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Longitudinal impedance of a periodic structure at high frequency
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An ultrarelativistic beam bunch traveling along the axis of an azimuthally symmetric cavity of
general shape connected to a beam pipe generates wake fields. We extend an earlier derivation of
the integral equation for the axial electric field at the beam-pipe radius to the case of a periodic
structure. This equation is then solved in the high-frequency limit, and we show that the reciprocal
of the impedance per cell has a particularly simple form, closely related to the admittance for a sin-

gle cavity. We also show that the imaginary part of the impedance per cell varies as co
' and the

real part of the impedance per cell varies as co ' . Finally, the results are shown to satisfy the re-

quirements of causality for an ultrarelativistic beam.

I. INTRODUCTION

We have recently derived' an integral equation for
the electric field at the pipe radius in the presence of an
azimuthally symmetric cavity of arbitrary shape in a
beam pipe of circular cross section, and shown that the
high-frequency limit of the coupling impedance is ap-
proximately independent of the cavity shape. In this pa-
per, the derivation is extended to several cavities, as well
as to a periodic structure. We then explore the high-
frequency limit of the impedance per cell and show that
the admittance per cell has a particularly simple form.
The real part of the impedance is shown to vary as u
in agreement with the behavior suggested by Heifets and
Kheifets, and the imaginary part varies as co

II. ANALYSIS

The starting point for the analysis is the integral equa-
tion obtained for the electric field in the obstacle at the
pipe radius. ' Specifically, we have

f dz'F(z')[K ( ~z' —z
~ )+K,(z', z )]=je ~"' (2.l)

Here j, is the sth zero of the Bessel function Jo(x) and b,
is to be replaced by —jp, when j,)ka. The component
of the kernel from the "cavity fields" is

h, (z)h, (z')
K, (z', z) =4sr g k —k

(2.5)

where the orthonormal (azimuthally symmetric) modes of
the cavity (with an imaginary metal wall at r =a) are
defined by

TXeI =kIh(, V'Xb( =kIeI,

f et e du= f ht h du=51~,
(2.6)

and where

III. ANALYSIS FOR SEVERAL CAVITIES

ht(z) —= [ht(a, z)]&

is the azimuthal component of the normalized magnetic
field at r =a.

Z(k)
Zo f dz F(z )e j"' .

ka
(2.2)

A parallel analysis for several cavities connected by a
common beam pipe leads to an equation very similar to
Eq. (2.1). Specifically, one obtains

y f dz' F(z' )[K (~z' —z„~)+5 „K,(z', z„)]
m

Here kc/2m is the frequency, a is the pipe radius,
Zo = 12077 0 is the impedance of free space, and the az-
imuthally symmetric cavity, of general shape in the r, z
plane, extends axially from z =0 to z =g at the pipe ra-
dius r =a. Apart from a constant, F(z) is the axial elec-
tric field for r =a and 0&z &g. The component of the
kernel from the "pipe field" is

Jb, I~I «
K, ([u[)= (2.3)

—JkZ„=je (3.1)

where z' and z„denote the variables z' and z within cavi-
ty m and n, and I dz' is over cavity m. The coupling
between di6'erent cavities now occurs through the pipe
kernel while the cavity kernels are diagonal.

For a periodic structure consisting of identical cavities
whose centers are a distance L apart, we can write

z' =mL+t', 0& t'&g,
(3.2)

where

(k2 2 ~ 2)1/2 I3
—(J2 k a )

I
z„=nL+t, 0& t &g .

(2.4) The solution to Eq. (3.1) clearly requires
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I

F(z' )=e F(t'), (3.3)
—je(v+x)

vx —1
where F(t') is the same in each cavity. Equation (3.1)
then becomes

f dt'F(t')k(t', t)
0

—jO(ux + 1) jO( vx+ 1)

—jO(x + 1) 1 jO(1 —x)+—e —e

(4.2)

—jb, ~u~/a

kq(u) = a, 1 b,
(3.5)

The one-cell kernel k(t', t) is that obtained earlier for a
single cavity,

h)(t')h1(t)E(t', t) =2 (t' t)+—4~' e '"" "g, (3.6)p
I k —kI

and the impedance per cell ZL (k), from Eq. (2.2), is

Zt (k)
ZO f dtF(t).

ka2
(3.7)

The sum over m in Eq. (3.4) is independent of n and can
be evaluated by introducing a convergence factor
exp( e~(m ~ ), le—ading to

K', (U)= g k~[(m n)L+—t' t]—

+ f «'F(t') g k [(m n)L—+t' t]=—j, (3.4)
m&n

where, from Eq. (2.3),

Apart from the apparent divergence at x =1 in the
second term in the large parentheses the integral is con-
vergent, particularly at large x because

~
U & 1, and

Im(x) &0. If we expand the denominators within the
large parentheses in powers of exp[ —j8(x+1)],we have
for the individual terms

e
—jO(1+x)(1+u+n) and e+jO(1 —x)(l —u+n)

' 2L

a 2ka 2ka
(4.3)

with n ~0. When we now consider the average over the
oscillations for large O=kL, it appears that all terms
average to zero in the first term and all terms average to
zero in the second term, except near x =1. We will
therefore return to Eq. (3.8) and obtain the average over
frequency by evaluating the second term in the large
parentheses near x =1.

The region x = 1 is equivalent to j, « ka, where we can
write

m&n
—jy, /m+vf

e2~J —je(m +v) y
m~0 b,

If we now put b, = ka, (t, =kL, and
' 2L

e 8 = Je
—~O J s ~ iO Js

2ka
(4.4)

where

—j(OV+p, )
2&J e

, v
e

ej —eO
—i4',

J~s V

e

e —e
—jO

—i4, (3.8) () 2n ~ 2ka

ka, 1 jL (4.5)

in the second term in the large parentheses in Eq. (3.8),
we find the approximate result for the smoothed coupling
kernel

U=(t' t)/L, H=kL, p,—=b,L/a . (3.9)
where we have used the identity g," ( j,

The one-cell kernel has been evaluated' for high fre-
quency and is

IU. HIGH-FREQUENCY LIMIT

We have shown in some detail' that, for large k, the
sum over s in Eq. (2.3) or (3.8) can be converted to an in-
tegral over the continuous variable s. If we make the sub-
stitution x:b, /ka =P, /8, th—e sum over s can be written
as

6db,
(k2 2 b2)1/2

S

We therefore have, from Eqs. (3.4), (3.8), and (4.5),

1+j f tdt'F(t') ja s, , adt'F t' =V'nko V't t ' . 2L o — 21r

The solution to Eq. (4.7) can be shown to be

(4.6)

(4.7)

j —j~ G dx
7T 1

(4.1)
F(t')= —,f F(t)dt=2Bv'gv't' '

o
(4.8)

where we have chosen the sign so that j,
=(k a b, )' =jka(x 1—)' approaches —+ co for
large positive s. We then have for the coupling kernel

where

'+'a~+ "a2v'g = '
v'mk 2L 2~

(4.9)
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We then obtain, for the admittance (per cell) from Eq.
(3.7),

' 1/2

Z( —k) =Z*(k), R ( —k) =R(k), X( —k) = —X(k),
(5.1)

Zo I'I (k) = —=2vrkaka 1+j m

2g g 2 kg
)

ja
2L

(4.10)

and the equations for the transform pairs

2k dk'R (k')
k' —k' (5.2)

Zi(k)
Zp ~ka

' 1/2 —1

1+j L
j a kg

1 /2
jL (1—+j)L

mka ~ka kg
(4.11)

consisting of an imaginary part which decreases as k
and a smaller real part which decreases as k . This
result for the real part was obtained by Heifets and
Kheifets, although we find a different coeScient.

It is also possible to make an estimate of the transition
region at which the frequency behavior changes from
k to k ' for a large but finite number of cells, M.
The contribution for finite M comes from the second
term in Eq. (3.8), where we now include the oscillatory
factor

jM(p —p, )
1 e

in performing the sum over m. For the value of 9—P,
given in Eq. (4.3), the neglect of the oscillating term cor-
responds to the assumption

We have therefore expressed the admittance as a sim-
ple sum of the one-cell admittance and a modification due
to the periodicity which is proportional to ka. The
single-cell impedance is the same as that obtained by
Dome, and by Heifets and Kheifets, and corresponds to
a k ' behavior at large frequency. But for the periodic
structure the behavior for large k is strongly influenced
by the added term in Eq. (4.10), which is much larger
than the single-cell admittance. The impedance per cell
can then be written, for large k, as

and

2 ~ dk'k'X(k')
k' —k' (5.3)

X(k) = 8
k 3/2 (5.4)

the high-frequency part of R (k) in Eq. (5.3) is dominated
by the behavior near the singularity at k ' =k.
Specifically, we have

Apl ~dk' 1 1

"o v'k' k' kk'—+ k
f

28 pf 1

u —k
1

u +k

8 u —&k u
ln — —2 arctan

hark
~ u+ k &k

(5.5)

Evaluating Eq. (5.5) at u = oo and 0 leads to

R(k)=
k 3/2 (5.6)

At the same time Eq. (5.2) implies a reactance whose
high-frequency dependence is given by

X(k) = — f "dk'R (k')
mk o

(5.7)

If we consider that portion of the reactance which is of
the form

MLj,
Mi8 —P, i= »I

2ka
(4.12)

since Eq. (5.6) guarantees the convergence of the integral
in Eq. (5.7) as k' —+ ~. We therefore conclude that the
high-frequency behavior of the impedance is of the form

for the periodic result. Since the important values of j,
are of order 1, Eq. (4.12) corresponds to the transition
frequency

Z(k)= —' +"+j'
k 3/2 (5.8)

k, a -ML/a, (4.13)
in agreement with the form in Eq. (4.11). In addition, we
have demonstrated the existence of the sum rule

in agreement with that given by Heifets and Kheifets.

V. CAUSALITY
f dk R(k)= (5.9)

In the analysis of the high-frequency behavior of a sin-
gle obstacle, ' we used the required analytic properties of
the coupling impedance in the complex k plane to
demonstrate that the k ' behavior implied an imagi-
nary part equal to the negative of the real part. Let us
explore the implications of causality on the types of be-
havior suggested by the result in Eq. (4.11).

It is straightforward to show that causality implies that
Z(k) is analytic in the lower half-plane, satisfying

for a periodic structure, from which one can estimate the
value of k below which R (k) must depart from k be-
havior.
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