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The angular momentum of the Earth produces gravitomagnetic components of the Riemann cur-
vature tensor, which are of the order of 10 !° of the Newtonian tidal terms arising from the mass of
the Earth. These components could be detected in principle by sensitive superconducting gravity
gradiometers currently under development. We lay out the theoretical principles of such an experi-
ment by using the parametrized post-Newtonian formalism to derive the locally measured Riemann
tensor in an orbiting proper reference frame, in a class of metric theories of gravity that includes
general relativity. A gradiometer assembly consisting of three gradiometers with axes at mutually
right angles measures three diagonal components of a 3 X3 “tidal tensor,” related to the Riemann
tensor. We find that, by choosing a particular assembly orientation relative to the orbit and taking a
sum and difference of two of the three gradiometer outputs, one can isolate the gravitomagnetic rel-
ativistic effect from the large Newtonian background.

I. INTRODUCTION AND SUMMARY

According to general relativity, moving matter pro-
duces a gravitational field that is similar in many ways to
the magnetic field produced by moving charges. On one
level, this phenomenon is simply a consequence of the
fact that general relativity is compatible with Lorentz in-
variance (at least locally), just as are Maxwell’s equations.
On a more concrete level, this phenomenon can be seen
directly in the weak-field, slow-motion limit of general re-
lativity, where the field equations.can be written approxi-
mately in the form (see, for example, Ref. 1)

V-E, = —4np, VXEgz—GHg/at R
V-H, =0, VXng—161rpv+aEg/8t R

(1.1)

where p is the matter density and v the velocity, ¢ =G
=1, and where

E,=—V$—3A/d:, H,=VXA. (1.2)

The ‘““potentials” ¢ and A are related to the spacetime
metric g, by

¢~ —Lgo+1), 4;=gy - (1.3)
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The field E, is sometimes called the ‘“gravitoelectric”
field, and H, is called the “gravitomagnetic” field. The
equations of motion can be written in a form that approx-
imately parallels the Lorentz force equation, although
there are additional terms. Some of these terms come
from the spatial part of the metric g;;, which has no
counterpart in electromagnetism. It should be kept in
mind that this is only an approximation to general rela-
tivity, and is valid only in a specific coordinate system.

Because of the similarity between these equations and
those of electromagnetism, one can use ‘“lines of force,”
“right-hand rules,” and so on, to determine qualitatively
the fields of various source configurations and the forces
these fields produce on matter, just as in electromagne-
tism.

The gravitoelectric field corresponds at lowest order to
the Newtonian gravitational acceleration, and is well test-
ed experimentally (fifth and sixth forces notwithstanding),
as are many of the so-called ‘“post-Newtonian” correc-
tions predicted by general relativity.?

For a rotating body, such as the Earth, the gravi-
tomagnetic field looks just like the magnetic dipole field
of a rotating charged sphere. If one places a spinning ob-
ject, such as a gyroscope, in this field it will precess, just
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as will a current loop in a magnetic field. This
phenomenon is usually called the ‘“dragging of inertial
frames,” since one usually defines a local, “nonrotating,”
inertial frame in relativity to be a freely falling frame
whose spatial axes are attached to gyroscopes. It is also
called the “Lense-Thirring effect,” after the two scientists
who first studied its consequence for celestial mechanics
in 1918.3 The importance of this effect in astrophysics
has been emphasized by some who claim that the forces
associated with the gravitomagnetic field around rotating
supermassive black holes may play a role in the forma-
tion of jets in quasars and other systems.* (%)

Alternative metric theories of gravitation also predict
the existence of the gravitomagnetic field, albeit possibly
with a different numerical size. Although several solar-
system tests have tightly constrained the range of viable
numerical coefficients for the gravitomagnetic field, these
tests involved verification of Lorentz invariance in gravi-
tational interactions, through the absence of ‘“preferred-
frame effects.”® To date, the gravitomagnetic field itself
has not been measured or detected.

One effort to attempt to detect the gravitomagnetic
field has been continuing since the early 1960s: the Stan-
ford Gyroscope Experiment, or in NASA terminology,
Gravity Probe B (GP-B). (Gravity Probe A was a 1976
rocket gravitational red-shift experiment.) In this experi-
ment, a set of four superconducting-niobium-coated
spherical quartz gyroscopes will be flown in a low Earth
polar orbit, and the precession of the gyroscopes relative
to the distant stars will be measured. The predicted effect
is about 42 milliarcseconds per year, and the accuracy
goal of the experiment is about 2 milliarcseconds per
year. Current plans call for a shuttle-launched experi-
ment around 1994. For a recent overview of this experi-
ment, see Ref. 6.

Other proposals have been made in recent years to look
for this effect by alternative means. One proposal is to
study the precession of the plane of oscillation of a
Foucault pendulum at the south pole;” the pendulum
must be placed at the south pole to reduce to a control-
lable level the natural rotation of the pendulum plane
caused by the rotation of the direction of the vertical.
Another is to measure the relative precession of the line
of nodes of a pair of satellites with supplementary inclina-
tion angles;® the inclinations must be supplementary in
order to cancel the dominant nodal precession caused by
the Earth’s Newtonian gravitational multipole moments.
None of these proposals has come to fruition yet.

The recent development of extremely precise, super-
conducting gravity gradiometers’ offers a potentially
promising means of detecting the gravitomagnetic field of
the Earth. A gravity gradiometer measures the local gra-
dient of the gravitational force, which corresponds to the
tidal gravitational force. In relativistic language, the ti-
dal force is proportional to the Riemann curvature tensor
of spacetime. For a gradiometer at rest, the tidal force
comes from the Newtonian potential and its post-
Newtonian corrections, in other words, from the gravi-
toelectric field (there are also contributions from the spa-
tial part of the metric). However, for a gradiometer in
orbit, there is an additional contribution to the tidal force
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from the product of the orbital velocity and the Riemann
tensor component produced by the gravitomagnetic field
(in the electromagnetic analogy, these forces would be
gradients of the magnetic Lorentz force). The existence
of this effect was first pointed out and estimated by Bra-
ginsky and Polnarev,'® and was later elaborated theoreti-
cally by Mashhoon and Theiss.!! For a low Earth orbit,
this force is approximately 107! of the Newtonian tidal
term. Superconducting gravity gradiometers are now un-
der development that can measure the tidal force to
10~ !2 of the Newtonian value. This makes the detection
of the gravitomagnetic field of the Earth possible, at least
in principle.

One of the immediate questions is whether one can
detect the small gravitomagnetic term buried beneath the
enormous (10'° times larger) Newtonian signal. Our ini-
tial results show that this is possible in principle. The
gradiometers under development actually consist of an
array of three gradiometers, whose axes are at mutually
right angles, and as a result, they measure three orthogo-
nal components of the tidal gravitational force. We have
found that, if the gradiometers are oriented in such a way
that two of the axes are at angles of 45° relative to the or-
bital plane, then, when the difference between the outputs
of the two arms is taken, the Newtonian and post-
Newtonian gravitoelectric terms cancel exactly, leaving
the gravitomagnetic term isolated.

Specifically, we consider a three-axis gradiometer
whose axes are described by mutually orthogonal unit
basis vectors P, G, and T. The basis is parallel transport-
ed, in other words, the axes are assumed to be tied to
gyroscopes. A test particle located a distance / from the
origin along the P axis, constrained to move in the P
direction, experiences an acceleration in the P direction
given by

&= —IKy,

55 (1.4)

where Kﬁﬁ is the P p-diagonal component of the “tidal
matrix”’

ERﬁTG]’ , (1.5)

where Rj;47 are components of the Riemann curvature
tensor on the basis ’é}, with the “time” basis four-vector
ey, given by the four-velocity u of the frame. Equation
(1.4) comes from the equation of geodesic deviation.

We calculate the components R 6103 using the
parametrized post-Newtonian (PPN) formalism,'? which
treats the post-Newtonian limit of a broad class of metric
theories of gravity, including general relativity, in terms
of a set of dimensionless parameters whose values vary
from theory to theory. We assume that the Earth is
spherical, with asymptotically measured mass M and an-
gular momentum J. At the moment of the observation,
the orbit is described by the instantaneous Keplerian or-
bit elements: eccentricity e =0, semimajor axis a, in-
clination relative to the Earth’s equator i, and angle of
nodes 1=0. The orientation of the three-axis gradiome-
ter is as follows (see Fig. 1): the T axis lies in the orbital
plane, an angle 7/2—1, from the nodal direction; the p
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FIG. 1. Orientation of a three-axis gradiometer relative to the orbital plane. The T axis is in the orbital plane, at an angle 7/2—W¥,
from the line of nodes of the orbit. The orthogonal axes P and q are, respectively, 45° above and below the plane. The orbital phase
¥ determines the angle between the radial direction and the line of nodes.

and q axes lie, respectively, 45° above and below the or-
bital plane. The angle 9, is a constant, representing the
arbitrary initial orientation of the gradiometer about an
axis normal to the orbit, determined when the gradiome-
ter is at the line of nodes. Under these assumptions, the
components K?j can be written as the sum of three tidal
matrices, a Newtonian term K{V} a post-Newtonian gravi-
toelectric term K;EA. and the post-Newtonian gravitomag-
netic term K%! In the chosen orientation, it turns out
that the pp and G components of the Newtonian and
gravitoelectric tidal matrices are equal, in other words,

N —p N — 3 — T
K =Ky, =(M/4a*)(1—3cos29) , (1.6a)
K§ﬁ=KaEa=(M2/2a4)(A +C+3Bcos2yp), (1.6b)

while, for the gravitomagnetic tidal matrix, these com-
ponents are not equal. In fact,

3AJv —

KM =— 22" 1c0si(1—cos2d)

PP a° {zcosi ¥
—sini[2sin(2¢+4y) +sinygy]} ,  (1.7a)

Kg’a=—§é{—v{%cosi(l—cos2@
+sini[2sin(2¢+ ) +sinyy]} ,  (1.7b)

where ¢ is the orbital phase angle at the moment of ob-
servation, and Yy =4 —1),. The coefficients 4, B, C, and A
are given by

A=1(4B+y—5),
B=1(88+7y—9),

(1.8a)
(1.8b)

(1.8¢c)
(1.8d)

C=—28—y+3,
A=14y+4+a)),

where ¥, B, and «; are PPN parameters. In general rela-
tivity (y =B=1, a,;=0), these coefficients take the values
A=C=0 and B=A=1. To the necessary order,
v=(M/a)'”2. The dependence on angles of these com-
ponents can be understood as follows: because of the as-
sumed spherical symmetry of the Earth, the Newtonian
and gravitoelectric terms depend only on the orientation
of the T axis relative to the radial direction, which ac-
cording to Fig. 1 depends only on ¢. However, the gravi-
tomagnetic term depends as well on the angular momen-
tum vector of the Earth, whose orientation relative to the
orbit is determined by the inclination i and the line of
nodes; thus the angle i, of the T axis relative to the nodal
line appears, in addition to .

Now, in a gravity gradiometer, the test mass located
along the P direction is constrained to move in that direc-
tion, and compensating forces are applied in that direc-
tion to prevent or control the actual motion of the mass.
These forces then represent the measured signal. Thus
the three gradiometer signals are proportional to the
three diagonal components of Kﬁ. Thus, by taking sums
and differences of the signals along gradiometers P and g,
we can separate the gravitomagnetic term from the dom-
inant Newtonian term: namely,

+_1
K" =4(Ky+Kq,)
— 2 e
=_1_ﬂ(1__3 cos2¢)+iﬁ-( A +C +3B cos2y)
4 g3 2 q*
_3 A‘{‘U cosi(1—cos2y) , (1.9a)
2 a



2828 BAHRAM MASHHOON, HO JUNG PAIK, AND CLIFFORD M. WILL 39

_ 3 AJU . — ter that is made to rotate at the orbital angular velocity in
. N _ rm s .

K :T(Kﬁﬁ Kaa) at sini[2sin(2¢+ o) +singp] . such a way that it maintains a fixed orientation relative to

(1.9b)

We also consider a gradiometer which rotates as it or-
bits the Earth, with angular velocity w,=d1v/dt about
the normal to the orbital plane. In this case, the T axis
maintains a fixed orientation relative to the radial direc-
tion. We call this an “Earth-pointing” orientation. Be-
cause of the rotation relative to a parallel transported
frame, centrifugal forces will be present, so that the ac-

celeration along the P direction is now given by
&= —IK;5=—1[K;5+ (@) —wp] - (1.10)

In this case, the sum and difference signals for K are

1,2 1 Mz 3
7w0+7—a—4—(A +C +3B cos2yy,)

cosi(1—cos2,) , (1.11a)

2 gt

- 3AJv sini[2 sinJ+Sin(‘Z+2¢0)] s
a

4 (1.11b)

showing again the separation of the gravitomagnetic term
from the Newtonian gravitational and centrifugal terms.

Although this separation is possible in principle, the
important issue is whether it is achievable in practice.
Among the sources of error that must be considered are
pointing errors that would alter the 45° orientation and
make the cancellation imperfect; these errors can come
from a variety of sources, including inadequate pointing
accuracy in the spacecraft, precession of the basis direc-
tions, and changes in the orbital elements. Misalignment
of the gradiometer axes (failure of the gradiometers to be
at exactly mutual right angles) also will affect the cancel-
lation of the Newtonian and gravitoelectric terms in the
difference signals. Other sources of error include tidal
forces due to the Moon, the Earth’s multipole moments,
the Sun, etc., and small rotations of the gradiometers rel-
ative to the nonrotating or Earth-pointing frames that
would introduce spurious inertial forces. Detailed analy-
ses of such error sources will be left to future publica-
tions.

The structure of this paper is as follows: In Sec. IT we
use the parametrized post-Newtonian formalism to ob-
tain the Riemann tensor as measured by a freely falling
observer in a proper reference frame in orbit around the
Earth. Section III applies this formalism to measure-
ments made by an ideal three-axis gradiometer; that is,
one with perfectly aligned axes and perfect pointing accu-
racy. We consider both an inertially guided or parallel-
transported gradiometer assembly (one whose axes are
fixed by gyroscopes) and an “Earth-pointing” gradiome-

the radial direction. In both cases we demonstrate the
cancellation of Newtonian and gravitoelectric effects with
the proper 45° orientation. Section IV presents conclud-
ing remarks.

We use units in which G =c =1; commas denote par-
tial differentiation, while semicolons denote covariant
differentiations; greek indices run over the values O, 1, 2,
and 3, while latin indices run over the values 1, 2, and 3;
other conventions are those of Misner, Thorne, and
Wheeler.!?

II. POST-NEWTONIAN RIEMANN TENSOR
IN A PROPER REFERENCE FRAME

A. Proper reference frame of a freely falling observer

Consider an observer who moves through spacetime on
a geodesic (free-fall) with four-velocity u. Orthogonal to
the observer’s four-velocity is a set of orthonormal basis
vectors e; with the property that, on the observer’s world

line,
u-e;=0. (2.1)

With the definition u =ej, the tetrad of basis vectors e,
satisfies

ezrep=nNgp=diag(—1,1,1,1) . (2.2)

Ordinarily, one demands that the tetrad be parallel-
transported through spacetime as the observer moves
along the trajectory. However, we will admit the possi-
bility that the spatial basis vectors rotate relative to
parallel-transported basis vectors. In this case, the basis
vectors satisfy the equation

V,e,=e, , (2.3)
where

P =u wpe™ 2.4)

The quantity e is the completely antisymmetric Levi-
Civita symbol, and the four-vector w is orthogonal to the
four-velocity (w-u =0). Its purely spatial components in
the proper reference frame represent the angular velocity
of the basis relative to a parallel-transported basis.
JAssociated with this basis is a coordinate system:
x%=r is proper time along the observer’s trajectory as
measured by atomic clocks, and x’ are proper distances
along the three orthogonal spatial directions as measured
by rods. The equations of motion of a particle at location
x 1, with coordinate velocity vi=dx’/dx?, are given by!*

d%3/dx 2 +[oX (0 X x) P+ (o X x)+2(@X V)

+x*Rg35:+OWR)=Fi/m , (2.5

where we represent spatial vectors in the proper frame

using bold face, and where Rﬁ}ﬁﬁ are the tetrad com-

ponents of the Riemann curvature tensor, and FJ
represents any nongravitational forces that might con-
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strain the motion of the particle. An overdot denotes a
derivative with respect to x0.

It will be useful to adopt a matrix representation for
the spatial vectors and tensors in the proper frame. We
represent the spatial basis vectors ’63 by

1 0 0
’e}*—' 0], ’éi= 11, €§= 0], (2.6)
0 0 1
and a spatial vector as
x1
x=x?€3= x?|. 2.7)
x3
Under a change of basis to ’e‘?, we have
e.=A-Ke.
e =AM €q (2.8)

(The transformation need not be orthogonal, as we will
see in our analysis of alignment errors in future publica-
tions.) The matrix representation of A},k is

Al AR AP
A=A A2 AR (2.9)
1\31 A32 A33

Then the vector x transforms according to matrix multi-
plication

x=ATx",

x'=(AT)"1x ,

(2.10a)
(2.10b)

where T denotes the transpose. If we now define the an-
gular velocity matrix o to be the matrix with components

0 —w; o,
O TENRORT | @3 0 —w, |, (2.11)
—w, o 0
and the “tidal matrix” to be
K’i\/j\ERﬁ'i‘aj s (2.12)

then the equation of motion (2.5) becomes the matrix
equation

X +w’x +ox +20v+Kx=F/m . (2.13)

In a gravity gradiometer, compensating forces are ap-
plied to the proof masses to keep them at a fixed location
in the proper frame; in other words, X =v=0. The out-
put of the gradiometer is the force required to achieve
this; it depends on, in addition to the tidal tensor itself,
the trajectory of the gradiometer and the orientation of
the spatial basis vectors (and on the evolution of that
orientation with time). '

B. Parametrized post-Newtonian metric

To analyze the ingredients of the tidal matrix, we will
work in the post-Newtonian limit of gravitational theory.
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Because ultimately any measurement of the gravitomag-
netic field is a test of general relativity against alternative
theories of gravity, we shall work in the parametrized
post-Newtonian (PPN) formalism.!? We shall restrict at-
tention to so-called ‘“‘semiconservative” theories of gravi-
ty, those which possess conservation laws for total
momentum (this class includes all theories based on an
action principle); we also exclude theories with “White-
head effects.” Of the ten PPN parameters, only four are
relevant: y, B, a;, and a,. In general relativity, these
have the values (y,8,a,,a,)=(1,1,0,0). We shall also ig-
nore “preferred-frame” effects that result from the possi-
ble nonvanishing of a; and a,; this amounts to dropping
terms in the PPN metric that depend on the velocity of
the observer w relative to the rest frame of the Universe.
Such effects can be treated separately from the present
analysis.

The PPN coordinate system is a quasi-Cartesian coor-
dinate system (#,x/), where ¢ is time measured at asymp-
totically flat spatial infinity, and where the spatial coordi-
nate directions are tied to the distant stars. In this coor-
dinate system, and with the simplifications listed above,
the PPN metric takes the form

goo=—1+2U —2BU%+(2y +2)®,
+2(3y —2B8+ 1)@, +6y®, , (2.14a)
goi=— 14y +3+a;—a,))V;—H1+a,)W, , (2.14b)

g, =(1+2y U5, , (2.140)
where
’ )
sz , d3x,’ ®1:f_Ld3xl ’
|x—x'| |x—x'|
q)z—‘:f—LU,—dBX', <I>4=f—L,—d3x’ ’
|x—x'| |x—x'| (2.15)

Vi= [ e

o= [ RO

x—x']3
Here, p, p, and v; are the mass-energy density, pressure,
and velocity of matter in the source.

We now idealize the source to be a stationary, rotating,
nearly spherical body, whose center of mass is at rest.
Although the Earth has significant multipole moments
that will affect the gradiometer response as well as its or-
bital motion, to the necessary accuracy they can be treat-
ed separately as purely Newtonian effects. We will not
consider them in this paper. Thus the potentials in g,
can be expanded in inverse powers of »=|x|. By choos-
ing the origin of the PPN coordinate system appropriate-
ly, we can eliminate the “dipole” (r ~2) term from the ex-
pansion of the potentials in g¢,. The result is

8o =—1+2U*—2BU*?, (2.16a)
goi=—1H4y+4+a)V; (2.16b)
g, =(1+2yU%)S,; , (2.16¢)
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where
U*=M/r, (2.17a)
Vi=—leuxJ*/ri=—L@X),/r?, (2.17b)

where i=x/r, and where M and J' are the asymptotical-
ly measured mass and angular momentum of the body,
given to post-Newtonian order, by

M= [pd’x[1+(y +12+3y =28+ 1)U +3yp /p],
(2.18a)

I=[p(xxv)ds . (2.18b)
It is useful to note that M is equivalent to the ‘“‘active”
gravitational mass in semiconservative theories of gravity
(see Ref. 12, pp. 148-151).

C. Tetrad components of the Riemann tensor

At a given instant, we choose the orthonormal tetrad
e, in such a way that the spatial vectors are related to the
asymptotic PPN coordinate spatial vectors by a boost to
the instantaneous velocity of the frame, together with a
scale change to maintain orthonormality with respect to
the PPN metric. To the required post-Newtonian order,
the resulting tetrad vectors are given by'>

eg=uu , (2.19a)
%): +0(3), (2.19b)
eA=(1—yU*)8f+1vv,+0(4), (2.19¢)

where the order symbol O denotes post-Newtonian or-
ders, with sz(l), v?=U*=0(2), and so on. We can
now relate the “electric” tetrad components of the

Riemann tensor RﬁAai to the PPN coordinate com-

ponents R 5, with the result
Ryrgp =4eNefelelIR 0, +4 2 ¢ZR
6508 —4€5 €3 €5 €x Romon e e ek)eo Omnp

+ea eieaeﬁR (2.20)

mnpq

where parentheses around indices denote symmetrization,

and square brackets denote antisymmetrization. Noting
that the PPN components have the relative orders

Romon ~0(2)+0(4), Rgpy,~0(3),

Ryppg ~0(2)+0(4)

(2.21)

and that the components of the four-velocity are given by

uWO=14+U*+Lv?, w/=vi(1+U*+1v?), (2.22)
we obtain, to the necessary order,
Ra’ja’ﬁ [1+2 I_Y)U*+v ]RO]Ok v U(ij)OmO
—20"Rqjkyn TV ™0 "Ry - (2.23)

The components R, are given by
,[3+ Fkaarovﬁ— rkaﬁrova) >
(2.24)

R pvaf = g/.tk( F}Lvﬁ, a r)hva
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where FaBy are the Christoffel symbols, given to the need-
ed order by

[ =—U%+(B—1)(U*?);, T%=0,

Tiy=—U%+(B+y)U*?), ,
=7/(8,-jU* +8,U%—8,U%),

re =34y +tata)V

(2.25)

F’Oj: —7(4’}’ +4+a,)V[,,j] .

Substituting Egs. (2.25) into (2.24) and thence into (2.23),
we obtain, to post-Newtonian order,

Rgjop=—[1—2B+y—1DU*+(y+1)

Z]U*
+(2B+2y—1U* ,U*
+(2'}/+1)Umv(jU*’k)m

+3(4y +4+a )"V, i

—'VsjleU*P
——ijkv"'v"U*,mn
"U”V(j’k)n ) . (2.26)

It is useful to note that the spatial trace of R4+5¢ is the

030k
Ricci tensor Ry, given from Eq. (2.26) by

Ry =—[1—2(/3+y—1)U*+(y+1 w2viU*

+(2B—y—1)|VU*|?
+(1=y™"U* ., + 14y +4+a ) v"V?V,
(2.27)

In vacuum (V2U *=V2Vj=0) and for general relativity
(B=v=1), Rgy vanishes, as it must, according to
Einstein’s equations. Note that, in other theories of grav-
ity, it does not necessarily vanish in vacuum.

Substituting the forms of U* and V; from Egs. (2.17)
into Eq. (2.26), we obtain

Ryrae=RX. .~ +RE M+R343M,

£ (2.28)

OJOk

where the Newtonian (N), gravitoelectric post-
Newtonian (E), and gravitomagnetic (M) terms are given
by

R =(M /r)(8y—3n;n,) , (2.29a)
RE5i=—(M?/r)[(2B+3y —2)8; —(88+8y —T)n;n, ]
+(M /r3) {2y + D[v28 4 —vjv, +3(v-R)n vy
—3y(v-0)?8,; —3(y+1in;nv’} ,
(2.29b)
R¥si= =3y T 1+ 4ap)r By XI)ng+@XT) v

+ﬁ'(VXJ)(5Jk
—S(ﬁ'v)(ﬁXJ)(jnk)] .
(2.29¢)

—5n;n;)

This form is valid for a general orbit outside a stationary
rotating body, with tetrad basis vectors given instantane-
ously by Eq. (2.19).
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D. PPN equations of motion

The orbit of the gradiometer is determined by a solu-
tion of the PPN equations of motion. Using the geodesic
equation and the metric, Eqgs. (2.16), it is straightforward
to derive the equation of motion

d2
i ——-[1—2(y+B)M/r+yv 1

+2(‘y+1)—§v(x-v)
r

—%(4y+4+a,) 1 S [V XTI =@ XT)(@-v)

+3Mv-(AXT)] . (2.30)

We now restrict attention to a circular orbit, with ¥ =0
and F/=n-v=0. With this restriction, the preceding
equations take the form

~——[1— 'y+B)M/r+yv2]—%(4'y+4+a1)—1§J-h,
r

(2.31a)

%——— L4y +4+a1)—v(n N, (2.31b)

where h=x Xv is the orbital angular momentum per unit
mass. Note from Eq. (2.31b) that the magnitude |h| is
constant, the vector h varies by an effect of first order in
J, and hence that, through first order in J, a circular orbit
is compatible with Eq. (2.31a).

We now specify the circular orbit using instantaneous
osculating orbit elements:! eccentricity e =0, semimajor
axis g, inclination relative to the equator 7, and angle of
nodes (). Because of post-Newtonian perturbations,
these orbital elements, in particular i and 2, will not be
strictly constant, but instead they will vary with time.

—L—3cos2¥ —2cosi sin2W
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Notice that, in order to evaluate the post-Newtonian
terms in the Riemann tensor, only the Newtonian orbit
(with fixed elements) is needed, while the full post-
Newtonian orbit is needed to evaluate the Newtonian
term. However, since the Newtonian term depends only
on a and 1, it is sufficient to write fi in terms of the in-
stantaneous osculating orbit elements evaluated at the
time of observation of the tidal tensor. The effects of pos-
sible variations of these orbit elements due to post-
Newtonian and other orbit corrections will be the subject
of a separate publication.

With these definitions, the unit vector @i of the instan-
taneous orbital position is given in terms of the original
PPN basis €; by

=8, cos¥+(€,cosi +€,sini)sin¥ , (2.32)
where W is the orbital phase. We have chosen the z axis
to be parallel to the angular momentum vector J of the
Earth, and the x axis to be parallel to the line of nodes (so
that Q=0 at the instant in question). The coordinate ve-
locity unit vector V and the orbital angular momentum
unit vector h=h/|h| can be determined to Newtonian
order, since they appear only in post-Newtonian terms;
they are given by

= —¢,sin¥ +(€,cosi +€,sini )cos¥ ,

v
~ (2.33)
h= y sini +€,cosi .

In the post-Newtonian terms, we can use the Newtonian
relations for a circular orbit: v>=M /a and v-fi=0.

E. Tidal matrix for a circular orbit

Substituting Eqgs. (2.32) and (2.33) into Egs. (2.29), and
writing in matrix form, we obtain the tidal matrices

— 3sini sin2¥

KN= M; —3cosi sin2¥  1—3cos%i(1—cos2¥) —3sini cosi(1—cos2¥) | , (2.34a)

a

—3sini sin2¥% —3sini cosi(1—cos2¥) 1— —g—sinzi( 1—cos2V¥)

e A +3B cos2V¥ 3B cosi sin2¥ 3B sini sin2V¥

KE= —+ | 3B cosi sin2¥ 4 cos?i + C sin% — 3B cos?i cos2¥  sini cosi( A —C —3B cos2¥) , (2.34b)
3B sini sin2¥ sini cosi( A —C —3B cos2¥) A sin?% + C cos? — 3B sin?%i cos2¥
cosi cos?W —(1 —%coszi )sin2W 3sini cosi sin2¥W
KM= -69{—” —(1—3cos% )sin2¥ cosi(1—>5sin% )sin®¥ —sini(—2cos’¥ —5cos’i sin®¥) | ,  (2.34c)
a

3sini cosi sin2¥  —sini(3—

where the coefficients 4, B, C, and A are given by Egs. (1.8).

2 cos®W — 5 cos?i sin?W)

—cosi(1—5sin?% sin?¥)

It is useful to reexpress the tidal matrices in a tetrad basis that is more tailored to the orbit: a basis €; in which the &’
and Z’ vectors lie in the orbital plane, while the §’ vector is orthogonal to the orbital plane. The X’ vector makes an an-

gle ¥, with the X direction (line of nodes).

These vectors are related to the original orthonormal basis by a rotation
about the X axis by the angle i —# /2, and a rotation about the

¥’ axis by an angle — ¥, (Fig. 2):
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FIG. 2. Relationship between the X§Z basis and the X'§'2’ basis. The original basis is first rotated about the line of nodes by
i—m /2 to bring the z axis down to the orbital plane, then rotated about the new y’ axis by the arbitrary angle — W,

€, =¢€.cos¥,+ sm\I/o('é?cosz +¢€,sini), ’é?,=é‘?smz —¢€,cosi, ”éi,z—’éismlllo-i-cos\llo(é‘?cow +€,sini) . (2.35)

Matrices then transform according to Axgw =R ~! 4 o1 pR, where

cos¥, 0 —sin¥,
R = |sinWY,cosi sini cosWgcosi | . (2.36)
sinWysini  —cosi cosWsini

In this basis, the tidal matrices simplify to

—1(1+3cos2¥) 0 —25in2¥
KN= M} ' 0 1 0 , ' (2.37a)
a — —
—3sin2W¥ 0 —I(1—3cos2¥)

A +3Bcos2¥ 0 3B sin2¥
3B sin2¥ 0 A —3Bcos2¥

Lcosi(1+cos2W¥) — Lsini[2 sini (2¥ + ;) +sin¥,] 1cosi sin2¥
k=S80 G2 sin(2T 4+ Wy) +sin, ] —cosi Isini[2 cos(2F+W,)—cosWo] |
a — —
Lcosi sin2W Lsini[2 cos(2¥ + W) —cos¥,] Lcosi(1—cos2¥)

(2.37¢)

where U=V —Y,,



III. DETECTION WITH AN IDEAL
GRAVITY GRADIOMETER

A. Measurements made by an ideal gradiometer

In an ideal gravity gradiometer, suitable nongravita-
tional forces are applied to confine the motion of a proof
mass to a specified linear direction, and to read out its
motion. Thus for a given direction, described by a unit
vector P, both the displacement and velocity are confined
to the direction P, and thus the Coriolis term [(@Xv) in
Eq. (2.5) or wv in Eq. (2.12)] and the angular acceleration
term [(@ X x) or @x] are canceled by the forces provided
by the massive, rigid channel along which the proof mass
moves. The force directed along the direction P can be
characterized by a restoring force proportional to the dis-
placement from equilibrium along P, a damping force
proportional to the velocity along P, and a feedback
force. If we write, for the vector locating the proof mass
in the P gradiometer,

x5 =PU+E) (3.1)

where [ is the equilibrium displacement of the proof mass
from the origin of the proper frame, and §ﬁ is the scalar

displacement along the P direction, then the equation of
motion (2.5) referred to the P direction can be written as

d*6,/d7T +(wg /Q Vg, /dT+ gy = — 1Ky, +Fy/m

32
where wg is the resonant frequency of the gradiometer, Q
is the quality factor (Q /wg is the damping time), Fﬁ is
the feedback force, and

~

R, =(0pP—a>+p B Ryj0¢ » S

or in matrix notation
K. .=w? PN 3.4
K 55 a)f)ﬁ—i—K 5p - (3.4)

Thus a “three-axis gradiometer,” consisting of three such
gradiometers oriented along three perfectly orthogonal
directions P, §, and T, measures the three “diagonal”
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(Ki,ﬁ,+2Ki,?,+K?,?,)/2 and (Ki,i,——ZKi,?,-G-K?,?,)/Z
The difference between the two gradiometer outputs is
sensitive only to Ki,?,, and thus measures only the gravi-
tomagnetic contribution K™. A similar cancellation
occurs if the assembly is rotated by 45° about the X’ axis.
In order to study this cancellation in detail, and in par-
ticular to analyze potential sources of error, it is most
convenient to work in a tetrad basis that has already been
rotated by the requisite 45°, and to orient the three-axis
gradiometer along the axes of this new basis. We shall
consider both an inertially guided (parallel transported)
system, and a system forced to rotate in such a manner
that one axis of the gradiometer maintains a fixed orien-
tation relative to the radius vector from Earth. We will
focus on the 45° rotation about the 2’ axis. The other
possibility mentioned above can be seen to be physically
equivalent to changing the orientation angle ¥, to
W,+/2, and then rotating by 45° about the 2’ axis.

B. Inertially guided system

Consider a proper frame whose basis is parallel trans-
ported, so that the angular velocity o is zero. At the mo-
ment of observation, this proper frame is chosen to coin-
cide with the orthonormal tetrad obtained from the PPN
coordinate frame, Eqgs. (2.19). At subsequent times, this
frame may differ from the tetrad of Egs. (2.19) appropri-
ate to the subsequent velocity by certain secular terms
that arise from the equations of parallel transport.!! A
complete post-Newtonian treatment which takes these
secular terms into account will be deferred to a future
publication. Except for these secular terms, the matrix K
is then the same as the tidal matrix K of Egs. (2.37). We
now choose the gradiometer axes P, G, and T to corre-
spond to a rotation of the €; basis by —45° about the 2’
direction. Thus the T gradiometer axis lies in the orbital
plane parallel to the 2’ axis, while the p and § gradiome-
ter axes lie 45°, respectively, above and below the orbital
plane (see Fig. 3). Thus

components of K in the p §T basis. P=(&,—¢,)/V2, §4=(&; +'é?,)/\/§, =€, . (3.5)
The central problem in detecting the gravitomagnetic
effect is the measurement or elimination of the dominant The rotation matrix is given by
Newtonian tidal forces, represented in the tidal matrix
K", Eq. (2.37a). Notice that the %'y’ and §'Z’' com- — —
ponents of K¥ vanish (as, fortuitously, do those of K ), 1/ ‘/2__ 1/v2 0
Therefore, we need a device that is sensitive to only those R=|—1/V2 1/V2 0 (3.6)
components. A pair of gradiometers whose sensitive axes 0 0 1
are in the X'§’ plane, but rotated each by 45° about the 2’ .
axis, measures the combinations of components In the new basis the tidal matrices become
J
= = 3 . .=
H(1—3cos2¥) —3(1+cos2¥) — 5 sin2W¥
kY=Y s(14cos2®) L(1-3cos2T)  — —sin2 ¥ (3.7a)
a 3 4 4 2‘/2 ’
——3 in2¥  ——>_in2¥ — 1(1—3 cos2¥)
2V2 2V72 2
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FIG. 3. The P T basis for the inertially guided system. (a) Top view at orbital phase ¥ =0, when the radial line coincides with the
line of nodes. The T axis is m/2— ¥, from the line of nodes. (b) Side view, showing the P and § axes 45° above and below the orbital
plane. (c) Top view at orbital phase W. The angle between the T axis and the line of nodes is unchanged because of inertial guidance,
but the angle between it and the radial direction has changed to 7/2+ W, because of the motion of the satellite.

¥A+C+wumﬁ)%A~C+wamW);%ﬂﬁﬂ@
KE=M 114 —C+3B cos2¥) 1 ¥) —=Bsin2¥
=— |3 cos2¥) (A4 +C+3Bcos2¥) —=Bsin2¥ |, (3.7b)
a V2
3B sin2® 3_Bsin2¥ A —3B cos2¥
V2 V2
_ _ - |
—Lcosi(1—cos2¥) 1cosi(3+cos2W) Eirzcosi sin2W
+ Lsini[2 sin(2¥ + W) - 2‘1/_2 sini[2 cos(2¥ +¥,)
+sinW¥,] —cos¥y]
+cosi(3+ cos2¥) —Lcosi(1—cos2¥) —1:cosi sin2¥
4 2V2
6AJv - —
= SAT — Lsini[2 sin(2T+¥,) + 211/5 sini[2 cos(2F +W,)
+sin¥;] —cos¥]
1 R~ 1 . A= . 5
;/TZCOSI sin2W EV—T’ZCOSI sin2W Jcosi(1—cos2¥)
1 .. = 1 —
— ——=sini[2 cos(2¥ +¥,) —sini
5 i[2c 0 +2\/2smt[2005(2\11+\110)
—cos¥] —cosW¥yl
(3.7¢)

Notice that, in K~ and K%, the pp and G4 components,
corresponding to the gradiometers oriented at 45° relative
to the orbital plane, are, respectively, identical, while in
KM they are not. Thus, by monitoring the sum and
difference of the outputs of the gradiometers in the p and
q directions, one can partially separate the gravitomag-
netic effect from the Newtonian and post-Newtonian
gravitoelectric effects.

Defining the sum Kt and difference K~ outputs ap-

propriately, we find

+_
KT=HKy+K )
1M - 2 —
2——3(1—30032‘P)+l—]‘—4——(A +C+3B cos2¥)
4 q 2 q*
3 —
——Mcosi(l—cos%l/) , (3.8a)
2 at



39 DETECTION OF THE GRAVITOMAGNETIC FIELD USING AN . ..
——1 —
K=K —Kgy)
AJv . .o .
=3 4J” sini[2 sin(2¥ + W) +sin¥,] . (3.8b)
a

Notice that the cancellation of the Newtonian and post-
Newtonian contributions in K ~ is independent of the an-
gle ¥,. For a polar orbit (i =/2), the gravitomagnetic
term drops out of K, and we obtain a complete separa-
tion.

C. Earth-pointing system

As an alternative, we consider an orientation in which
the gradiometer assembly rotates as it orbits the Earth in
J
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such a way that it maintains a fixed orientation relative to
the radial direction. To obtain such an orientation, we
first rotate the basis €; about the §' direction at the uni-
form angular velocity w,=d W /dt, then rotate the basis
about the new Z direction by 45°. Because the proper
frame is rotating relative to a parallel transported frame,
we must now include the centrifugal acceleration matrix
corresponding to @, given in the €{ basis by

0 01
o=wy| 0 0 0 (3.9)
—1 00

First, the rotation with angular velocity o, yields the ma-
trices

100
0*=—wi|0 0 0], (3.10a)
0 01
— (143 cos2¥,) 0 3in2¥,
KN= M} 0 1 0 (3.10b)
a 3§in2¥, 0 —1(1—3cos2¥,)
R A+3Bcos2¥, 0 —3Bsin2¥,
KE= % 0 o) 0 , (3.10c)
@ | —3Bsin2¥, 0 A—3Bcos2¥,
Lcosi(1+cos2¥,) — Lsini[2 sin¥ +sin(¥ +2¥,)] — Lcosi sin2¥,
KM= —6—4'4]—0 — Lsini[2 sin¥ +sin(¥+2¥,)] —cosi 1sini[2 cosW —cos(¥ +2¥,)]
a
— Lcosi sin2¥, 1sini[2 cosW —cos(¥ +2¥,)] 1cosi(1—cos2W¥,)
(3.10d)

In this case, because of the centrifugal accelerations, the measured K is equal to K +®?. Rotating by 45° to obtain the
Earth-pointing PqT basis, we find that the relevant matrices take the form

oo 0 0 1
o=—= |0 o 14, (3.11a)
V2
-1 —1 0
11
2 2
o'=—0j |1 1 , (3.11b)
0o
+(1—3cos2¥,) —3(1+cos2¥,) Ef/—isinZ\I/o
M 3 .
KN=? —3(1+cos2¥,) +(1—3cos2¥,) 2\/§sm2\1/0 , (3.11¢)
3 . 3 .
—2\/——2s1n2\110 2—ﬁsm2\IJ0 —3(1—=3cos2¥)
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1A +C+3B cos2¥,) (A —C+3B cos2¥,) — 7/3—513 sin2W,
r M|, ‘ —3_Bsin2w 3.11d
K —7 (A —C+3Bcos2¥,) +(A+C+3B cos2¥) —ﬁanZ ol » (3.11d)
- iB sin2W¥ — i—B sin2W A —3B cos2V¥
‘/E 0 ‘/5 0 0
[ L R
+cosi(1—cos2W¥) Lcosi(3+cos2¥,) s cosi sin2¥,
+ 1sini[2 sin¥ - 2‘1/.2 sini [2 cos¥
+sin(¥+2¥,)] —cos(¥+2¥,)]
3cosi(3+cos2W,) —+cosi(1—cos2W¥) - 5\1/—§cosi sin2¥,
6AJvy — —
KM= ~ —1sini[2 sin¥ —+ 2\1/_2 sini [2 cos¥
+sin(¥+2¥,)] —cos(¥+2¥,)]
1 . 1 .. '
Y cosi sin2W¥, YV cosi sin2¥, Jcosi(1—cos2¥,)
| = —
Y A [2cos¥ + 2‘1/5 sini [2 cos¥
—cos(W+2¥,)] —cos(V+2¥,)]
(3.11e)
[
In the Earth-pointing orientation, the angle between the T K =LK 55 TKgq)
axis and the radial direction is fixed to be its initial value
w/2—W,, while the angle between the T axis and the no- 1M ‘2
dal line varies, and is given by 7/2—¥,—V (Fig. 4). As - Z?( 1—3 cos2W¥y) — 7@
a consequence, the tidal matrices here can be obtained
from those of the inertially guided system by the replace- 1 M?
ments U— — W, and Wo—W+W,=¥+2¥, Again, the +5 (AT CH3Bcosz¥)
PP and §q components of K¥, K, and of »? are equal,
independently of W, while those of K™ are not. _ 3 A i(1—cos2W 3.12a)
Thus the sum and difference signals for K yield 2 a* cosi(1—cos2¥o) , G.

go 3]
PLANE

45°

ORBITAL

ORBITAL PLANE
(a)

FIG. 4. The PqT basis for the Earth-pointing system.

(b)

(a) and (b) same as Fig. 3. (c) Top view at orbital phase W. The angle be-

N}

45,

-

- .

RADIAL LINE

tween the T axis and the radial line is unchanged because the system is rotated to maintain a fixed orientation relative to the Earth.
The angle between the f axis and the line of nodes is now 7/2— (¥, +W¥).
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= 3AJ sini[2 sin¥ +sin(¥+2¥,)] . (3.12b)
a*

The cancellation of the Newtonian, centrifugal, and
post-Newtonian contributions in K~ is again indepen-
dent of the angle ¥,. Again, for a polar orbit, the gravi-
tomagnetic term drops out of the “sum” signal, giving a
complete separation.

Particular choices of the angle ¥, are worth discussion.
Notice that the three diagonal components of K ¥ vanish
simultaneously when

2¥,=arccost . (3.13)

With this choice of ¥, the three gradiometer axes are in
an “umbrella orientation;” i.e., each axis makes an iden-
tical angle arctanV'2 with respect to the radial direction.
Therefore the background Newtonian gravity gradients
vanish for all three axes, although the comparable centri-
fugal accelerations remain. On the other hand, the
Newtonian gradients plus the centrifugal accelerations
vanish in K 5 and K., . simultaneously when

2W¥,=arccos( (3.14)

q
—1
3
where we use the fact that w3=M /a* for a circular orbit.
Since the only nonvanishing terms in this orientation are
the relativistic corrections, the requirement to match the
readout or “scale” factors in the P and § gradiometers to
achieve the proper cancellation of the Newtonian signal
may be alleviated.

IV. CONCLUDING REMARKS

We have demonstrated that the gravitomagnetic terms
in the locally measured Riemann tensor or gravity gra-
dients can be separated in principle from the Newtonian
and gravitoelectric post-Newtonian background in either
an inertial or an Earth-pointing orientation using a
three-axis gradiometer oriented in such a way that it
detects appropriate components of the tidal matrix. In
order to make estimates of sizes of effects and accuracy
requirements for an experiment designed to carry out
such a measurement, it is useful to define the dimension-
less parameters € and p by

e=M/a, pu=J/wa’ 4.1
and to use the Newtonian approximation

wy~M /a® . (4.2)
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Then, for an orbit of radius a around the Earth (radius
R),

=1.54X10"%R /a)*sec”?,
@0o/2m=1.98X 10" %R /a)*/?sec! , (4.3)
€=6.97X10" %R /a), p=1.36X10""YR /a)*"? .

To be specific, we shall assume a 650-km-altitude polar
circular orbit, as in GP-B. The relevant parameters are
then ®3=1.15X107° 2 (wy/2m=1.7X10"* Haz),
€=6.3X10"1% and u=1.2x1071,

Equations (3.8b) and (3.12b) show that the amplitude of
the grav1tomagnetlc signal in the difference output is
9Apnwj. For general relativity, at a 650-km altitude, this
becomes 1.3 X107 '® sec 2. In order to resolve this signal
with a signal-to-noise ratio of 100 in a year (r=mX 10’
sec), the noise level of each gradiometer at the signal fre-
quency of 3.4X10”* Hz (inertial orientation) or
1.7X10"* Hz (Earth-pointing) must be 10714
sec”? Hz /2, or 10“5E Hz !/, where E denotes one
EStvos unit, 107° sec™ 2. This sensitivity is within the ca-
pability of the superconductlng gravity gradiometers un-
der development.’

In practice, however, alignment errors in the gradio-
meter caused by relative misalignment of the three sensi-
tive axes and by pointing errors of the spacecraft will mix
undesirable matrix components with the gravitomagnetic
terms. In order to resolve the gravitomagnetic field with
a signal-to-noise ratio of 100, the appropriate com-
ponents of the pointing errors must be reduced to 10712
rad upon averaging for one year. This implies a pointing
stability requirement of 10~ 3 arcsec Hz!/? at the signal
frequency which is comparable to that of GP-B (Ref.11).
Another important characteristic of the gradiometer is
the match and stability of the scale factors that relate the
experimentally measured output in each gradiometer to
the corresponding component of K and K, since the out-
puts of two gradiometers are differenced to reject the
large Newtonian gradient. These and other sources of er-
ror will be the subject of future papers in this series.
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