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Hadron scattering in the large-N, limit as a problem in linear algebra
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We study meson-baryon scattering in the nonrelativistic quark model, to leading order in 1/N, .
The problem is elegantly expressed as a matrix equation T=H T, where T is the scattering matrix
and II is a projection operator expressible as an 18j symbol of the second kind. The transformation
that diagonalizes II is the crossing relation between s-channel and t-channel partial-wave ampli-

tudes. The solutions to the equation are those scattering amplitudes which satisfy the "I,=J, rule"
and the "proportionality rule, " two large-N, selection rules which have been derived using Skyr-
mion and one-boson-exchange techniques as well. The projection-equation approach is also extend-

ed to operators other than the the meson-baryon T matrix.

I. OVERVIE%'

In this paper we study two-flavor meson-baryon
scattering to leading order in the I/N, expansion. Our
tool is the old nonrelativistic quark model, generalized to
N, colors, although (as we shall make clear in Sec. II) the
discussion could equally well be framed in terms of the
Skyrme model.

The partial-wave meson-baryon T matrix will be
shown to obey a matrix equation of the form

T=II(L,L') T,
with L and L' the initial and final orbital angular mo-
menta, respectively. This turns out to be a highly non-
trivial constraint on the scattering. For each L and L',
II(L,L ) is a numerical matrix —in fact, a projection
operator —formed from the various isospin and angular
momentum invariants in the problem; its construction
will lead us to an excursion into the forgotten realm of
the higher j symbols. The solutions to Eq. (I), the eigen-
vectors of II(L,L') with eigenvalue unity, are the scatter-
ing amplitudes that obey two large-N, selection rules that
were recently derived using both Skyrmion' and one-
boson-exchange techniques: the "I,=J, rule" and the
"proportionality rule" described later in this introducto-
ry section.

Before delving into specifics we brieAy review some
prominent developments in the large-X, approach to
strong-interaction physics. Hopefully, this will place our
present findings in the proper perspective. Over the past
15 years, the 1/N, expansion has provided much qualita-
tive insight into the properties of hadrons. Although
originally formulated by 't Hooft as a means of organiz-
ing the quark-gluon diagrams of QCD (Ref. 3), it has
been gainfully applied to approximation schemes as
diverse as the nonrelativistic quark model, the Skyrme
model, and one-boson exchange. Admittedly, we are
still far from having a complete description of the large-

X, world —such a description would entail specifying the
full hadron spectrum and scattering matrix, an unimagin-
able task. Nevertheless, we can already point to substan-
tial progress on both fronts.

Large-X, spectroscopy. Perhaps the most interesting
feature of the large-N, hadron spectrum is the existence
of infinite towers of states (quite aside from Regge trajec-
tories). In the meson sector, asymptotic freedom requires
the presence of an infinite number of resonances in each
J channel. Both the masses and the mass splittings
scale as N, and the resonances are narrow, with widths
-N, ', the dominant decay modes being resonant two-
body final states. Exotic four-quark states are sup-
pressed.

The role played by baryons in the 1/N, expansion was
clarified by Witten, who showed that, while their masses
scale as N„as one would naively expect for an object
with N, valence quarks, their sizes and shapes have a
smooth, N, -independent limit. These attributes, Witten
noted, are those of a monopole or soliton, an analogy that
proved extremely fruitful, culminating in the resurgence
of the Skyrme model. '

Among the nonstrange baryons in larger N„one finds
a tower of positive-parity states with equal spin and iso-
spin:

1 3 N
~ ~2'2''''' 2

(fermionic baryons, N, odd) (2a)

or

I=J=0, 1,2, . . . ,

(bosonic baryons, N, even) . (2b)

In our world, with N, =3, this tower comprises only the
nucleon and the A. Viewed from the perspective of the
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nonrelativistic quark model, these are the ground-state
baryons formed from N, quarks in S-wave orbitals bound
by a confining potential. Alternatively, in the Skyrme
model, they are the quantized rotational exitations of the
"hedgehog" soliton

Uo=exp[iF(r)r ~]. .

From either point of view, these states are expected to be
degenerate and stable in the large-N, limit, with mass
splittings of order N, ', and decay widths of order N,
in the chiral limit.

Additionally, for any N„ there is a rich array of reso-
nances, mostly with I&J, in which the vibrational and
rotational modes of the quarks are excited. These states
can be formed from the I=J baryons discussed above
through pion scattering, for example, and will have mass
splittings and decay widths characteristically of order N, .
As Mattis and Karliner demonstrated in their leading-
order large-N, Skyrme model analysis, ' the baryon spec-
trum in large N, is surprisingly predictive in our world,
in which N, =3. Almost all the observed N' and 5 res-
onances could be accounted for in their scheme, to within
7%%uo accuracy of the measured masses, after a two-
pararneter fit of the constants in the Skyrme Lagrangian.

Large-N, scattering matrix. Some interesting things
can also be said about the scattering matrix in large N, .
Meson scattering is especially simple: mesons are stable
and noninteracting to leading order in 1/X, . In contrast,
baryon scattering, viewed from either the quark-gluon or
the soliton picture, " is thought to be extremely compli-
cated. The calculation of the scattering matrix can be ex-
pressed as a saddle-point problem, which requires the
solution of nonlinear classical equations. Not surprising-
ly, most of the attention has therefore focused on the in-
termediate case of meson-baryon collisions. The fact that
mesons and baryons have different mass scales in large N,
is a boon: the baryons can be treated as nonrecoiling ob-
jects, essentially external potentials, and the scattering of
the mesons is governed by the linear equations for small
perturbations about the baryon background.

When the baryons involved in the collisions are
members of the I =J tower (2), one can go much further
by exploiting a peculiar symmetry called "K spin, "which
is defined as the vector sum of isospin and angular
momentum:

the relation of these predictions to the large-N, limit of
@CD is less firm.

The J =J baryons can be expanded in terms of states
~
A ) that are singlets under K~ (see Sec. II):

~ I g

'z Sz ~ I g

3& Iz )$z

The advantage of this choice of basis is that in the large-
X, limit, the interactions of baryons become diagonal in
A. This was first recognized in the context of the nonre-
lativistic quark model by Manohar. In the Skyrme mod-
el, Mattis and Peskin' and, independently, Hayashi
et al. ' exploited K-spin symmetry to derive linear rela-
tions between the partial-wave amplitudes for the pro-
cesses ~N~~N and mN~mA, relations that express the
isospin- —, amplitudes, for example, as linear combinations
of the isospin- —, amplitudes with the same value of orbital
angular momentum. These relations were subsequently
generalized to the case of arbitrary meson spin and iso-
spin. '

Most recently, within both the Skyrmion' ' and one-
boson-exchange frameworks, the linear relations of Ref.
14 have been shown to simplify dramatically when the
partial-wave amplitudes are recast in terms of t-channel,
rather than s-channel, quantum numbers (see Fig. 1). In
the t-channel formulation, the meson-baryon collision is
pictured in terms of boson exchange, whereas in the s-
channel formulation, it is viewed as occurring via baryon
resonance formation. The constraints due to K spin
reduce to two simple rules in the t-channel picture, both
valid to leading order in 1/N, .

(1) The I, =J, rule (Refs. 1 and 2). The isospin of the
exchanged state must equal its total angular momentum
(spin + orbital).

(2) The proportionality rule (Ref. 1). For given I, =J„
meson-baryon amplitudes which differ only in the choice
of initial and/or final I =J baryon (e.g. , a 5 instead of a
nucleon), are proportional. The energy-independent con-
stants of proportionality are [(2R +1)(2R'+1)]'~,
where R and R denote the initial and final spin-isospin
representations of the baryon ( —,

' for nucleons, —,
' for b, 's,

etc.).

Of course, there can be no preferred alignment of spatial
and isospin axes; one ought really to define a family of
K-spin operators Kz in which the relative orientation is
parametrized by an arbitrary SU(2) matrix A:

JLIS)JS

"z sz
Iy, Sy ))IZ&SZ

Many qualitative features of the meson-baryon scattering
matrix, including the relative sizes and signs of the
partial-wave amplitudes, find a natural explanation in
terms of this symmetry. ' ' ' As recently shown by
Braaten and Cai, ' K spin can also account for certain
qualitative features of baryon-baryon scattering, although

(b)
FICx. 1. (a) s-channel vs (b} t-channel meson-baryon scatter-

ing diagrams. Directed lines are baryons, undirected lines are
mesons. The various quantum numbers are defined later in the
text.
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Summary of results .We now return to our main re-
sult, Eq. (1), and make it more precise. This will require
some notation. As stated, we will be considering generic
two-Aavor meson-baryon collisions of the type

P and g stand for arbitrary mesons of spin S& and S&,
isospin I& and I&, and parity P& and P& (Ref. 19). 8 and
8' denote I =J baryons in the tower (2a) or (2b), depend-

ing on whether N, is odd or even. A partial-wave ampli-

tude for this process can be written as TI J ss'LL'RR' with
s s

I, and J, the total s-channel isospin and angular momen-

tum, S and S' the total spins of the initial and final

meson-baryon systems, L and L' the initial and final or-
bital angular momenta, and R and R' the initial and final
baryon spin-isospin representations. Parity ensures that
(
—1) P4, =( —1) P4, .

We will show that, for each L and L', and to leading
order in 1/N„ these scattering amplitudes are solutions
to a matrix equation of the form

I J,SS'LL'RR'
I,J,SS 'RR '

, I,J,SS'RR)» ss'~&' ~1 J ss II. ItsS S s s

(4)

The matrix II(L,L') can be written compactly as an 18j
symbol of the second kind:

+(L L')I's'ss'zz' =k 'Vs]I J.]([R][R'][S][S'][R][R'l[S][S 'l)'

S'

with [R] short for 2R +1, etc. The reader unfamiliar
with this object will find it defined graphically in Fig. 2.
Alternatively, it can be written as a product of six 6j sym-
bols, as explained in Appendix A [Eq. (A10)].

The summations in Eq. (4) extend to infinity over all
non-negative values (either integral or half-integral as ap-
propriate, depending on whether X, is even or odd), sub-

ject to the 12 triangle inequalities implicit in the 18j sym-
bol, which can be read off from the vertices in Fig. 2.
This divergent sum is compensated by the infinite nor-
malization constant k in Eq. (5), defined by

k =g[R]2,

meson-baryon T matrix.
Most of our mathematical apparatus is stored in two

appendixes. Appendix A is designed as a brief, self-
contained introduction to the higher j symbols, material
that (to the best of our knowledge) is not otherwise avail-
able in predigested form. All the identities needed in
Secs. III—V are derived. Appendix 8 contains some tech-
nical details necessary for the proper normalization of the
large-N, baryon.

where R runs over the non-negative integers or half-
integers as above. The infinities will cancel out in the
end.

The remainder of the paper is organized as follows.
Section II describes the construction of the large-N,
baryon as a superposition of the Kz-invariant states

~
A ), a construction that closely parallels the collective

coordinate approach of the Skyrme model. The section is
patterned on an elegant paper of Manohar's, which estab-
lished the group-theoretic equivalence of the Skyrme and
nonrelativistic quark models in the large-N, limit. Sec-
tion III applies this formalism to the meson-baryon
scattering matrix, and culminates in Eqs. (4) and (5). In
Sec. IV we diagonalize the matrix II(L,L'), and present
the complete solution to Eq. (4). The main conclusions of
Refs. 1 and 2, the I, =J, rule and the proportionality
rule, are recaptured, and the interpretation of II(L,L') as
a projection operator is made manifest. Section V
clarifies the relation between the present results and pre-
vious work on the subject. The projection-equation ap-
proach is also extended to operators other than the

S1

FIG. 2. The 18j symbol of the second kind, using the graphi-
cal notation of Yutsis, Levinson, and Vanagas (Ref. 20). Each
line is labeled by an angular momentum j and has an implicit
magnetic quantum number m. Each vertex represents a 3j sym-

bol (+ + + ), with the j's and I's ordered
1 2 3

(counter)clockwise if the orientation of the vertex is negative
(positive). An arrow pointing toward (away from) a vertex
means that the corresponding I in the 3j symbol should have a
minus (plus) sign. Regardless of arrow direction, each internal
line comes with a factor ( —1)' . A sum on all m's associated
with internal lines is implied.
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II. BARYONS IN THE LARGE-N, QUARK MODEL

In this section we review Manohar's construction of
the baryon wave function in the two-Aavor nonrelativistic
quark model generalized to arbitrary values of N, (Ref.
6). Consider the quark state

—iud —dt) .O

v'2

In component form,

is the quark-'model analog of the hedgehog Skyrmion Uo,
which, too, is annihilated by K.

One can also consider rotated hedgehog quark states

with A an arbitrary SU(2) matrix. Their elementary
properties are

K, 1l("'=0,

q(
—A) q( A)

and

&g(")~1l(")=-,'trA'B . (10)

Under general isospin and angular momentum transfor-
mations Al and A J, these states transform as

1 T l—(At Ar2AJ );, = —(At AAJr2);,v'2 2 z' z

This state is constructed to be a K-spin singlet:

KQ =(I+J)tl =0 .

Following Skyrme-model nomenclature, one might refer
to 1i) as a "hedgehog quark state. " The N, -fold tensor
product

using the in variance of the group measure:
dA =d ( At A AJ). This will be the desired transforma-
tion law if

(AtAA )= g y', ', (A)D' '(A )D' '(A )'2'2
I t Z Z '2'2 '2'2

Equation (17) is satisfied by the choice

g;, ( A)= c(iN, ) ,D((i r2A),

where

cia (N, ) =2 ' [R]

(17)

baryons considered in Sec. I as quantum superpositions of
the K-symmetry states

~
A ). Actually, for finite N„ this

can be accomplished in an infinite number of ways, since
the

~
A )'s are overcomplete. [There are infinitely many

of them, while the dimension of the space of X,-quark
states is only (N, + 1)(N, +2)(N, +3)/6. ] The expansion
presented here, due to Manohar, is distinguished by the
fact that, apart from normalization factors, the wave
functions will be independent of N, .

Let ~;. , ) stand for the positive-parity baryon state that'2'2

transforms as

iR, t, )...„,„XiR, s, )„,„.
We would like to write this state in the form

I;, )=f dAy', , (A)l» . (15)

Here, y, , ( A ) is the wave function of the baryon (to be'2'2

determined) in the group space spanned by A, and d A is
the invariant measure on the group, normalized so that

f dA =1.
Under the general isospin and angular momentum

transformations given in Eq. (11),

f dA y, , (A)(A, AAt)

(16)

( Al Z( Z(J )

$'Z Z

The Kz-invariant N, -quark states
~

A ) are defined by

~

A ) q(A)@ . . . @q(A)

X'
N, /2+m

X,+2
4 (N, +2)/2+m

—1/2

From Eqs. (8)—(10) it follows that

K„~A)=0, (12)

(13)

(19)
As shown in Appendix B, this choice of normalization
factor cz(N, ) ensures that the physical baryon states are
orthonormal:

&, , i, , ) = f dA fdBy. , *, (A)& A iB)y;, (B)

& A ~B) =(-,'trA'B) '. (14) (20)

Analogous states can be constructed in any model where
I and J are defined. In Skyrmion physics, A is known as
the rotational collective coordinate of the baryon and

~
A )

represents the rotated Skyrmion 3 Uo A ~.

We now explain how to express the physical I =J

For future reference, we note that, as N, ~~,
1/4

c~(N, ) i/[R] .
8
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5( A, B)= g[R]D,'P'( A)D,'i, ' (8), (23)
R=o, —', i, . . . & b

which satisfies

fd85(A, B)f(B)=f(A)

for any function f [as follows from Eq. (B4)]. It is easy to
show that, in the large-N, limit,

mN,

8

—i /2

—,'[5( A, B)

+( —1) '5(A, —8)] . (24)

Equation (24) is an immediate consequence of Eqs. (18),
N

(21), and (22). The effect of the phase ( —1) ' is to re-
strict the summation in Eq. (23) to either integral or
half-integral values of 8, depending on whether N, is
even or odd.

We can generalize the previous equation to matrix ele-
ments & A lOlB & of an arbitrary spin-isospin operator O.
Suppose that 0 is expressible as a sum of operators that
act on only n quarks at a time, with n & N, . Manohar's
key observation is that, in the large-N, limit,

&AlolB&

& A lol A & [5(A,B)+(—1) 5(A, —8)],
N —+ oo 2k

The K-symmetry wave functions (18) were first con-
structed within the framework of Skyrmion physics by
Adkins, Nappi, and Witten. Although these authors
were interested in the large-N, limit, the wave functions
are actually valid for any value of N, . In particular, for
N, =3, Eqs. (15) and (18) reproduce the familiar SU(6) ex-
pressions for the nucleon and 6, as the reader can check.

Because the spin-isospin states (unlike the K &-
invariant states) form a basis for the space of states, Eq.
(15) has a unique inverse:

lA &= y y[R]c '(N, )y", ,'(A)l, , & .
R=N /2, N /2 —1, . . . i, s

(22)
The easiest way to verify this formula is to show that
l
A & so defined indeed satisfies Eqs. (12)—(14) (see Appen-

dix 8).
Henceforth, we shall focus on the case N, ~~. Two

important simplifications occur in this limit which justify
the use of the K „-invariant states

l
A &. First, these

states become linearly independent and form a bona fide
basis for the infinite-dimensional state space; consequent-
ly, the wave functions g,", ( A) given in Eq. (18) become

'z z

unique. Second, the inner product & A lB & becomes more
and more sharply peaked about the points B =+ A; this
is obvious from Eq. (14), since

l —,'tr(AtB)l (1 at all other
points. To quantify this last statement we introduce the
SU(2) 5 function

FIG. 3. The 15j symbol of the first kind, formed from the an-
gular momentum quantum numbers characterizing the col-
lision. See Fig. 2 for conventions.

k =
—,'[5(A, A)+( —1) '5(A, —A)] . (26)

using (25) and (13). The 5-function approximation has re-
duced the double integral in Eq. (27) to a single integral.
It is this reduction, Manohar observed, that makes the
large-N, nonrelativistic quark model outlined here
group-theoretically equivalent to the Skyrme-model ap-
proach introduced by Adkins, Nappi, and Witten. For,
questions of normalization aside, the final expression in
Eq. (27) is precisely what a Skyrme modeler would write
for the physical matrix element of O.

In the next section we will examine the consequences

We shall refer to this as the 5-function approximation.
As before, it is valid because & A lo lB & contains a factor

N —n
of ( —,'trA "8) ', which becomes more and more sharply
peaked about the points 8 =+A as N, ~~ (or, more
precisely, N, n~—ao). The present definition of the
infinite constant k coincides with the one given earlier in
Eq. (6).

We can also consider matrix elements of 0 between
physical baryon states. Changing from the spin-isospin
to the K-symmetry basis, one finds

, Iol;. , &= JdA JdBy,'(A)&AlolB&y, ', (8)

k ' J dA y, , (A)& A lolA &y,. , (A),
C

(27)

with
(25) FIG. 4. The 9j symbol formed from the isospin quantum

numbers characterizing the collision.
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of applying this formalism to the meson-baryon scatter-
ing matrix. %'hile the j-symbol manipulations render this
section rather technical, the basic plan is simple: one
changes from the spin-isospin to the K-symmetry basis,
implements the 5-function approximation, then trans-
forms back again to the spin-isospin basis.

III. DERIVATION OF THE PROJECTION EQUATION

We begin our derivation of Eqs. (4) and (5) by rewriting
the scattering amplitude as a matrix element, and chang-
ing from a "JM"-type to a "j,jz"-type basis in both iso-
spin and angular momentum:

I J I J
TI,J,SS'LL'RR'=(I, J R's'L'I, s, ITl;; RSLIps~ &

X X
I i LSsSyzz z zz yzI&i LSsS&

(I,I„lI~RI~,i, ) (I,I„lI~R 'I~,i,' )

X (J,J„lLSI.,S, ) (J,J„lL'S'L,'S,') (SS, lRS&s,S&, ) (S'S,'lR'S&s,'S&, )

is LI~S& i LIy S (28)

It will turn out to be useful to sum the right-hand side on I„and J„as we11, a harmless step since T does not depend on
them, remembering to divide by [I,][J, ] to compensate for the overcounting.

Next, we use Eq. (15) to switch to the K-symmetry basis:

(, , ', ,'&', & lTl', , ', ',&'s& = f dW fday'*, (a)(A, ,' ~ lTla L,' ' )y (8)
z z z Pz @z

'f d&y,'. ,
'*. (&)(&, ,',' ITI& L, s' s' &x';, (~) .

Q ~oo z itz Qz z Pz Pz z z
C

(29)

In the crucial last step, we have used the 5-function approximation, Eq. (25). Transforming back to the spin-isospin
basis with the help of Eqs. (21) and (22) we rewrite this last expression as

]
m.N,

(30)
8

RT, s
z 2

removing the A dependence from the matrix element. The integration of the four wave functions, defined in Eqs. (18)
and (21), is accomplished with the help of the standard D-function identities

D, i,
'

( A)D, b' (3)=gD,'p'(A)(Ra lR, R2a, a2) (RblR, R2b, b2) (31)
Rab

and Eq. (84); the result is

7T
3

([R][R'][R][R'])' [R "] '(R "I,"lRR 'i 7, ,')(R "I,"lR'Ri,'T,, )(R "S,"lRR 's,s,')(R "S,"lR'Rs,'s, ) .
R "I Sz z

(32)

Note that the explicit X, dependence cancels out between Eqs. (30) and (32), as it must. A further step is to project the
matrix element in (30) back onto partial-wave amplitudes T~ 1 ss, ~~,z~„using the inverse of Eq. (28).

S S

Putting these various pieces together, the attentive reader wil1 verify that we have already arrived at a matrix equa-
tion of the form (4), where, at this stage, II(L,L') is expressed rather clumsily as a product of 16 Clebsch-Gordan (CG)
coefficients, summed on all 24 magnetic quantum numbers, and on the dummy index R ". This unwieldy expression for
II(L,L') can be simplified as follows. Of the 16 CG coeKcients, the 10 that contain angular momentum quantities or-
ganize themselves into the graph shown in Fig. 3, which defines a 15j symbol of the first kind (see Appendix A):

y(( J,J„lLSL,S, ) (J,J„lL,'S'L„'S,') (SS,lRS,s,S,, ) (S'S,'lR 'S,s,'S~, &(J,J„lLSL,S, ) (J,J„lL,'S L,'S,')

X (SS, lRS&s,s&, ) (S 'S,'lR 'S&s,'S@,) (R "S,"lRR 's,s,') (R "S,"lR'Rs,'s, ) )

R S
=( —1) ' ' [R "][J,]([S][S'][S][S'])

S'

S'

R'

R'
R"

(33)
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The summation in (33) extends over the 15 magnetic quantum numbers that appear. Likewise, the six CG coefficients
containing isospin quantities, when summed over the nine magnetic quantum numbers involved, yield a Wigner 9j sym-
bol (Fig. 4):

g (I I„~I~RI~,i, ) (I I» ~ I&R 'I&,i,' ) (I I„~I&RI& i, ) (I I» ~ I&R 'I& T, ,' ) (R "I,"
~
RR 'i 7,' ) ,( R "I,"

~
R 'Ri 'T, )

S

R
=( —1) ~

~[R "][I,] I,
R' R"
I~ R'.
I, R

(34)

These manipulations have reduced II(L,L') to a much neater form:

I,J,SS'RR '
i J, —J, +R "+2R '+S+S'—S—S'+II, I~—

I,J,SS'RR'
R"

X [R "][I,][J, ]([R][R'][S][S'][R][R '][S][S'])'

X.
S'

R'

R'
R" . IS

R' R"
I~ R' . .
I, R

(35)

Our maximally compact result (5), involving a single 18j symbol, emerges directly from the remaining summation on
R ", thanks to the identity (A16). This completes the derivation of Eqs. (4) and (5).

IV. SOLUTION OF THE PROJECTION EQUATION

%'e have shown that, to leading order in large N„ the meson-baryon scattering amplitudes satisfy the matrix equation
(4). In this section we solve this equation by diagonalizing the matrix II(L,L ). In the process, it will become evident
that II(L,L') is, as claimed, a projection operator.

The key to solving Eq. (4) is the change of variables

SS'I J

and the inverse relation

R'
X 'I I J SS'LL'RR'

L I

(36a)

JPJIIt Jt

R'
X

R I, R' R J, J,
I~ I, J~ J~ J, Sp

J~ R J, J~
S I. S~ S'

R'
+ I,J,J]J~LL'RR' (36b)

J~=S~+L, J~=S~+L' .

Implementing the crossing relation (36) in Eq. (4) leads to considerable simplification, thanks to the identities (A17),
(A15), and (A6). After some algebra, one obtains the simple matrix equation

/ It Jt J4, ERRTI J J J LL'RR' g +(L~L )I,J,J J RR' TI J J J LL'RR '
t

I,J J~J~RR '

(37)

where

Equation (36), introduced in Ref. 1, has an important physical meaning: it is the crossing relation that allows one to
pass back and forth from an s-channel to a t-channel description of the meson-baryon collision, in the limit that the
baryons are considered infinitely heavy (as they are in large N, ). I, and J, are the total isospin and angular momentum
of the exchanged state (see Fig. 1), and J& and J& denote the "total meson angular momenta":

II(L,L') ' ' ~ ~ =5 5- -5 -5 — 5 — b(R, R', I, )b(R, R ', I, )b(I~, I~,I, )b(J~,J~,I, ) .
k I,

(38)
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The 6 function in Eq. (38) equals 1 if its arguments sum to an integer and obey the triangle inequalities, and zero other-
wise. It follows from the Kronecker 6's that all t-channel amplitudes with I,AJ, are annihilated by II(L,L'), and must
therefore vanish to leading order in I /X, .

To complete the solution of the matrix equation we carry out the trivial sums in Eq. (37), obtaining

Ts J J z LL;~z =6m J h(R, R', I, )h(I&, I@,I, )b(J~, J~,J, )([R][R']) Tr J J LL, (39)

where the "reduced amplitudes" T are independent of R and R ':

Tr J J LL, '
k g A(R, R ', I, )([R][R '))' Tr r z i LL,'Aa' '
k I

RR '

(40)

One can check the consistency of these two equations by inserting (39) into the right-hand side of (40). The sum on R
and R ' then yields

[R][R ']b(R, R ', I, )=k[I,],
R, R

(41)

which follows from the identity

g[x)~(x,y, z) =bl[z)

and the definition (6) of the infinite constant k. We are left with the reassuring tautology T=T.
Equa«on (39)—with an arbitrary choice of reduced amplitudes T—therefore constitutes the general solution to the

&-channel matrix equation (37). Likewise, using the crossing relation (36b), we can finally write down the complete solu-
tion to the s-channel equation (5):

Tr, J ssL,Lzz = Q [ il'([Jy][Jq][S')[~'1[R][R'])'"(—1) '

J~J~I,

R' R I, R'
X '

I~ I~ I, Jp

J~ R J, J~ R'
~r, J&J&LL, ' ~ (43)

In the course of obtaining these results, we have also ar-
rived at a pleasing physical interpretation of the matrix
II(L,L'). It is the projection operator onto the space
of scattering amplitudes that obey the two principal
conclusions of Refs. 1 and 2: the I, =J, rule,
Tz J J J rL zz ~6r J, and the proportionality rule,

~s, J,J J&LL'za'~ +[R)[R']. .

V. REMARKS

In this section we clarify the connection between the
projection-equation approach developed here and previ-
ous work on the meson-baryon system. We also describe
how our methods can be applied to matrix elements of
operators othe~ than the meson-baryon T matrix.

Reduced amplitudes. In Eqs. (39) and (43) we have ex-
pressed the partial-wave amplitudes for meson-baryon
scattering in terms of a smaller set of ' I, =J, reduced
amplitudes" Tr J J LL . In 'contrast, in Skyrme-model

treatments of meson-baryon scattering, ' ' ' the
partial-wave amplitudes are expanded in a di6'erent set of
quantities Tzz+, ~L„which we shall refer to as "K-

conserving reduced amplitudes. " They are the T-matrix
elements for the unphysical process

p+ Uo ~f+ Uo,

where Uo is the hedgehog Skyrmion given in Eq. (3). In
the present context, the subscript K is the quantum num-
ber for the vector sum of the mesons' isospin and total
(spin + orbital) angular momentum:

K=Ip+L+Sp=Ip+L'+Sg .

It is conserved in this unphysical process, because of the
K invariance of Uo. The subscripts K and E ' are quan-
tum numbers for the nonconserved intermediate quanti-
ties

K=I~+L, K '= I~+L' .

The physical s- and t-channel partial-wave amplitudes
characterizing the physical collisions

P+B~Q+B'
are expressed in terms of the K-conserving reduced am-
plitudes as follows
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Tr J gs'rr rig g [K]([R][R'][S)[S'][K][K'])'
KKK' JS

(44)

Tr, J,J~r~rr. rim =&r,J, g [Ii) '[K]([R][R'][Jp][Jp][K][K'])'r'( —l )
'

KKK'

I~K JC Ip, K J~ I~ K

J~ It K S4, I- K'S, L' KK 'LL' (45)

The relation between the two sets of reduced amplitudes can be seen by comparing Eqs. (39) and (45). One finds

Tr, r r„rr.'= g [Iil '[K]([Jy][Jy][K][K'l)'
KKK'

and conversely, using (A6),

I4, K J4I~ K J~ I~ K

J~It K S~ L K'S~L KK 'LL'

+rrxr; r.r,
= g [It]'([Jy ][Jg][K][K'])'"(—l) '

I J~J~

K J4,

I,
I~ K J~

S] L K'
I~ K

I,J&J&LL (46b)

XA(J~, S~,L)A(J~, S~,L') . (47)

We know of no obvious parallel for this counting rule in
terms of the K-invariant reduced amplitudes Tax, r~, .

Kinematic /imitations. In Refs. 1 and 2, the I,=J, rule
and the proportionality rule were shown to be subject to

These are finite sums, constrained by the triangle inequal-
ities imphcit in the 6j symbols.

Although the 7's and the T's are equivalent [as Eq.
(46) makes clear], each has its conceptual advantage. The
K-conserving reduced amplitudes are particularly well
suited to model-dependent numerical calculations: they
emerge directly from a phase-shift analysis carried out in
the hedgehog Skyrmion background. ' ' ' ' However,
their physical interpretation is not straightforward, be-
cause K, K, and K ' involve sums of isospin and angular
momentum quantities. In contrast, the I, =J, reduced
amplitudes depend on I„J&,and J&, which have direct
physical interpretation as isospin or angular momentum
quantum numbers. Furthermore, the simplest expression
for the partial-wave amplitudes, Eq. (39), is defined in

terms of them. Finally, using the I,=J, reduced ampli-
tudesit i,s very simple to count the number JVrr. r~R of
linearly independent amplitudes —and consequently the
number of model-independent linear relations —for given
values of orbital angular momenta L and L' and baryon
representations R and R'. As is clear from Eq. (39),

JVLr .„ri, is just the number of distinct T's:

JVr L.ri„.= g b (R,R ', I, )b (I~,I~,I, )b (J~,J~,I, )

I J~J~

a kinematic constraint: the momentum transferred to the
baryon during the collision must have magnitude of order
N„rather than X, . These papers used Skyrmion and
one-boson-exchange techniques, respectively. %'e would
like to understand how such a constraint might come
about in the large-X, nonrelativistic quark model, too.
This suggests that we reexamine the validity of the 5-
function approximation, Eq. (25), in the event that the
generic spin-isospin operator 0 carries momentum q.

As always, we restrict ourselves to the case that the
final baryon (as the initial baryon) is a member of the
I =J tower (2); that is, the N, quarks are in ground-state
S-wave orbitals, with no vibrational or rotational modes
excited. In this absence of relative quark motion, the ki-
nematic effect of the operator 0 (q) is simply to transfer
equal momentum q/N, to each of the N, quarks. -The
matrix element ( A ~O(q)~8) will then be proportional
to a kinematic factor ( g(q/N, )

~
i}'r(0) ) ', where

(g(q/N, )~g(0)) is the overlap of a single quark at rest
with a single quark traveling with momentum q/N, . A
back-of-the-envelope estimate of this overlap can be had
from a Gaussian ansatz for the quark wave functions; one
finds

($(q/N, )lg(0)) —exp( —const Xq /N, )

and hence

( & ~O(q)~B ) —exp( —const Xq2/N, ) .

If q is held fixed as N, ~~, this kinematic factor ap-
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proaches unity, and the derivation of the 6-function ap-
proximation given in Sec. II, together with all subsequent
developments, carries over unchanged. On the other
hand, if q is itself of order N„ the kinematic factor gives
an exponential suppression to the matrix element, and a
leading-ord er large-X, analysis becomes meaningless.
Similar arguments can be found ig Sec. 8.3 of Ref. 5.

Projection equation generalized. Finally, we note that
the projection equation formulation advocated here is by
no means restricted to the meson-baryon T matrix. Con-
sider, once again, Eq. (27):

(R, IOIR ) — k ' f dA y, , *, (A)(A IOIA )y;, (A) .
C

(R' IOIR )—

where

RR'?, ?, X s

"z"z z z. (R' IOIR )

(48)

Transforming the right-hand side back onto the spin-
isospin basis [Eq. (22)] and carrying out the integral over
SU(2) [Eq. (32)], one obtains the projection equation

II, . '. ,
' ', '=k ' g ([R][R'][R][R '])' [J]

'z'z'z'z JM M
1 2

X ( JM, I
RR 'i,T,' ) ( JM, I

R 'Ri,'T,, ) ( JM2 I
RR 's, s,' ) ( JM2 I

R 'Rs,'s, ) . (49)

RR'?, I. s s

RR '~,x,'s, s,' ll 'c, ?,,'s,Z,
'

(50)

That II is, in fact, a projection operator, satisfying the
idempotency condition

Under an odd permutation of the columns, or under the
simultaneous negation of the m's, 3j symbols are multi-

plied by the phase ( —1) ' ' '. They satisfy the ortho-
gonality relations

can be verified with the help of Eqs. (A14), (A13), (42),
and (6).

Many large-N, group-theoretic results„of the sort that
have permeated the Skyrme-model literature over the
past few years, ' can be elegantly reformulated as projec-
tion equations of the form of Eq. (48). Our principal re-
sult, Eqs. (4) and (5), stands as an important special case
in which the angular momentum and isospin-preserving
qualities of T, as well as its transformation properties
necessary for meson annihilation and creation, have been
fully exploited.

z

J& J2 J3
& [j3]

J3m3

and

Jl J2 J3

m& m2 m3
m)m2

J2 J3
I

m2 m3

J& J2 J3

m] m2 m3

=5,5
m)m ) mmmm 2

(A2)
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APPENDIX A: EVERYTHING YOU ALWAYS WANTED
TO KNOW ABOUT THE HIGHER j SYMBOLS

J& J2 J3

m2 m3

j) j2 m3

V'[j3]
(j,j,m, m, Ij3 —m, ) .

(A 1)

In this appendix we give a short self-contained intro-
duction to the lost art of the higher j symbols. We will
probe only as far as is necessary to derive the identities
used in this paper. The reader whose appetite is whet is
referred to the comprehensive treatise of Yutsis, Levin-
son, and Vanagas. The notation [x]=2x +1 will be
used throughout.

The basic building blocks of the subject are the 3j sym-
bols, which are proportional to the usual Clebsch-Gordan
coefficients:

=[j3] ~,„;& ~(A J3 j3) (A3)

The function b, (jt, jz,j3) equals 1 if its arguments sum to
an integer and obey the triangle inequalities, and zero
otherwise.

A 3j symbol can be pictured as an oriented vertex at
which three directed lines meet. Products of 3j symbols
summed over magnetic quantum numbers can be
represented by graphs, using the conventions of Yutsis
et al. laid forth in the caption to Fig. 2. Note that,
with these conventions, reversing an arrow on an internal
leg in a graph gives a phase ( —1) j, while reversing the
three arrows associated with a vertex, or switching the
orientation of a vertex, multiplies the associated 3j sym-
bol by ( —1) ' ' '. In physical applications, it often
happens that one of the j's in a graph is zero; up to
phases, this is tantamount to removing that line from the
diagram.

The simplest nontrivial rotationally invariant symbol,
with no dependence on magnetic quantum numbers (the
m's), is the 6j symbol, defined as



39 HADRON SCATTERING IN THE LARGE-N, LIMIT AS A. . . 2747

J2 J3
X '

J) J2 J3

The 6j symbol is invariant under a permutation of
columns, and u~der the simultaneous interchange of two
elements from the top row with the corresponding ele-
ments from the bottom row. It also satisfies an ortho-
gonality relation

(A4)

Alternatively, using Eq. (A3), one can tie together the
three loose ends in (A4) with a 3j symbol and obtain

J) J2 XJ) J2 X

+[X] J J J J J Jl'

=[J3] '&J J.&(j ),J2,J3)b(j2,J„J3), (A6)
3 3

J& J2 J3
(A.5) with b, as in (A3).

By applying Eq. (A.4) iteratively, it is easy to establish
the identity

JP J3 J„
~+ ~ ~ ~

4 ~z" [J]—]~, j(+ ' '+j„)—j +k)+ +k +(n+ljJ+M
oJJ' MM'~

r~+

kP k3 k„ ) J&
X 'k

J J2

l] k3

Jn —1 kn —1

kn Jn ln
(A7)

A second useful corollary of Eq. (A4) comes from multi-
plying both sides of the equation by

M', —M2 m3

As is clear from these diagrams, Eq. (A8) has a natural
particle physics interpretation as a crossing relation that
enables one to pass between an s-channel and a t-channel
description of a scattering event.

The (3n)-j symbols of the first and second kind,

and, using Eq. (A2),

3

Jn —
&

ln-i
Jn

k„

ln .

(A8)

fl-2

FIG. 5. The (3n)-j symbol of the first kind. FIG. 6. The (3n)-j symbol of the second kind.
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and

l 0 ~ ~

1

Jn —1

In

Jn

are defined, respectively, in Figs. 5 and 6. They can
both be expressed as a product of n 6j symbols, as fol-
lows. First, one applies the crossing relation (AS) to any
one of the "rungs. "Next, one uses the identity (A7). The
results of this calculation are

Jn —1

~ ~ k„

In-1
Jn

k„

y)~]( 1 )(r+(n —1)x
k2 j2

X Jn —1

I1 k„ Jn

X Jn

ln —1 J1

kn x

k, l„ (A9)

and

Jn —1 Jn J1 k1 X

I„=g[x](—1) +"
X

Jn —1 kn —1

kn jn

Jn

k,

k„x
j, I„ (A10)

with cr the sum of the 3n entries. The various syinmetries of these symbols (up-down Hip, left-right flip, cyclic permuta-
tions) are obvious from Figs. 5 and 6, and also follow immediately from Eqs. (A9) and (A10).

The case n =3 merits special attention. The highly symmetric 9j symbol of the first kind (Fig. 7) is equivalent to the
well-known Wigner 9j symbol:

J2

l2

J3

I3 .= k,
J2

(A 1 1)

k3 k2 k3 l2

(A12)

The Wigner 9j symbol is invariant under reAection about either diagonal, and picks up a phase of ( —1) under an odd
permutation of rows or columns. Thanks to these symmetries, the 9j symbol can be expanded as a product of three 6j
symbols in six distinct ways. It satisfies three useful identities which the reader should have no trouble proving using
properties of 3j and 6j symbols discussed above:

k2 k3 2k J1 J2 J3 l1 l2 l3

k '
I 1 k k ' k kJ1 1 3 3 1 J2 1 2

x k2 k3

J1 J2

X lJ13]024] ' J3 j4
13 24 J J13 24

J34-
J J13

J2

J4 ~34 ~J12] I J34] '&, , &, , ~(J J2 ~12)~(J3 J4 J34 )~(J12 J34 J )
12 12 34 34

J24 J
(A13)

FIG. 7. The Wigner 9j symbol. FKJ. 8. The 9j symbol of the second kind.
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J1 J2 ~12

J
J2~

n

(A14)

In contrast, as is obvious from Fig. 8 and Eq. (A4), the 9j symbol of the second kind is not really a new symbol at all,
but rather a product of two 6J symbols:

J2 J3 l, l2 l3 l1 l2 l3
1) 1 I

k3 k1 k2 J3 J1 J2
(A15)

k, k2 k3

In Secs. III and IV, respectively, we make use of two identities relating (3n) j—symbols to 3(n+1)—j symbols:

g[x](—1)" l,
Jn

'Jn+1

k„x
Jn (A16)

k„ la+1 km+1

and

—
( 1 )Jn+1 n+1 n n+1

~ ~ ~ J

~ ~ ~

n kn+1

l. +1

k1

Jn —1

k„

l„x
l„

lg —1 Jn —1 Jll

—
( 1)jl 1 ~n —1 n —1

k1

Jn —2 Jn —1

k„

l„k„
ln —1 kn —1 Jn

(A17)

Equation (A16) is a straightforward consequence of Eqs.
(A9) —(A12), while Eq. (A17) follows directly from Eqs.
(A10) and (A15). This coinpletes our discussion of the
higher J symbols.

APPENDIX 8: NORMALIZATION
OF BARYON %'AVE FUNCTION

In this appendix we derive the expression (19) for the
baryon wave-function normalization factor ci, (X, ). It is

fixed by the orthonormality condition (20):

( ~

)=c (1V )fdA fdBD( )a(i&2At)
'z'z 'z'z

D' '(A A )=D' '(A ) D' '(A )

D (R)( A t) —D (R)t( A ) (83)

and

f dA Da'b' ( A)Dab ( A)
2R + 1

~RR'~aa'~bb' & (84)

one confirms that the integral in (81) is proportional
to 5)tz 5,. Alternatively, changing integration variables

'z'z

to A =B A and B=8, one finds that the integral is pro-
portional to 5zz 5 „completing the argument.

We now set R =R ', i, =i,', and s, =s,' in (81) and sum

oni, ands, :

S S S

XD( )(i~ Bt)( 'trA B)—'

(81) (85)

(2R+1) =cia(N, )fdA fdBtrD' '(ABt)( —,'trA B) '

(~ ) fdAtiD( )(A)( 'trAt)

where the group-invariant measure d A is normalized to

f dA =l.
We 6rst argue that the inner product is, in fact, pro-

portional to the three Kronecker 5's. Changing integra-
tion variables to A = AB and B= —iB72 and using the

elementary properties of D functions

The second equality follows from the invariance of the
measure, d ( AB ) =d A. To compute the integral over A

we will use a convenient parametrization of SU(2):

A =cosf +i sinf [cos8r3+sin8(costs, + singr2)]

E$73/2 —s 0&2!2 tf r3 i Hr&/2 Ipv 3/2=e e e e e
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The range of parameters is trA =tr(e ')=2cosf . (88b)
0~f ~m, 0 ~8 ~n. , 0~$~2tr .

The measure dA must be proportional to (detg, b)'
where

g, b =,' tr( B, A Bb A )

The normalization equation is then

(2R +1)

defines the natural metric on the group space. A little
algebra reveals three nonvanishing components:

=ctt(N, )—f df sin f e 'f cos 'f
m= —8

gff 1 ggo sin f, g&&
= sin f sin 0

The properly normalized measure is therefore

fdA:— f df sin ff d(cosO) f dP . (87)

=cd(N, ) g —f df e ' (cos 'f —cos ' f),
7T

(89)

trD' '( A) =trD' '(e ') = g e 'f
m= —R

(88a)

The advantage of this parametrization is that the traces
are particularly simple:

whereupon our claimed result, Eq. (19), follows immedi-
ately from a binomial expansion of the cosines.

Using the methods outlined here, the reader should
have no diSculty verifying the normalization of the in-
verse relation, Eq. (22).
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