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High-frequency behavior of the longitudinal impedance
for a cavity of general shape
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An ultrarelativistic beam bunch traveling along the axis of an azimuthally symmetric cavity of
general shape connected to a beam pipe generates wake fields. An integral equation is derived for
the longitudinal electric component of these wake fields at the beam-pipe radius. The kernel for this
equation is approximated at high frequency for several different cavity shapes and the resulting in-
tegral equation is solved for the electric field at the beam-pipe radius. The longitudinal coupling im-
pedance is obtained and shown to vary inversely as the square root of the frequency, in agreement
with recent results obtained by others using different approximation techniques. The results are
also shown to depend only on the axial extent of the cavity at the beam-pipe radius, but otherwise
are independent of cavity shape for four different cavity geometries. In addition, the results are
shown to be in agreement with the analytic properties of the coupling impedance as a function of
complex frequency required by causality for an ultrarelativistic beam.

I. INTRODUCTION

The behavior of the coupling impedance for an obsta-
cle in a beam pipe at high frequency has been of consider-
able importance because of recent interest in the trans-
port and acceleration of short bunches. ' The slow falloff
of the real part at high frequency was obtained for a
pillbox by Lawson by means of a diffraction model, and
confirmed in an approximate calculation by Dome.
Heifets and Kheifets use an iteration method to derive
Dome's result for the real part; namely, a falloff as m

In this paper, we start with the integral equation for the
field, and obtain an approximate kernel valid for high fre-
quency for an obstacle of general shape. We then obtain
a solution for the average field for a pillbox, leading to a
confirmation of the results of Dome for both the real and
imaginary parts of the impedance.

The analysis is then applied to three different triangu-
lar cavities, where we obtain exactly the same high-
frequency behavior, as might be expected from the
diffraction model.

II. ANALYSIS FOR A CAVITY OF GENERAL SHAPE

Gluckstern and Zotter have derived an integral equa-
tion for the electric field at the pipe radius. Since we
shall use this integral equation as a starting point for
several of our analyses, we duplicate the derivation here.

Let us consider a beam pipe of radius a which enters
and leaves an azimuthally symmetric cavity of general
shape, as shown in Fig. 1. The longitudinal impedance
can be obtained by field matching at r =a in the usual
manner. Specifically we identify the source fields in the
ultrarelativistic limit as

Jo(Kr)
E,(r, z) = f dq A (q)e

QO Jo Ka

ZoIo
ZOH (rz)= — e

2~r

Jo(Kr)—jk f dq A (q)e
00 KJO Ka

(2.2)

(2.3)

Here k =co/c, the suppressed time dependence is
exp(j cot), Z0=120rr 0 is the impedance of free space,
and Io is the arbitrary driving current. We have defined

K =+k —
q (2.4)

f (z)= f dq A (q)e

A (q)= f dz f (z)e~q',
2% 0

(2.5)

where f (z) vanishes outside the interval 0 & z & q.
The field in the cavity region outside the pipe region

will be expanded into an orthonormal set of cavity

and take the contour in the q plane as shown in Fig. 2 rel-
ative to the zeros of Jo(Ka) so that we have only outgo-
ing waves for the pipe fields as z —++~. If we define
E,(a, z) —=f (z) at the pipe radius, we have

E"=0, Z H" = — e ~ '= —E"Zoro
27TI'

to which we add the pipe fields to obtain

(2.1)

FIG. 1. Azimuthally symmetric cavity with beam pipes.
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q plane ZOH&(a, z) = — f dz'f (z') f dq e i' ' 'J(q)
2K 0 oo

where

ZoIo
2&a

Jo(Ka)
KaJo(Ka)

(2.15)

(2.16)

FIG. 2. Contour in the complex q plane.

Equating Eqs. (2.14) and (2.15) then leads to the integral
equation for f (z):

g. . . , . 0 0 kf dz'f (z')[K (z' —z)+K, (z,z')] =j e

and

VXEt =kIHI VXH( =kIEI (2.6)

modes in the region V which satisfies the normal metal-
lic boundary conditions on the outer wall of the cavity as
well as at the pipe radius, r =a. These modes satisfy

where the kernel in the pipe is

K~(u)= f dq e ~~"J(q)

(2.17)

(2.18)

f Ei E dv= f Hi H du=5'

Maxwell's equations for the actual fields are

ZoVXH= jkE, VXE= —jkZoH .

(2.7)

(2.8)

If we (scalar) multiply the first by E&, the second by H&,

integrate over V, integrate by parts, and use the known
boundary conditions on E, H, EI, and HI, we find

k, V~
= jkZOI& —2—ma f dz f (z)h&(z) (2.9)

and

and where the kernel in the cavity is

hi(z)hi(z')
E, (z,z') =4m

k —k(
(2.19)

(2.20)

The sum in Eq. (2.19) is over all azimuthally symmetric
modes in the annular cavity volume V.

We can obtain a more explicit form for K (u) in Eq.
(2.18) by using the identity

Jo(Ka)
J(q)—: =2 = —2 YKaJ (Ka) E2a2 2 ~ 2 2 b2

k, Z,I, =jkV, .

Here

(2 10) where j, are the zeros of Jo(x) and where

(k2a2j2)1 /2p(j 2k 2a2) I /2 (2.21)

Vi= f E Eidu, E= g VIEi,

Ii= f H Hidv, H=. XIIHt

(2.11)

(2.12)

and h& H'&" (a,z) is th——e normalized azimuthal magnetic
field at the pipe radius.

Solving for I&, we find

(2.13)

which enables us to write the actual magnetic field at
r =a, in terms off (z), as

For positive u, the contour in Eq. (2.18) can be closed in
the lower half-plane, enclosing the poles at qa =b, and

qa = —jp, . For negative u, the contour can be closed in
the upper half-plane, enclosing the poles at qa = —b, and

qa =jp, . The result for K~(u) is then
—jb, /u //a

K (u)= a, , b,
(2.22)

where b, is to be replaced by jp, when j, )k—a.
The longitudinal impedance of the cavity can be writ-

ten as

hi(z)hi(z')
ZoH&(a, z) =2majk f dz'f (z') g 20 k2 —k

(2.14) f dz e J"'E,(0,z)
Zo Zoro

Equation (2.14) is a special case of the general expres-
sion for the fields in the interior of a cavity as a function
of the fields on the boundary. The simple form of Eq.
(2.14) is a direct result of our using a Green's function for
which BG/Bn =0 on the boundary of the cavity, as ex-
plained in Appendix A.

The source and pipe fields at r =a are given by Eqs.
(2.3) and (2.5) as

A (k) = f dz f (z)e~"' . (2.23)
0 0 ZoIo o

f dz'F(z')[K (~z' —z~)+K, (z,z')]=je

with

(2.24)

If we renormalize f (z) to include the factor ZoIO/ka,
we find
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Z(k) 1

I a2 O

(2.25)

One can absorb the factor exp( jkz) into F(z) to obtain
H'&" (r, z) = AP, (cr r) cos(nmz/g), (3.6)

In order to evaluate the cavity kernel, we must choose
a cavity geometry. For a pillbox of outer radius b, the
magnetic field is

f dz'G(z')[K (z' —z)+K, (z', z)]= (2.26)
where

cr +(nm/g) .=k, , (3.7)

Z(k)
ZO

where

dzG z
2mka o

(2.27) Po(cr ") Yo(cr ")Jo(cr ") Jo(cr r) Yo(cJ b), (3.8)

Po(o r ) = P, (o—r) = Yo(cr r)Jo(o b)

Jo(—cr r) Yo(cr b) .
F(z) = G (z)e2'
K~(z' —z) =e "' 'K„(~z' —z

~ ),

(2.28)

(2.29)

The normalization of H'&" (r, z) requires that

~A g(1+5„o)f rdrp, (o r)=1 .
a

(3.10)

K, (z', z) =e J"' 'K, (z', z) . (2.30)

The solution of Eq. (2.26) for G(z') can then be used to
find the longitudinal impedance.

III. EVALUATION OF THE KERNELS
FOR HIGH FREQUENCY

Equation (2.27) suggests that rapidly varying com-
ponents of G(z) will not contribute significantly to the
impedance. As a consequence, at high frequency our
effort is directed toward obtaining the nonoscillatory part
of K and K, in Eqs. (2.29) and (2.30).

For the pipe kernel, we have, from Eq. (2.22), with
Q=z z,

2 1

ng(1+5„o) b P, (cr b) aP, —(cr a)
(3.11)

We therefore obtain, for K, (z, z'),

K, (z,z')

z z'
cosB& cosn&

8rr ~ g g

n =O I+6n0

P, (cr a)[b P, (cr b) —a P, (cr a)]
2

Since the boundary conditions for the cavity modes re-
quire Po(a a ) =0, we find

—jku —jb, Iu ~/a

K~(u) = a, , b,
(3.1)

om
2

(3.12)

Since b, =k a j, , we expect E—q. (3.1) to show rapid os-
cillations unless we have u & 0 and j, « ka. Qur smooth
approximation to E (u) is therefore obtained by setting
b, =ka in the denominator and

As we shall show shortly, the dominant region for the
sum over m is that for large m in which case the asymp-
totic form of the Bessel functions can be used to obtain

b, js=k-
2ka

in the exponent, leading to

0, u&0,

(K (u) ) k = (2vrj /ka ) g exp( j ~
u

~
J', /2ka ),

s=1

(3.2)

(3.3)

Po(cr a ) = 2
sin cr (b —a),

m. o. ab

Pf(o a)= cos cr (b —a),
m. o ab

P, (cr b)= 4
mo. b

(3.13)

(3.14)

(3.15)

u&0,
where ( )k implies a local average over k. The impor-
tant contributions in the sum are those for which cr =mal(b —a) (3.16)

In this approximation, the wave number o. is given ap-
proximately by

j, -(ka /~u ~)'~ &)1 . (3.4) and

As a consequence the sum over s can be approximated by
an integral, leading to

P, (0 a)
b2Pz(cr b) —a2Pf(cr a) a(b —a)

(3.17)

k(z —z')

0, z')z,
T

(K (z —z))1,- J —1

a

1/2

z &z.
(3.5)

We therefore write

K, (z, z') =K,+(z,z')+K, (z,z'),
where

(3.18)
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K,—(z,z') One then obtains the longitudinal impedance from Eq.
(2.27):

z'+z

Z(k) 1 —j &g
Z, 2~a u'k~ (4.3)

cosn 7T

x g
(1+fi„o) k—

2

The high-frequency impedance in Eq. (4.3) agrees exactly
~ith the result obtained by Dome using a difFerent ap-
proximation scheme. Heifets and Kheifets also obtain
the same result for the real part of Z(k).

(3.19)
We now wish to extract the nonoscillatory part of
K, (z,z'), defined by

K, (z, z') =e '"' '[K,+(z,z')+g, (z,z')] . (3.20)

In Appendix 8 we show that the main contributions to
the sums occur for

1/2

n — —, ~1, m-kg g
vr /z' —z

/

k
/z' —z

(3.21)

and that the nonoscillatory part can be obtained by con-
verting Eq. (3.19) to integrals over the continuous vari-
ables m and n. The result for the nonoscillatory part is

0, z')z,
(3.22)

(K, (z, z') ) k = j —1
z (z,

a

1/2

k (z —z')

identical to the result for (K (z' —z) ) & in Eq. (3.5). Here
( ) k once again implies a local average over k.

s dz'G (z') (1 j)&~k—
&z —z' 2

(4.1)

IU. SOLUTION TO THE INTEGRAL EQUATION
FAR LARGE k

The approximate values of (K„(z' z))I, in Eq. (3.5)—
and (K, (z,z'))k in Eq. (3.22) lead to the integral equa-
tion for G (z'):

V. TRIANGULAR CAVITY

H '"(z,s)=

rn ~scos—mmz n~s n~z
COS + COS

g&2rra (1+5 „)'/ (1+5„o)'

2 cos

(5.1)

where BH/Bn vanishes along all cavity boundaries. (The
length of the cavity in the g direction is taken to be 2ma. )

The magnetic field at the pipe radius (s =0) is therefore

1 2
h, (z)=-

g ~a

1/2

(1+g )
—1/2(1+g )

—1/2

The cavity kernel at high frequency was obtained in
Sec. III for a pillbox cavity. In the process we found that
for high frequency, the cavity modes were those corre-
sponding to a two-dimensional Cartesian problem where
the Bessel functions were replaced by sines and cosines.
This is a simple consequence of the fact that
k (b —a) ))1. In addition, the sums over modes could be
replaced by integrals over the mode numbers. It is there-
fore possible to explore other cavity geometries in which
two-dimensional solutions of the wave equation can be
written down explicitly.

One such geometry is shown in Fig. 3 for a cavity with
a 45 ', 45 ', 90' right-triangular cross section, where the
(right-handed) coordinate system is taken to be (z, s, g).
The orthonormal eigenmodes for the magnetic Geld are
easily seen to be

The solution to Eq. (4.1) is easily obtained by taking La-
place transforms, and is

G(z') = (4.2)
2~ v'z'

mmz n mzcos + cos

From Eq. (2.5), we find for the cavity kernel

(5.2)

K, =
m=o n=o

m 7TZ n 7TZ rnmz nmz
COS + cos --- cos + cos

[k —(~/g) (m +n )](1+5 o)(1+5„O)
(5.3)

where we take into account the double counting of modes for m ~n, n ~m by dividing by two. As before, the only
terms which survive, after averaging over rapid oscillations at h&gh frequency, are those involving the combination
z' —z, so that we obtain

n m.(z —z')
cos

K, (z, z') =
ag2 „1+5„ (I+5 0)

=o k —(~/g) (m +n )
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S= VI. CAUSALITY

s=O

It is of interest to test the implications of causality on
the result in Eq. (4.3). The definition of Z(k) in terms of
the wake function for an ultrarelativistic point charge
can be used to demonstrate that Z(k) is analytic in the
lo~er half complex k plane, with

Z( —k)=Z*(k), R( —k)=R(k), X( —k)= —X(k) .

(6.1)

FIG. 3. Right-triangular cavity on a side.
Use of the Hilbert transform pair allows us to write the
following integral relations for R (k) and X(k):

2k ~ dk'R (k')
k' —k

(6.2)

E,(z,z') =e J"' 'E, (z,z')

occur for high frequency near
' 1/2

(5.5)

As shown in Appendix 8, the main contributions to
the nonoscillatory part of 2 p

~ dk'k'X(k')
k' —k' (6.3)

If we assume a high-frequency dependence for R (k) of
the form

kg g )1 »1,
(5.6)

R (k)=
k

we can obtain the high-frequency behavior of X(k) from
Eq. (6.2) as

leading to

&I~, (z,z') ), =
0, z')z,

k (z —z')

1/2

z &z,
(5.7)

PJ du
2A

7T 0

1

u —k2

1

u +k

dk' 1 1

7r ~0 V'k' k' —k k'+k

identical to what we found for the pillbox.
A similar calculation leads to the same result for the

triangular cavities shown in Figs. 4(a) and 4(b). This
leads to the conclusion that the high-frequency behavior
is independent of the shape of the cavity, as might have
been expected from a diA'raction model in the short-
wavelength limit.

The similarity of the impedance for the cavities in Figs.
3 and 4(a) turns out to be a general property of the im-
pedances and wake functions for asymmetric cavities
which are rejections of one another. This was noted by
Gluckstern and Zotter who used the symmetry proper-
ties of Kz( ~z' —z

~
) and K, (z', z) to prove this general re-

sult for all frequencies.

u —&k u
ln —2 arctan

k u+ k k

After taking the limits at u = ~ and 0, we find

X(k)=—

implying the form

Z(k)=(l —j) &k '

totally consistent with Eq. (4.5).
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(b)

FICx. 4. (a) Reversed right-triangular cavity on a side. (b)
Right-triangular cavity on its hypotenuse.

APPENDIX A

We shall apply Green's theorem
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dU V+k — V+k
= f dS'[P(n' Vg) —P(n' VP)]

to the rectangular magnetic field components, with

(Al)
BH'"(x) =0 and Ht'"'(x ) =0,

Bn
(A7)

as required by Eq. (A3). Moreover, the functions H&(x)
are required to satisfy the "metallic" boundary condition

and

g(x') = G(x, x'), P(x') =H, (x'),

(V„,+k )G(x, x')=5(x' —x) .

(A2)

(A3)

I

where t and n denote the tangential and normal (to the
cavity boundary) directions. Our Green s function in Eq.
(A5) therefore satisfies the boundary condition

The resulting expression for the magnetic field in the inte-
rior of a source-free cavity can be shown to be

BG(x,x')
Bn' (A8)

H(x)= f dS'G(x, x')[n'XE(x')]
ZQ

BG+ dS'H I' (A4)

and Eq. (A4) reduces to

H(x)= f dS'G(x, x')[n'XE(x')] .jk
ZQ

(A9)

In our application, we construct the Green's function
G(x, x') as

In our application, Eq. (A9) reduces to

Hi(x) Hi(x')
G(x, x')= g (A5)

hi(z)hi(z')
ZOH&(a, z)=2vrajk f dz'f (z') g

0 k —ki
(A10)

where H&(x) are the orthonormal magnetic-field modes of
wave number k&, defined in Eqs. (2.6) and (2.7). Clearly

H, (x).H, (x')
(V +k ) g 2

= g HI(x) Hi(x')
I

as in Eq. (2.14), with h&(z) being the P component of
HI (x) at the beam-pipe radius.

APPENDIX B

=5(x' —x), (A6) Our task is to find the nonoscillatory part of

K, (z,z')=
e ' ' cosn~

ag(b —a) „X X
(1+5„O) k—

z'+z

2 (81)

It is clear that the only surviving term will be E, (z, z ), where the oscillatory part of the cosine term will cancel that of
exp[ —jk (z' —z)] in the vicinity

kgn— (82)

Specifically we find, in the region defined by Eq. (82),

(k;(z, z ))„=0 (83)

( g )
2rr exp[ j(n —kg/vr)8]

( 1+5„O) —n
g

2 (84)

where 0:vr(z' —z) /g. Equa—tion (84) clearly indicates
that the important contributions come from k

Iz' —z
I

1/2

(86)

kg g ))
vr

and consequently from

(85)
The sum over m can therefore by approximated by an in-
tegral, leading to
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oo j(n —kg/m)e

(k, (z,z'))„= g X .
a 2kg „o 1+5o

&kg /n. n—'

1 k (87)

where the sign following the curly bracket for n & kg/m is determined by giving n a small positive imaginary part to
guarantee eventual decay of the cavity modes in time.

The sum over n in Eq. (87) can be extended to n = —ao and the term involving 5„o can be dropped without affecting
the result. If one writes

kg =++a,
where X is the nearest integer to kg/m and where —

—,
' ~ 5 (—,', Eq. (87) becomes

(K,(z,z') )„=—
' 1/2

g(p —~)eX,

J
(&—p) &/2 '

1

(p —&)
p )6 4

(89)

If one averages over b. (corresponding to a "local" aver-
age over k) the sum over p becomes an integral over the
continuous variable m defined by p =6+m, with the re-
sult

depending on whether x ~~0, one finds

(k, (z,z'))„=, [j(1+j)—(I+j)]~Fr
2a kg z' —z

(812)

(g, (z,z'))I, ——
a 2kg

1 /2
dw

(
—Jwe Jwe)

&w

(810)

or

0, z'&z,
(&,(z,z') )„= (j—1)~1T

z (z,
a&k (z —z')

(813)

Using

o V'w

1/2

(1+j) (811)

identical to the result in Eq. (3.5). We have therefore
shown that, for large k, the nonoscillatory part of
K, (z, z') is correctly given by treating the sums over m

and n as integrals.
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