behavior for P~P' from P) P' can be expected.
As a result, we will assume that during this epoch the ex-
pansion rate of the false vacuum is "oscillation dominat-
ed" by the P field condensate and grows as a (t) cr t" For.
the sake of discussion n wi11 be assumed to take on values
from n -e '/4 to n ——', . During oscillation domination,
because of damping, n is time dependent and n will be
monotonically decreasing [a (t) will increase less strongly
with time]. However, "matter domination, " n ——,', will

occur only if percolation of a true vacuum takes a
sufficiently long time. Finally, note that since strong
damping of P oscillations would require

g ) (24e) ' P' jv »1, P field oscillations should be
weakly damped.

Case IV. P =P'. If P comes to rest at P' before a grace-
ful exit is achieved, then from Eq. (6),
p(P') =

—,'A, &[(P' —v ) + v P' ], and the false vacuum will

begin to exponentially expand:
1/2

a (t)/a'=exp [ yr2( 1 v 2/yt2)2+v 2]i/2t

p ( t ) =exp — e I'( t t—
b )

4 4

where we have taken I (t)=r to be a constant during
inffation and have dropped terms O(1/e). Percolation
occurs when (64vr/3)e I (t tb )—) 1. This leads to a per-
colation time scale of

(20)

p,„d=pv+( 2Ae)—' ,oat, „d
1/4

12m
—1/4 —1

(21a)

for tend & t' and

end (21b)

for t,„d=t'. If t,„d &t' then nucleation at a sufficiently
rapid rate occurs while P & P',

~ P —P'
~

& e' P' (case I).
Therefore we require

4
12 Pend I

4 ~
4

and we are assuming that inAation is essentially over by
this time. A measure of the nucleation rate to the expan-
sion rate is given by I /H". By Eq. (8), H is not a con-
stant as in the standard inflationary scenario, but rather
depends on P. When P&v &P', H=(A, oo/24eg )'
Since P increases linearly in time I /H grows as
P(t) cct Wh. ile for v «P, 1 /H" decreases as P(t) cct .
It is for this reason that there is a constraint on percola-
tion. In what follows, we will approximate H by
y= (A, era/24eg, „d)'~ choosing P =P,„d, the value of P at
the end of extended inflation, so that a convenient mea-
sure of the nucleation rate to the expansion rate is I /y .
In terms of this, t,„d=[(nA, &roe/27$, „d)r/g ] ' . Set-
ting y,„d=y(t =t,„d ), y at t,„d is

a (t)/a'=exp
24m

=expI [-,' V(cr =0)]'~ t I . (17)

in order for a graceful exit from inflation to occur before
P reaches P'. For case I, the requirement that a (t) )e
by t,„d implies that

t dt"
p(t)=exp —I dt'I (t')a (t') f (18)

Percolation occurs if nucleated bubbles of the true vacu-
um merge to form an infinite connected region. For our
purposes, this will be true if p (t) & 1/e. For case I, when

P &P', Eq. (18) reduces to

Since P') v, the P field will start out on V(P) with $0) v

upon nucleation of a true 0. vacuum bubble.
With this outline of "prenucleation" physics in hand,

we can go on to discuss its implication for the percolation
of a true vacuum. The rate at which true-vacuum bub-
bles are nucleated is governed by I (t) = Ae, the tun-
neling rate per unit time per unit volume, where S is the
Euclidean action and A is O((mass)" )-ao. The proba-
bility that a point p is in the false vacuum at time t given
that bubble nucleation started at tb with rate I (t) is

3

240 & e '[in(p, „d/$0) —
—,
' ] . (23)

In particular, if t,„d =t', 240 & e [1n($'/$0) —
—,
' ]. Clear-

ly, the necessary number of e-folds can easily be met
without strongly constraining any of the parameters in-
volved.

A few remarks are in order concerning Eq. (22). One
should keep in mind that as written, y is a function of
P,„d inasmuch as varying P,„d changes y~P, „d. Thus,
Eqs. (22) and (25) below are (not surprisingly) constraints
on P'. In the limit where P'~Do, V(P)/V(o =0)~0
and Eq. (22) simply requires I /y to be nonzero. This is
just another reflection of the observation that in this limit
percolatiori will occur at some finite time regardless of
the magnitude of I /g . Since P' =e ' V(u =0)/
V(/=0), P' can be made sufficiently large by dialing
down e and/or V(P).

For cases I and III, the total time required to evolve
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from $0 and come to rest at P' is simply

t«, —t'+ s&

(gl/2U) —
1[( 2 e)

—1/2+ ( 3g4) —1/2] (24)

4'�(
)

3 1 3
3 4 2(n +1)

1

3n +1
3 ~ 4 )7 p

and percolation occurs if

243( 1)2 1+ 3
4 2(n +1)

1

3n +1
4

x'

In this case P,„d=g'. When n =e 'l4, (243/16')g e
& I /y, while for ri =

—,', corresponding to matter dom-

ination, (5940/lr)g e &I /y . Since the oscillations of
the P field are damped during expansion, n will monoton-
ically decrease with time and for late times the n-3
should be accurate (though by this time the true vacuum
may have percolated).

For cases II and III, the total time to evolve from Po
and come to rest at P' is

tt t=t'+wp

(gl/2 )
—1 (2 )

—1/29' 0
1 +(3 4) —1/2

3 I

(26)

For g & e, t„,=(AIl U) '( —3e) ', so that the dominant
contribution to the total time is due to the evolution of P
from Po to P'. For g &e, t„,=[(—,'A, &)' U] 'g, and
the dominant contribution to the total time is due to the
oscillation of P about P'. If dominated by evolution from
po to (tl', percolation occurs when Eq. (22) is satisfied,

12 Pend I
X4

'

and P,„d is given by Eq. (21). Oscillation domination im-
plies that [assuming a (t) CC t" and that I (t) is constant in
this regime]

ponential growth phase, an oscillation-dominated
universe has a(t) cct" .Exponential rather than power-
law growth due to an initially large value of P is accept-
able if the Universe enters an oscillation-dominated phase
of expansion for a suKciently long time (long enough to
percolate) while in the cr false vacuum. In fact, if n & 1 in
this phase for a long enough time (so that a =e ), suc-
cessful inflation can be accomplished completely during
oscillation domination.

If the above constraints are satisfied, a sufficiently large
connected region of true vacuum can be formed by the
uniform coalescence of bubbles to encompass the present-
ly observed Universe. The latent heat of the false vacu-
um, which upon nucleation of a single bubble was
transformed to the surface energy density and motion of
the bubble walls is thermalized. If this occurs rapidly
compared to the expansion rate, the percolated region is
reheated to a temperature TRH-pF "=(A, /g)' cro for
0-d & 0' «TRH -p(4')'"=(~y/g)'"[(O' —U')'
+U (t' ]' for P,„d-P'. Limits on TRH are discussed in
Sec. V.

While curvature terms with kAO will be strongly
suppressed after inflation, the fact that P has nonzero ki-
netic energy means that it is possible for II:—p/pc%1. In
the regime Where p &(t' and ~p cd'~ & e' —p' —CaSe I—p
is a constant so if percolation occurs for P & P', from Eq.
(2a) with k =0,

0= (1+20e) l(1+37el3)

up to terms of order e . Substituting e=(4co) ' implied
by the field redefinition @~eP /2, we find
Q=(1+5/co)/(1+37/12'). This is to be compared to
the Brans-Dicke scenario where 0=1+4/3' at the end
of inflation. In the Brans-Dicke scenario, the deviation
from unity of 0 is expected to persist to the present
epoch due to the constant evolution of the Brans-Dicke
scalar. For a matter-dominated universe, the value today
is 0=1+5/6' while in the induced gravity scenario the
fact that today P =U means that Q = 1.

Finally, we note that if none of the percolation con-
straints discussed above are satisfied, then P will ultimate-
ly come to rest at P= P' and case IV tells us that the false
o. vacuum will begin to exponentially expand. In order to
recover from this, sufficient inflation must occur within a
single bubble.

Since for case II the expansion is dominated by the ener-

gy density of P and not the false vacuum of cr, the ques-
tion of percolation does not become important until oscil-
lations around P' set in —i.e., when the cr false vacuum
becomes important. As a result, percolation occurs if Eq.
(25) is satisfied:

243 p 1 + 3

4 2(n +1)
1

3n +1
3

n +3
4 r

Xg E'
4

( 4x
Here we are using the fact that for times well after the ex-

IV. PHYSICS OF THE TRUE o VACUUM

In this section, we discuss briefly some aspects of
"postnucleation" physics. We consider a simplified case
in order to gain some insight into the behavior of the (tl

field inside a true'o. vacuum bubble. In particular, we
wish to point out that there can be additional inflation
due to a slow-rollover transition for the P field within a
given bubble. This would be especially relevant if the
false vacuum fails to percolate, thereby requiring a
second round of inflation. For the present discussion we
will not attempt to find an explicit general-relativistic
solution of the coupled P and cr equations. To simplify
our discussion, we will assume that in the interior of a
bubble of the true vacuum, o. relaxes rapidly to o.=oo
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P, (t)=P„+( ', eA &)'"—v'(t + t„), (27)

where P„ is the initial value of Pb at nucleation time t„
and t ~t„. This leads to the following behavior for the
scale factor when P„&v:

a(t)/ „=[/„+(', k~)' 'v/P„]—' (t t„)'— (28)

where a„=—a (t = t„). The total growth in the scale factor
from P=P„when t =t„ to P=v when t =t, (the time at
which inflation ends) is

compared to the evolution time scale for P on V(P), that
P is sufficient slowly varying spatially well inside the
bubble that such derivatives can be neglected, and for the
moment we put aside the question of the efficiency of
thermalization of bubble-wall energy. Under these as-
sumptions, we reproduce the physics from the standard
induced gravity inflation model within a given bubble.
However bubble nucleation adds some new wrinkles. Be-
cause bubble nucleation occurs at a constant rate I, we
expect different initial values of P in bubbles nucleated at
different times. ' However, since bubbles are nucleated
at different times they will not only have different values
of P within them, they will themselves have a distribution
of sizes with respect to H (which itself depends on P). If
the bubbles are all of the same size, all nucleated at
t=t,„d with P=P,„d within the bubbles, then the
Universe will be homogeneous after percolation. If a siz-
able fraction of bubbles are nucleated early and/or with a
nontrivial distribution in sizes, maintainence of homo-
geneity may be problematical. Still, what might at first
appear to be a possible difficulty for the scenario may in
fact yield some unexpected benefits concerning large-
scale structure. We will return to this question in Sec.
VI. For the present discussion we will make no special
assumption concerning the distribution of bubble sizes or
the initial value of P within them.

In any given bubble, when ~Pb
—

v~
)e' v,

inflating a single bubble if e & —„',[ln(v/P')+ —,'(P'~/v ~

—1)].

V. CONSTRAINTS FROM DENSITY
AND GRAVITATIONAL-WAVE PERTURBATIONS

In the extended inflation scenario we expect density
and gravitational-wave perturbations to be generated by
both the evolution of P and collisions of bubble walls.
For the present discussion we will focus on perturbations
due to the evolution of P in the false vacuum. These will
be the relevant perturbations to consider if the distribu-
tion of bubbles is strongly peaked around small bubbles
(see the end of Sec. VI and Ref. 23). Quantum fluctua-
tions in P produce density fluctuations with amplitude'

(5plp)0=(H'/P) ~p (33)

when they cross inside the horizon during the post-
inAation epoch, ' while gravitational-wave perturbations
produced during inAation have amplitude

12 Gw H /m p ~yi (34)

Density and gravitational-wave perturbations on the
present horizon scale (N =60) were generated during the
prenucleation phase (assuming no inflation with N) 60
occurred in the postnucleation phase) about 60 e-folds
prior to the end of the inAation. Density perturbations
have amplitude

(5plp)H age 4N 4iv [~$4N(v IPN 1) +~aa U] .

(35)

For this to be consistent with both the microwave back-
ground and galaxy formation, (5plp)H=5X10 with
6~1. The amplitude for gravitational-wave perturba-
tions is

in[a (t, )/a„] = 4e '[ln(v IP„)——,
' ], (29)

t =( ,'eA, &)
'

v (v ——P„) . (30)

which holds if P„&v, ~Pi,
—v

~

& e' v. The total time
needed to evolve from P„ to v is 4N V

p/2 p2

hGW= 0 04e in

2 2 1/2
U—1 +
4N

(36)

This is essentially the same as Eq. (12), the time to evolve
from Po to P'. In that case P is greater. When P„&v,

a (t)/a„=exp[(A~/24)' e '(P„/v)t],
so that

(31)

in[a (t, )la„]=—,'e '[(P„lv —1)—21n(g„ lv)] . (32)

Clearly, by inspection of Eqs. (29) and (32), if e and P„
are sufficiently small, a single bubble of true o vacuum
can inflate via a slow-rolling transition of P, controlled in
this case by V(P), to encompass the observed Universe.
This will be the case if e &

—,
' [ln(v IP„)——,

' ],
,40[in(v/P„)+ —,'(P„/v —1)] for P„&v, P„&v, respec-
tively. The. fact that P') v implies that the Universe can
recover from case IV, where P comes to rest at P', by

For gravitational-wave perturbations to be consistent
with the quadrupole anisotropy of the microwave back-
ground, h~~ ~3X10 on the present horizon scale.
The value of P =P&, N e-folds before the end of inflation
can be obtained by formally solving Eq. (9b) using P,„d in-
stead of P':

N =—'e 'in(g, „d/P~)+ —,'e '(/tv —4,„d)/4', „d,

which can be solved in the limiting cases where
e»(4N) ' and e «(4N)

I. e)&(4N) ' —+». Scales of interest were produced
when in the following situations.

(a) P & v & P' and ~ln(P&/P, „d) ~

= 4Ne-
P&=(—3A, e)' oo. In this regime, density perturbations
have the amplitude
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(5 / ) = 0.05~-'"a'"P P H '
P V(y 0)

'2
2—1 +

4N

4N u

pt2 p2
(37)

so that

V(o =0)/P, „d=SX10 e 5 exp[ —2(480@+1)] .

The constraint from gravitational-wave perturbations im-
plies that

V(o =0)/P, „d 7X10 E'/ exp( —480m —1) .

V(0 =0)/P, „d&2X10 ' from the limit on hGw. Using
this, if P,„d-P' then V(/=0) &(4X10' GeV) . We ob-
tain similar results from the density perturbation con-
straint in this regime. On the other hand, when P) P', a
constraint on the false o vacuum energy density is avail-
able: pF & (2 X 10' GeV) . However, if we liberally
choose V(/=0)/V(o =0) &0.1, A,&=75 X 10 ' . When
e«(4N) ', if P evolves from values greater than P',
A,&&55 X 10 ' assuming a= 10 and V(/=0)/V(cr
=0) &0. 1 while pF &(4X10' GeV) . Our results are
consistent with those on pF, p~&(10' GeV), from hGw
for the Brans-Dicke scenario.

P=( —,'A, &e)'/ u . In this regime, density perturbations
have the amplitude

0 p5
—3 2/gl 2/

P P It ' P V(y —P)
2

U
2—1 +

4N

4N u

p/2 p2
(38)

which implies that

A, =2X10 "5 e
V(o =0)

2

In either case, constraining hzw limits the false o. vacu-
um energy density:

pF + X10 '
mp&,

consistent with the density perturbation constraint for

To summarize these results, density and gravitational-
wave perturbations produced by the evolution of P from
values P )P', where V(P) dominates, place constraints on
the self-coupling A.

&
entering into the potential V(P), re-

quiring that A,
&

be small. These constraints are similar to
those found in the standard induced gravity scenario. In
the limit where A,

&
vanishes, we are still left with con-

straints on pz. On the other hand, evolution for P & P'
mainly constrains V(o =0) and V(/=0).

For e ))(4N) ', if P & u & P', e= —,', implies that

while the false o. vacuum energy density is

p~~10 "e 'm4p,

from the gravitational-wave limits.
II. e «(4N) ' ——„',. Scales of interest were produced

when u & p-p' so that p,„d=p' and ~ln(QN/p')
~

=2(Ne)' . When P~P' from values less than P', we
find, from Eq. (37),

p =8X10 ' 5 em, ,

while for P~P' from values greater than P', Eq. (38) im-
plies

'2

A. =4 X 10 e 5 exp[ —8(Ne)' ]
V(d =0)

VI. DISCUSSION AND CONCLUSIONS

In this paper we have considered the effects on the ex-
tended

inflation

scenario of including a symmetry-
breaking potential for the Brans-Dicke field. Potentials
for Brans-Dicke-type fields arise for a number of reasons.
In superstring theories (see Ref. 10) the dilaton field (t)

(which coherently couples to matter) must have some ex-
pectation value due to singularities in the equations.
Quantum mechanically P is a pseudo-Goldstone boson
which cannot have a mass due to supersymmetry. After
supersymmetry breaking, a nontrivial potential can arise.
Furthermore, these theories predict values of the Brans-
Dicke parameter co which vanish, or are at most of order
unity. To avoid convict with experiment nontrivial po-
tentials once again are expected to exist, generated non-
perturbatively.

The existence of a potential for P places constraints on
the percolation time scale for the Universe to transit
from the false-vacuum inAationary phase to the
true-vacuum Robertson-Walker phase. For evolution in
the region P & P', the Universe undergoes power-law—1

infiation [a (t) cc t' / ] and percolation occurs if
(12/m )e(P,„d/P' ) & I /g while in the oscillation-
dominated regime, P,„d=P', a (t) ~ t" and for n =e 'l4,
percolation occurs if (243/16m )g e ' & I /y . When
n =—', , corresponding to matter domination, percolation
occurs if (5,940/m)g e & I /y . Starting with values of P
greater than P', the Universe will undergo exponential
growth and bubble nucleation and percolation will not
occur until the Universe is oscillation dominated with

Since the percolation constraints for fixed I /y
depend upon g and P' =[@ 'V(o =0)/V(/=0)], the
extended inflation scenario can be implemented in the
presence of a potential for the P field if g, e, and
V(/=0)/V(cr =0) are sufficiently small. For example, if
/~2 gravitons, then g =(3/32m)A& and dialing down g
will (all else fixed) increase P'. Additional constraints on
V(P) and pF arise by considering density and
gravitational-wave perturbations produced by the evolu-
tion of P. This will be the dominant source of such per-
turbations if only very small bubbles (compared to the
horizon size) are produced and thermalize.

In the absence of percolation, P=P' and the false o.
vacuum will enter an epoch of exponential inAation from
which it will not be able to recover as a whole. This is
not fatal so long as e&,~, [ln(ulg')+ —,'(P' /u —1)]. In
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this case a single bubble can exponentially grow to en-
compass the entire observable Universe.

In the event that percolation of true 0. vacuum is suc-
cessful, to a first approximation, it should occur rapidly
with the average value of P„-P,„d at the end of the
false-vacuum inAationary epoch. If reheating of the
true-vacuum phase by thermalization of wall energy is
efficient, T~H-p~~ —10' GeV and the P symmetry can
be restored [since V(o =0) & V(/=0)], effectively reset-
ing P and leading to a round of induced gravity inflation
in the percolated region. InQation in the true vacuum
can easily be great enough to make the previous round of
inflation irrelevant [we are assuming that V(/=0) is not
too many orders of magnitude less than V(cr =0)].
Indeed, it is quite possible to have either a mild (N & 60)
or strong (N&60) second episode of inflation. On the
other hand, if reheating is such that TRH
& V(P„)' = V(g,„d)'~, the percolated region will un-
dergo an additional bout of power-law inflation if P & v or
exponential inflation if P & v when

~ P —v
~

& e' v. De-
pending on P,„d this second round of inflation can like-
wise be either mild or strong. In both cases where the
Universe is initially reheated after the first episode of
inflation, after the second episode of inflation, the
Universe is reheated to a temperature
TRH = [(r~) 'I p)]' =g (A~/e)' 3 X 10' GeV where 'Ty

is the lifetime of P in the true vacuum. This temperature
must be high enough so that both nucleosynthesis and
baryogenesis can take place. For example, the maximum
reheat temperature from limits on h &~ when
e » (4N) ', with evolution in the region P & P and
P,„d-P', g =1 is [p&(P,„d)]'~ =5X10' GeV. This is
sufficient for baryogenesis; however it is not generic and
we would expect in general a lower TRH (see Refs. 8 and
15).

Given that our model undergoes multiple episodes of
inflation, it is intriguing to consider its possible conse-
quences for the formation of large-scale structure. In
Sec. V we discussed the generation of density perturba-
tions in the false vacuum. Density perturbations will also
be generated within the percolated region as P evolves
there. These multiple episodes of inflation will in general
lead to different spectra of density perturbations which
can have power on different scales. Multiple episodes of
inflation have been invoked in the past ' to solve the
problem that the spectrum of adiabatic density perturba-
tions from inAation has too little power on large scales
once it is normalized to observational data on small
scales. In the "double inflation" scenario, an initial
round of inflation can determine the spectrum on large
scales while a second round of inflation would be
responsible for a sma11-scale structure. The scale
which separates large and small scales is
A,,«d = ( 3 X 10 —3 )Mpc, M„,d = 10 —10' M~. In this
approach one requires an amplitude for large-scale Auc-
tuations of order 10 —10, corresponding to 5-0. 1 —1

in Sec. V. While on small scales, the amplitude of pertur-
bations is then -0.01—0. 1 which can result in the pro-
duction of primordial black holes, early structure forma-
tion, and a host of other exotic phenomena. The
second episode of inAation must last 40—50 e-folds which
is possible if e=(1/4N)[ln(v/P, „d)——,'], (1/4N)[ln(v/

+—(0 „d/v —1)] for 0 d v %md&v respec vely
and X =40—50. One particularly interesting variant on
this model involves the production of the recently ob-
served bubblelike structures in the distribution of galax-
ies. In our scenario, there is an initial episode of
power-law (case I P & P') or exponential (case II P & P')
inflation which smoothes out the Universe over large
scales ( »A, ,«d). In case I percolation can occur prior to
P=P' while for case II percolation occurs only after os-
cillation domination. For either scenario, bubble nu-
cleation occurs over a finite time with P„Av and slow-
rolling transitions will take place within these bubbles (in
particular P„will depend upon when a particular bubble
is nucleated). On scales -A,„,d, there would be density
perturbations of order unity which may lead to bubble-
like structures in the present Universe of order
(10—30)h ' Mpc. The appearance of a voidlike struc-
ture would depend upon the bubble distribution function.
If it is too sharply peaked around many small bubbles
(compared to H) the Universe would appear essentially
homogenous and any significant density perturbations
will be due to the evolution of P. If it allows too many
large bubbles, unacceptable inhomogeneities would re-
sult. Since H is P dependent and therefore changes in
time as P evolves, the distribution of bubbles with respect
to H from the beginning to the end of the false cr vacuum
inAationary epoch may be such as to yield a distribution
of a sufficient number of large bubbles significant enough
to generate the observed voids yet not so large or so
many as to produce unacceptable inhomogeneities.

Since completing this work we have learned that La
and Steinhardt have investigated bubble percolation in
extended inflation in quantitative detail and have shown
that the bubble distribution function can admit a safe (so
as not to distort the microwave background) but non-
negligible number of large bubbles. The bubble distribu-
tion function is not flat (though the exponent of the dis-
tribution function still needs to be accurately deter-
mined). They suggest extended inflation may generate a
bubble distribution which can account for the large-scale
void structure and/or provide new seeds for galaxy for-
mation.
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