Analysis of two-body decays of charm mesons using the quark-diagram scheme: Addendum on hairpin diagrams

Ling-Lie Chau

Department of Physics, University of California, Davis, California 95616

Hai-Yang Cheng Institute of Physics, Academia Sinica, Nankang, Taipei, 11529, Taiwan (Received 19 September 1988)

We further develop our previous work [Phys. Rev. D 36, 137 (1987)]. We incorporate in this addendum quark-diagram amplitudes of the hairpin graphs.

The quark-diagram scheme has provided a useful model-independent way to analyze two-body charmmeson decays $D \rightarrow PP$ (*P* denotes pseudoscalar mesons) and $D \rightarrow PV$ (*V* denotes vector mesons), and to make predictions.^{1,2} We incorporate in this addendum quarkdiagram amplitudes of charmed-meson decay into two vector mesons and also the hairpin graphs.

The hairpin contributions are those diagrams in which a quark-antiquark pair is created from vacuum to form a color- and flavor-singlet final-state meson; they appear in charm decays involving a SU(3) singlet in the final products, e.g., $D^0 \rightarrow \overline{K}^0 \phi$, $\overline{K}^0 \omega$, and $\overline{K}^0 \eta'$. There are four different types of hairpin diagrams, (c_h) , (d_h) , (e_h) , and (f_h) , corresponding to the quark diagrams W exchange (c), W annihilation (d), horizontal W loop (e), and vertical W loop (f), with a hairpin quark-antiquark line. In Tables I and II hairpin amplitudes are included for two-body decays of D^+ , D^0 , D_s^+ . Hairpin contributions to $D \to VP$ have been discussed in Ref. 3 but with coefficients different from ours. For example, if the hairpin amplitude in $D^+ \to K^+ \phi$ is denoted by d_h , then the hairpin contribution to $D^+ \to K^{*+} \eta_0$ will be $3d'_h$ since all $u\bar{u}, d\bar{d}$, and $s\bar{s}$ quark-antiquark pairs created from vacuum can form η_0 while ϕ is made of the $s\bar{s}$ pair only. Reference 3 obtains the hairpin amplitudes $\frac{1}{2}d_h$ and d'_h , respectively, in $D^+ \to K^+ \phi$ and $K^{*+} \eta_0$. We believe that the relative magnitude of the hairpin diagrams is not properly described in Ref. 3. We also incorporate SU(3)-breaking and final-state-interaction effects in the quark-diagram

TABLE I. Charm-meson decays into a vector boson and a pseudoscalar meson. The experimental data are from the following. (I) Mark III Collaboration, R. Baltrusaitis et al., Phys. Rev. Lett. 55, 150 (1985); 56, 2136 (1986); 56, 2140 (1986); J. Adler et al., Phys. Lett. B 196, 107 (1987); Phys. Rev. Lett. 60, 89 (1988). (II) CLEO Collaboration, A. Chen et al., Phys. Rev. Lett. 51, 634 (1983); C. Bebek et al., *ibid.* 56, 1893 (1986). (III) ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 33, 359 (1987); Phys. Lett. B 195, 102 (1987). (IV) HRS Collaboration, M. Derrick et al., Phys. Rev. Lett. 54, 2568 (1985). (V) TASSO Collaboration, M. Althoff et al., Phys. Lett. 136B, 130 (1984); W. Braunschweig et al., Z. Phys. C 35, 317 (1987). (VI) E691 Collaboration, J. C. Anjos et al., Phys. Rev. Lett. 60, 897 (1988); 62, 125 (1989); in Lepton and Photon Interactions, proceedings of the International Symposium on Lepton and Photon Interactions at High Energies, Hamburg, West Germany, 1987, edited by R. Rückl and W. Bartel [Nucl. Phys. B, Proc. Suppl. 3 (1987)]; J. P. Cumalat et al., Phys. Lett. B 210, 253 (1988). (VII) LEBC-EHS Collaboration, M. Aguilar-Benitez et al., Z. Phys. C 36, 559 (1987).

	Experimental branching ratio B_r (%)	Quark-mixing factor $(V_{us}V_{cs}^* \simeq -V_{ud}V_{cd}^*)$ $\simeq s_1c_1$ used)	Amplitudes with SU(3) symmetry	Amplitudes with SU(3) breaking and final-state interactions
			(a) D^+ decays	
$\overline{K}^{ullet 0}\pi^+$	$5.9{\pm}1.9{\pm}2.5^{(1)}$	$(c_1)^2 \times$	(a'+b')	$\rightarrow (a'+b')e^{i\delta_{3/2}^{K^*\pi}}$
$ ho^+ \overline{K}{}^0$	$6.9{\pm}0.8{\pm}2.3^{(1)}$	$(c_1)^2 \times$	(a+b)	$\rightarrow (a+b)e^{i\delta_{3/2}^{pK}}$
$\pmb{\phi}\pi^+$	$0.77 \pm 0.22 \pm 0.11^{(I)}$ $0.68 \pm 0.07 \pm 0.12^{(VI)}$	$(s_1c_1) \times$	$(b'+\tilde{d}_h)$	$\rightarrow (b' + \tilde{d}_h + \delta e_h) e^{i\delta^{\phi\pi}}$
$\omega \pi^+$		$-(1/\sqrt{2})(s_1c_1)\times$	$(a'+b'+d+d'+2d'_{h})$	$\rightarrow [a'+b'+d+d'+(\delta e+\delta e')+2d'_{h}+2\delta e_{h}]e^{i\delta^{\omega\pi}}$
$\overline{K}^{*0}K^+$	$0.44 \pm 0.20 \pm 0.11^{(I)}$ $0.56 \pm 0.08 \pm 0.10^{(VI)}$	$(s_1c_1) \times$	$(a'-\widetilde{d})$	$\rightarrow (a' - \tilde{d} + \delta e) e^{i\delta \tilde{k}^* K}$
$K^{*+}\overline{K}^{0}$		$(s_1c_1) \times$	$(a-\tilde{d}')$	$\rightarrow (a - \tilde{a}' + \delta e') e^{i\delta_1^{K^*K}}$
$ ho^+\pi^0$		$(1/\sqrt{2})(s_1c_1) \times$	(a+b-d+d')	$\rightarrow [(a+b)(e^{i\delta_0^{\rho\pi}} \pm e^{i\delta_2^{\rho\pi}})/2 + (a'+b')(e^{i\delta_0^{\rho\pi}} \mp e^{i\delta_2^{\rho\pi}})/2$
${ ho^0\pi^+\over ho^+\eta_8}$	$0.07{\pm}0.05{\pm}0.01^{(VI)}$	$(1/\sqrt{2})(s_1c_1) \times -(1/\sqrt{6})(s_1c_1) \times$	(a'+b'+d-d') (a+3b+d+d')	$ \mp (d-d')e^{i\delta_1^{\rho\pi}} \pm 2(\delta e - \delta e')e^{i\delta_1^{\rho\pi}}] $ $ \rightarrow [a+3b+d+d'+(\delta e + \delta e')$
				$+2d'_{h}-2\tilde{d}'_{h}+2\delta e'_{h}-2\delta \tilde{e}'_{h}]e^{i\delta_{1}^{\mu'/8}}$
$ ho^+\eta_0$		$-(1/\sqrt{3})(s_1c_1)\times$	$(a+d+d'+3d'_h)$	$\rightarrow [a+d+d'+(\delta e+\delta e')+2d'_h+\vec{a}'_h+3\delta e'_h]e^{i\delta_1^{pn_0}}$

39 2788

IADLE I. (Continueu	ntinued).	(C	I.	LE	AB	Τ
---------------------	-----------	----	----	----	----	---

	Experimental branching ratio B _r (%)	Quark-mixing factor $(V_{us}V_{cs}^* \simeq -V_{ud}V_{cd}^*)$ $\simeq s_1c_1$ used)	Amplitudes with SU(3) symmetry	Amplitudes with SU(3) breaking and final-state interactions
		ч. Х		
$\phi \overline{K}^0$	$\begin{cases} 0.99\pm 0.24\pm 0.14^{(11)}\\ 0.86^{+0.50+0.31}_{-0.41-0.17}^{(1)}\\ 0.91\pm 0.33\pm 0.13^{(11)} \end{cases}$	$(c_1)^2 \times$	$(c'+c_h)$	$\rightarrow (\tilde{c}' + \tilde{c}_h) e^{i\delta\phi \vec{K}}$
$\omega \overline{K}^0$	3.2±1.3±0.8 ^(I)	$(1/\sqrt{2})(c_1)^2 \times$	$(b+c+2c_h)$	$\rightarrow (b+c+2c_h)e^{i\delta^{\omega \overline{K}}}$
$K^{*-}\pi^+$	5.2±0.3±1.5 ⁽¹⁾	$(c_1)^2 \times$	(a'+c')	$\rightarrow [(a'+c') - \frac{1}{3}(a'+b')(1-e^{i\Delta'_{K}*\pi})]e^{i\delta_{1/2}^{K*\pi}}$
$\overline{K}^{*0}\pi^0$	$2.6{\pm}0.3{\pm}0.7^{(1)}$	$(1/\sqrt{2})(c_1)^2 \times$	(b' - c')	$\rightarrow [(b'-c') - \frac{2}{3}(a'+b')(1-e^{i\Delta_{\vec{k}}^{-}\pi})]e^{i\delta_{1/2}^{\vec{k}}\pi}$
$\overline{K}^{*0}\eta_8$		$(1/\sqrt{6})(c_1)^2 \times$	(b'+c'-2c)	$\rightarrow (b'+c'-2\overline{c}+2c'_h-2\overline{c}'_h)e_{-c}^{i\delta}$
$\overline{K}^{*0}\eta_0$		$(1/\sqrt{3})(c_1)^2 \times$	$(b'+c'+c+3c'_{h})$	$\rightarrow (b'+c'+\tilde{c}+2c_h+\tilde{c}'_h)e^{i\delta} -$
ρ^+K^-	$10.8 \pm 0.4 \pm 1.7^{(1)}$	$(c_1)^2 \times$	(a+c)	$\rightarrow [(a+c)-\frac{1}{3}(a+b)(1-e^{i\Delta_{\rho}\overline{K}})]e^{i\delta_{1/2}^{\rho K}}$
$ ho^0 \overline{K}{}^0$	$0.75{\pm}0.09{\pm}0.47^{(1)}$	$(1/\sqrt{2})(c_1)^2 \times$	(b-c)	$\rightarrow [(b-c)-\frac{2}{3}(a+b)(1-e^{i\Delta_{\rho}\overline{K}})]e^{i\delta_{1/2}^{\rho K}}$
$\phi \pi^0$		$(1/\sqrt{2})(s_1c_1) \times$	$(b' - c_h)$	$\rightarrow (b' - \tilde{e}_h + \delta e_h) e^{i\delta^{\phi\pi}}$
$\phi\eta_8$		$(1/\sqrt{6})(s_1c_1) \times$	$(b'-2\tilde{c}'-2\tilde{c})$	$\rightarrow [b'-2\overline{c}'-2\overline{c}-2(\delta f+\delta f')]$
$\phi \eta_0$		$(1/\sqrt{3})(s_1c_1)\times$	$(b'+\tilde{c}'+\tilde{c}+2c'_h)$	$+2c_{h}-2\tilde{c}_{h}+2\delta e_{h}-2\delta \tilde{e}_{h}]e^{i\delta} \qquad \qquad$
				$+2\tilde{c}'_{h}+\delta c_{h}+2\delta e_{h}+2\delta f_{h}+2\delta f'_{h}]e^{i\delta^{\psi\eta_{0}}}$
$\omega \pi^0$		$\frac{\frac{1}{2}(s_1c_1)\times}{\frac{1}{2}(s_1c_1)\times}$	$(b-b'+c+c'-2c_h)$	$\rightarrow (b-b'+c+c'+\delta e+\delta e'-2c_h+2\delta e_h)e^{i\delta^{\omega\pi}}$
$\omega \eta_8$		$(1/V 12)(s_1c_1) \times$	(-3b-b'-c-c')	$\rightarrow [-3b - b' - c - c' + \delta e + \delta e' + 2\delta f' + 2\delta f']$
$\omega \eta_0$		$(1/\sqrt{6})(s_1c_1)\times$	$(b+c+c'+3c_h)$	$-2c_h + 2\tilde{c}_h + 2\delta\tilde{e}_h - 2\delta\tilde{e}_h]e^{i\delta}$ $\rightarrow [b+c+c' + (\delta e + \delta e' + 2\delta f + 2\delta f') + 2c_h + \tilde{c}_h$
$\overline{K}^{*0}K^0$		$-(s_1c_1)\times$	(c - c')	$+3\delta e_h + 3\delta e'_h + 6\delta f_h + 6\delta f'_h]e^{i\delta^{\omega''0}}$ $\rightarrow \{(c-c') - \delta f - \delta f' - \delta f'$
				+[$(a'+c')+(\tilde{c}-\tilde{c}')-\delta e$] $(1-e^{i\Delta_{\vec{K}}^**K})/2$ } $e^{i\delta_0^{\vec{K}}*K}$
$K^{*0}\overline{K}^{0} K^{+} K^{+}$	<0.55 ⁽¹⁾ 0.8±0.5 ⁽¹⁾	Same as $\overline{K}^{*0}K^0$ but $(s_1c_1) \times$	with primed and unprim $(a'+c')$	ned amplitudes interchanged $\rightarrow \{(a'+c')+\delta e+\delta f+\delta f'$
				$-[(a'+c')+(\tilde{c}-c')-\delta e](1-e^{i\Delta_{\bar{K}}^{*}*K})/2\}e^{i\delta_{0}^{K}*K}$
$K^{*+}K^{-}$		Same as $K^{*-}K^+$ but	t with primed and unpr	imed amplitudes interchanged
$ ho^-\pi^+$		$-(s_1c_1)\times$	(a'+c')	$\rightarrow [-a'(2e^{i00'} \pm 3e^{i01'} + e^{i02'})/3$
$ ho^+\pi^-$		$-(s_1c_1)\times$	(a+c)	$-a(2e^{i\delta_0^{b''}} \mp 3e^{i\delta_1^{b''}} + e^{i\delta_2^{b''}})/3$
				$-(b+b')(e^{i\delta_0^{T}}-e^{i\delta_2^{T}})/3$
				$-(c'-\delta e)(e^{i\delta b_0^m}\pm 3e^{i\delta b_1^m}+2e^{i\delta b_2^m})/3$
				$-(c-\delta e')(e^{i\delta b_1^m} \mp 3e^{i\delta b_1^m} + 2e^{i\delta b_2^m})/3$
				$-(\delta f + \delta f')e^{i\delta_0^{\pi}}]$
$ ho^0 \pi^0$		$\frac{1}{2}(s_1c_1)\times$	(b+b'-c-c')	$\rightarrow [(a+a')(e^{i\delta_0^n}-e^{i\delta_2^n})/3$
				$+(b+b')(e^{i\delta_0^{p_m}}+2e^{i\delta_0^{p_m}})/6$
				$+(c+c')(e^{i\delta b''}-4e^{i\delta b''})/6$
				$-(\delta e + \delta e')(e^{i\delta b_0^m} - 4e^{i\delta b_2^m})/6$
0				$+(\delta f+\delta f')e^{i\delta b''}$]
$ ho^0\eta_8$		$(1/\sqrt{12})(s_1c_1)\times$	(-3b+b'+c+c')	$\rightarrow (-3b+b'+c+c'+\delta e+\delta e')$
0 ⁰ m		$(1/\sqrt{6})(a, a)$	(b'+c+c'+3c')	$+2c'_{h}-2\tilde{c}'_{h})e^{i\theta}$ $\rightarrow (b'+c+c'+\delta e+\delta e'+2c')$
<i>יי</i> א יוס		(1) + 0/(3101) ×	$(3 + c + c + 3c_h)$	$+\tilde{\sigma}'_{1}+3\delta e'_{1})e^{i\delta}e^{i\eta}$
``				ich i soch ic

		IAI	SLE I. (Continued).	
	Experimental branching ratio B _r (%)	Quark-mixing factor $(V_{us}V_{cs}^* \simeq -V_{ud}V_{cd}^*)$ $\simeq s_1c_1$ used)	Amplitudes with SU(3) symmetry	Amplitudes with SU(3) breaking and final-state interactions
			(c) D_s^+ decays	
$\phi\pi^+$	$\begin{cases} 3.3{\pm}1.1^{(\mathrm{IV})}; 4.4{\pm}1.1^{(\mathrm{II})} \\ 3.3{\pm}1.6{\pm}0.4^{(\mathrm{V})} \\ 3.2{\pm}0.7{\pm}0.5^{(\mathrm{III})} \end{cases}$	$(c_1)^2 \times$	$(a'+d_h)$	$\rightarrow (a' + \tilde{d}_h) e^{i\delta\phi\pi}$
$\omega \pi^+$		$(1/\sqrt{2})(c_1)^2 \times$	$(d+d'+2d_h)$	$\rightarrow (d+d'+2d_h)e^{i\delta_1^{\omega\pi}}$
$K^{*+}\overline{K}^{0}$	$\begin{bmatrix} 2 & 6+2 & 1^{(I)} & 5 & 0+1 & 2^{(III)} \end{bmatrix}$	$(c_1)^2 \times$	(b+d')	$\rightarrow (b + \tilde{d}')e^{i\delta_1^{K^*K}}$
$\overline{K}^{*0}K^+$	$\begin{cases} 3.6\pm 2.1^{\circ}, 3.6\pm 1.3^{\circ} \\ (0.87\pm 0.13)B(D_s \to \pi \phi^+)^{(VI)} \end{cases}$	$(c_1)^2 \times$	(b'+d)	$\rightarrow (b' + \tilde{d}) e^{i\delta_1^{K^*K}}$
$ ho^+\pi^0$		$(1/\sqrt{2})(c_1)^2 \times$	(d-d')	$\rightarrow (d-d')e^{i\delta_1^{\rho\pi}}$
$ ho^0\pi^+$	$\begin{cases} \leq 0.22B \left(D_{s} \rightarrow \pi \phi^{+} \right)^{(\mathrm{III})} \\ \leq 0.08B \left(D_{s} \rightarrow \pi \phi^{+} \right)^{(\mathrm{VI})} \end{cases}$	$(1/\sqrt{2})(c_1)^2 \times$	(d'-d)	\rightarrow $(d'-d)e^{i\delta_1^{\rho\pi}}$
$ ho^+\eta_8$		$(1/\sqrt{6})(c_1)^2 \times$	(-2a+d+d')	$\rightarrow (-2a+d+d'+2d'_h-2\tilde{d}'_h)e^{i\delta^{\rho\eta_8}}$
$ ho^+\eta_0$		$(1/\sqrt{3})(c_1)^2 \times$	$(a+d+d'+3d'_h)$	$\rightarrow (a+d+d'+2d'_{h}+\widetilde{d}'_{h})e^{i\delta^{\rho\eta_{0}}}$
φK ⁺	х -	$(s_1c_1) \times$	$(a'+b'+\widetilde{d}+d_h)$	$\rightarrow (a'+b'+\tilde{d}+\delta e+\tilde{d}_h+\delta e_h)e^{i\delta^{\phi K}}$
$\omega K^+ K^{*0} \pi^+$		$\begin{array}{c} -(1/\sqrt{2})(s_1c_1) \times \\ -(s_1c_1) \times \end{array}$	$(b'-d'-2d_h)$ $(a'-d)$	$\rightarrow (b'-d'-\delta e'-2d_h-2\delta e_h)e^{i\delta^{\omega K}}$ $\rightarrow [(a'-d-\delta e)-(2a'+b-d-\delta e)$
$K^{*+}\pi^0$		$-(1/\sqrt{2})(s_1c_1)\times$	(b-d)	$ \times \frac{1}{3} (1 - e^{-iK^*\pi}) e^{\delta_{3}^{*}/2} \rightarrow [(b - d + \delta e) - (2a' + b - d - \delta e) \times \frac{2}{3} (1 - e^{-i\Delta_{K^*\pi}}) e^{\delta_{3}^{K^*\pi}} $
$ ho^+ K^0$		$-(s_1c_1)\times$	(a-d')	$\rightarrow [(a-d')-(2a+b'-d'-\delta e')\frac{1}{3}(1-e^{-i\Delta_{\rho K}})]e^{i\delta_{3/2}^{\rho K}}$
$ ho^0 K^+$		$(1/\sqrt{2})(s_1c_1) \times$	(b' + d')	$\rightarrow [(b'+d')-(2a+b'-d'-\delta e')\frac{2}{3}(1-e^{-i\Delta_{\rho K}})]e^{i\delta_{3/2}^{\rho \Lambda}}$
$K^{*+}\eta_8$		$(1/\sqrt{6})(s_1c_1) \times$	$(-2a+3b+d-2\tilde{d}')$	$\rightarrow (-2a-3b+d+\tilde{d}'+\delta e-2\delta e')$
			v	$+2d'_{h}-2\tilde{d}'_{h}+2\delta e'_{h}-2\delta \tilde{e}'_{h})e^{i\delta}^{K^{*}\eta_{8}}$
$K^{*+}\eta_0$	· · · · · · · · · · · · · · · · · · ·	$(1/\sqrt{3})(s_1c_1) \times$	$(a+d+\widetilde{d}'+3d'_h)$	$\rightarrow [a+d+\tilde{d}'+(\delta e-\delta e')+2d'_{h}+\tilde{d}'_{h}+3\delta e'_{h}]e^{i\delta} $

scheme so that $D^+ \rightarrow K^{*+} \eta_8$, for instance, receives hairscheme so that $D \to K^- \eta_8$, for instance, receives har-pin contributions proportional to $(2d'_h - 2\tilde{d}'_h)$; and the hairpin diagram contribution to $D^+ \to K^+ \phi$ changes from d_h to \tilde{d}_h , and to $D^+ \to K^{*+} \eta_0$ changes from $3d'_h$ to $2d'_h + \tilde{d}'_h$. These effects were not considered in Ref. 3.

The hairpin diagram in the contributions for the vector bosons $D \rightarrow VP$ decays are expected to be suppressed owing to the Okubu-Zweig-Iizuka rule. However, this rule does not apply to $D \rightarrow PP$. In the $1/N_c$ (N_c being the number of colors) approach,⁴ the hairpin diagram in $D \rightarrow PP, VP$ is suppressed by a factor of N_c^2 and N_c^3 , respectively, relative to the leading factorization amplitudes. Since $N_c = 3$ in the real world, a priori the hairpin amplitude in $D \rightarrow PP$ decays is not necessarily suppressed.⁵ Therefore, it is important to perform a model-independent analysis to see if there is any experimental evidence for the existence of hairpin diagrams. Here we provide a framework for future detailed data analysis.

In summary, we have further developed the modelindependent quark-diagram scheme to include the hairpin diagrams. They can be useful in analyzing future data of $D \rightarrow VV$, and in finding out the possible contributions of hairpin diagrams.

This work was supported in part by the U.S. Department of Energy, and the National Science Council of Taiwan.

D 35, 3515 (1987).

- ³X. Y. Li and S. F. Tuan, DESY Report No. 83-078 (unpublished); see also X. Y. Li, X. Q. Li, and P. Wang, Nuovo Cimento 100A, 693 (1988).
- ⁴A. J. Buras, J.-M. Gérard, and R. Rückl, Nucl. Phys. B268, 16 (1986).
- ⁵For a recent thorough analysis, see L. L. Chau, and H. Y. Cheng, Phys. Lett. (to be published).

¹L. L. Chau, in Proceedings of the Guangzhou Conference on Theoretical Particle Physics, Guangzhou, China, 1980 (Science Press, Beijng, China/Van Nostrand Reinhold, New York, 1980); Phys. Rep. 95, 1 (1983); L. L. Chau and H. Y. Cheng, Phys. Rev. Lett. 56, 1655 (1986); Phys. Rev. D 36, 137 (1987).

²B. Stech and other talks, in Proceedings of International Symposium on Productions and Decay of Heavy Hadrons, Heidelberg, 1986, edited by K. R. Schubert and R. Waldi (DESY, Hamburg, 1986); A. N. Kamal and R. C. Verma, Phys. Rev.

	Experimental branching ratio B_r (%)	Quark-mixing factor $(V_{us}V_{cs}^* \simeq -V_{ud}V_{cd}^*)$ $\simeq s_1c_1$ used)	Amplitudes with SU(3) symmetry	Amplitudes with SU(3) breaking and final-state interactions
		(a)	D^+ decays	_
$\overline{K}{}^{0}\pi^{+}$	$3.2{\pm}0.5{\pm}0.2^{(1)}$	$(c_1)^2 \times$	(a+b)	$\rightarrow (a+b)e^{i\delta_{3/2}^{K\pi}}$
$\overline{K}^{0}K^{+}$	$1.01{\pm}0.32{\pm}0.18^{(1)}$	$(s_1c_1) \times$	(a-d)	$\rightarrow (a - \tilde{d} + \delta e)e^{i\delta_1^{KK}}$
$\pi^0\pi^+$ $\eta_8\pi^+$	\leq 0.48 ^(I)	$(1/\sqrt{2})(s_1c_1) \times \\ -(1/\sqrt{6})(s_1c_1) \times$	(a+b) $[(a+b)+2(b+d)]$	$ \rightarrow (a+b)e^{i\delta_2^{\pi\pi}} \rightarrow [a+b+2(b+d)+2\delta e + 2d_h - 2\tilde{d}_h + 2\delta e_h - 2\delta \tilde{e}_h]e^{i\delta^{\eta\pi}} $
$\eta_0 \pi^+$		$-(1/\sqrt{3})(s_1c_1)\times$	$(a+2d+3d_h)$	$\rightarrow [(a+2d)+2\delta e+2d_h+\tilde{d}_h+3\delta e_h]e^{i\delta^{\eta\pi}}$
		(b) D^0 decays	
	$4.2\pm0.4\pm0.4^{(1)}$	·		$i\Delta - i\delta^{K\pi}$
$K^{-}\pi^{+}$	$\begin{cases} 4.0^{+2.1}_{-1.0} \pm 0.2^{(\text{VII})} \\ 4.5 \pm 0.8 \pm 0.5^{(\text{IV})} \end{cases}$	$(c_1)^2 \times$	(a+c)	$\rightarrow [(a+c)-(a+b)\frac{1}{3}(1-e^{-i\frac{2}{K}\pi})]e^{i\frac{2}{3}(1-2)}$
$\overline{K}{}^{0}\pi^{0}$	$1.9{\pm}0.4{\pm}0.2^{(1)}$	$(1/\sqrt{2})(c_1)^2 \times$	(b-c)	$\rightarrow [(b-c)-(a+b)\frac{2}{3}(1-e^{i\Delta_K\pi})]e^{i\delta_{1/2}^{K\pi}}$
$\overline{K}{}^{0}\eta_{8}$		$(1/\sqrt{6})(c_1)^2 \times$	(b-c)	$\rightarrow (b+c-2\tilde{c}+2c_h-2\tilde{c}_h)e^{i\delta}$
$\overline{K}{}^{0}\eta_{0}$		$(1/\sqrt{3})(c_1)^2 \times$	$(b+2c+3c_h)$	$\rightarrow (b+c+\tilde{c}+2c_h+\tilde{c}_h)e^{i\delta^{K\eta_0}}$
$K^0 \eta$ $\kappa^0 \overline{\kappa}^0$	$1.5\pm0.7\pm0.2^{(1)}$	$A (D^0 \to K^0 \eta_8) \cos\theta + A$	$(D^0 \rightarrow K^0 \eta_0) \sin\theta, \ \theta \approx 20^\circ$	$\left[\left(a-\overline{a}-2b\right)\right]$
$K^{-}K^{+}$	$\begin{cases} 0.51\pm0.09\pm0.06^{(I)}\\ 0.33\pm0.01^{(III)} \end{cases}$	$(s_1c_1) \times$	(a+c)	$\rightarrow [(c - c - 2\delta f)] + (a + \tilde{c} - \delta e) \frac{1}{2} (1 - e^{i\Delta_{K}\bar{K}})] e^{i\delta_{0}^{K}\bar{K}}$ $\rightarrow [(a + c) + (\delta e + 2\delta f)] + (\delta e^{-i\Delta_{K}\bar{K}}) = i\delta_{0}^{K}\bar{K}$
	$0.14\pm0.04\pm0.03^{(I)}$			$-(a+\tilde{c}-\delta e)\frac{1}{2}(1-e^{-KK})]e^{K0}$ $\rightarrow [(a+c)+(\delta e+2\delta f)$
$\pi^+\pi^-$	$\left\{ 0.5^{+1.2}_{-0.2} \pm 0.04^{(\rm VII)} \right.$	$-(s_1c_1)\times$	(a+c)	$-(a+b)\frac{1}{3}(1-e^{i\Delta_{\pi\pi}})]e^{i\delta_0^{\pi\pi}}$
$\pi^0\pi^0$	< 0.3 ⁽¹⁾	$(\sqrt{2})\frac{1}{2}(s_1c_1)\times$	(b-c)	$ \rightarrow [(b-c) + (\delta e + 2\delta f) \\ -(a+b)\frac{2}{3}(1-e^{i\Delta_{\pi\pi}})]e^{i\delta_0^{\pi\pi}} $
$\eta_8\eta_8$		$-(\sqrt{2})\frac{1}{2}(s_1c_1)\times$	(b-c)	$\rightarrow [(b-c)+2(-\delta c/6-\delta e/6-\delta f)]e^{i\delta^{\eta_{8}\eta_{8}}}$
$\pi^0\eta_8$		$-(1/\sqrt{3})(s_1c_1)\times$	(b-c)	$ \rightarrow (b - c - \delta e - 2c_h + 2\tilde{c}_h - 2\delta e_h + 2\delta \tilde{e}_h) e^{i\delta} $
$\pi^0 \eta_0$		$(1/\sqrt{6})(s_1c_1) \times$	$(b+2c-3c_h)$	$\rightarrow (b + 2c + 2\delta e - 2c_h - \tilde{c}_h + 3\delta e_h) e^{i\delta^{\pi\eta_0}}$
$\eta_8\eta_0$		$(1/\sqrt{2})(s_1c_1) \times$	(b+2c)	$\rightarrow (b+2c+2\delta e+2c_h-2\tilde{c}_h)$
$\eta_0\eta_0$		$(\sqrt{2})(1/\sqrt{3})(s_1c_1)\times$	(3c _h)	$+2\delta e_{h} - 2\delta \overline{e}_{h})e^{i\delta^{-\eta}\delta^{\eta}}$ $\rightarrow (\delta c + \delta e + 3\delta f + 2c_{h} + \overline{c}_{h} + 3\delta e_{h} + 3\delta f_{h})e^{i\delta^{\eta}0^{\eta}0}$
		(c)	D_s^+ decays	_
$\overline{K}{}^{0}K^{+}$	$3.7{\pm}2.0^{(1)}$	$(c_1)^2 \times$	(b+d)	$\rightarrow (b+\tilde{d})e^{i\delta_1^{KK}}$
$\pi^0\pi^+$		$(c_1)^2 \times$	(0)	→(0)
$\eta_8 \pi^+$		$-(\sqrt{2}/\sqrt{3})(c_1)^2 \times$	(a-d)	$\rightarrow (a-d-2d_h+2\tilde{d}_h)e^{i\delta^{\pi\eta_8}}$
$\eta_0 \pi^+ \eta \pi^+$	$(2.5\pm0.8\pm0.8)$ $\times B(D^+ \rightarrow \phi \pi^+)^{(1)}$	$(1/\sqrt{3})(c_1)^2 \times A(D_s^+ \to \eta_8 \pi^+) \cos\theta + 2$	$(a+2d+3d_h)$ $A(D_s^+ \rightarrow \eta_0 \pi^+)\sin\theta, \ \theta \approx 20^\circ$	$\rightarrow (a+2d+2d_h+\tilde{d}_h)e^{i\delta^{\pi\eta_0}}$
$\eta'\pi^+$		$-A(D_s^+ \rightarrow \eta_8 \pi^+)\sin\theta +$	$-A(D_s^+ \rightarrow \eta_0 \pi^+)\cos\theta$	
$K^0\pi^+$		$-(s_1c_1)\times$	(a-d)	$\rightarrow [(a-d-\delta e) - i \delta e]$
$K^+\pi^0$		$(1/\sqrt{2})(s_1c_1)\times$	(b+d)	$-(2a+b-d-\delta e)\frac{1}{3}(1-e^{-i\Delta_{K}\pi})]e^{i\delta_{3}^{2}/2}$ $\rightarrow [(b+d+\delta e)$ $-(2a+b-d-\delta e)\frac{2}{5}(1-e^{-i\Delta_{K}\pi})]e^{i\delta_{3}^{K}/2}$
$K^+\eta_8$		$-(1/\sqrt{6})(s,c,)\times$	[2(a+b)+(b+d)]	$\rightarrow [2(a+b)+b-d+2\tilde{d}+\delta\rho]e^{i\delta}^{K\eta_8}$
$K^+\eta_0$		$(1/\sqrt{3})(s_1c_1) \times$	$(a+2d+3d_h)$	$\rightarrow (a+d+\tilde{d}+2\delta e+2d_{h}+\tilde{d}_{h}+3\delta e_{h})e^{i\delta} K^{\eta} 0$
