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We discuss the decays KL ~~ l+l when m, is large. Unlike the case of EL ~me. , CI' violation
in the decay amplitude itself is comparable to that which comes from the mass matrix. We study
the CP-violating efFects, including strong-interaction (QCD) corrections to the amplitudes which
arise from one-loop diagrams. Short-distance contributions from diagrams that involve a F and a
Z or two 8"s as well as from those with a photon and a 8 are important when m, ~ M~.

I. INTRODUCTION

It is almost 25 years since the original observation of
CP violation in long-lived neutral-K decays. Until very
recently, all experiments were consistent with this
phenomenon originating in a "superweak" interaction,
whose one measurable manifestation was in the mass ma-
trix of the neutral-E system. As a result, the long-lived
neutral-K meson El =E2+eE, is dominantly the CP-
odd state K2, but contains a small admixture ( cc e) of the
CP-even state K&.

A different, more definite origin of CP violation occurs
in the three-generation standard model where CP-
violating effects arise through the presence of a single,
nontrivial phase in the matrix which expresses the mixing
of quark Aavors under the weak interactions. For the
K mass matrix, the CP-violating phase enters through
-"box" diagrams that involve heavy quarks and can con-
nect the quarks in a K (ds ) to those in a K (sd ), mim-
icking in this regard a "superweak" theory.

In the past year the NA31 Collaboration has presented
statistically significant evidence for a nonzero value of
the parameter e, which is a measure of CP violation in
the E~a.m. decay amplitude itself. Experiments at Fer-
milab and at CERN (Ref. 4) are continuing with the aim
of reducing the statistical and systematic errors to a level
where, if the central value of the CERN experiment
holds, a nonzero value of e' will be firmly established and
a "superweak" explanation made untenable.

Such a value of e' is consistent, within rather large
uncertainties of the relevant hadronic matrix element,
with the three-generation standard model. Indeed, it was
suggested 10 years ago that if CP violation originated in
a phase of the three-generation quark mixing matrix and
if one-loop "penguin" diagrams give an important part of
the K ~a~ decay amplitude, then a nonzero and measur-
able e' would result.

While the three-generation standard model plausibly
explains CP violation as it is observed up to now in na-
ture, we would like to obtain additional evidence that
points in this direction. If we could find several experi-
mental processes which exhibit measurable CP-violating
effects and all could be fit by a single value of the ab initio
free phase in the mixing matrix, then we will have gone a
long way toward establishing this as the correct explana-

tion. If along the way the standard model cannot ac-
count for the results of these experiments, so much the
better —we would have evidence for physics beyond the
standard model.

There are several avenues accomplishing this; none of
them is easy. One is to look for CP-violating effects in
the B-meson system. Here the CP-violating asymmetries
potentially can be very large —of order 10 ' or more in
some rare modes, rather than the order 10 effects in
the neutral-E mass matrix. The sheer numbers of B
mesons estimated to be necessary to get a statistically
significant effect put this exciting possibility many years
in the future. ' Another avenue is to consider other E
decays where CP-violating effects, although very small,
may occur with a different weighting (from that in
K~srn)between e. ffects originating in the mass matrix
and in the decay amplitude. Although these experiments
are also very difficult, there is the advantage of high in-
tensity beams and sophisticated detectors already in ex-
istence to perform the measurements of e' and search for
rare-E decays.

An example of such a process is KL~m I+/ . If CP
were conserved, the long-lived eigenstate would be the
CP-odd state K2. It would not decay to
~ y„„„„~~I I, this being forbidden by CP invari-
ance. " Since nature has chosen to break CP invariance,
the decay can proceed through (I) the small part, =@K„
of the KL wave function that is CP even (we call this "in-
direct" CP violation); and (2) CP-violating effects in the
Kz ~sr l+I decay amplitude itself (we call this "direct"
CP violation). In addition to these two CP-violating am-
plitudes, the decay can proceed in a CP-conserving
manner via the decay chain E2~m yy~~ l+l, where
the photons are either real or virtual. Although higher
order in a, this latter amplitude is not necessarily negligi-
ble in comparison to either the "indirect" or "direct"
CP-violating amplitudes which are also suppressed pre-
cisely because they contain factors that are related to CP
violation.

Naturally, we are most interested in the question of
whether one can see the "direct" CP-violation effects and
especially to investigate if they can be the dominant am-
plitude contributing to the decay. This amplitude comes
from "penguin" diagrams with a photon or Z boson and
also from box diagrams, as shown in Fig. 1. For values of
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FIG. 1. Three diagrams giving a short-distance contribution
to the process K~~I+I: {a) the "electromagnetic penguin";
(b) the "Z penguin"; (c) the "8'box."

carried out by first removing the 8'and then the t quark.
Rather, they must be removed together. Second, the "Z
penguin" and "8' box" diagrams, which are
"suppressed" by factors of m, /M~ and were neglected
in old calculations, are important for large m, . %'e need
to consider the QCD corrections to them as well. Third,
experiments at the required level of sensitivity are begin-
ning to be considered. ' '

In what follows we consider matters in the reverse or-
der of their fundamental (as we see it) interest, although
not necessarily in reverse order of the magnitude of their
contribution to the KL —+m l+l decay rate. So, in the
next section, we turn our attention to a brief review of the
situation regarding the magnitude of the CP-conserving
amplitude. Then we discuss the contribution from "in-
direct" CP violation, followed by the main body of our
work, which concerns the "direct" CP-violation ampli-
tudes when m, -M~. The final section puts the various
pieces together.

m, «M~, it is the "electromagnetic penguin" that gives
the dominant short-distance contribution to the ampli-
tude. This was discussed, with estimates of the CP-
violating effects, ' before evidence for the b quark was
found. A full analysis, including QCD corrections, was
carried out in the case of six quarks, ' building upon
work done with four quarks. ' ' A principal conclusion
of that study was that the "direct" CP violation could be
comparable to the "indirect" efFects.

Why do we reconsider this process now? First, the
possible mass range for the t quark has been pushed up-
ward considerably since Ref. 13. The QCD corrections,
which turned out to be quite important, need to be
redone when m, /M~ cannot be considered to be a small
number. The successive steps of removing heavy parti-
cles from the theory and developing an effective Hamil-
tonian involving only the light quarks can no longer be

. II. THE CP-CONSERVING AMPLITUDE

As noted in the Introduction, a CP-conserving contri-
bution to the process K2~m l+l is induced through
the chain K2 —+~ yy ~m l+l, which is shown in Fig. 2.
We give here a brief review of the checkered history of
this amplitude, partly because it is of interest in and of it-
self, but mainly to set the stage for the treatment of the
CP-violating amplitude which follows. ' In that regard,
the main issue is whether the CP-conserving contribution
to l (Kz~~ /+/ ) is comparable to the CP-violating
contribution or might even "drown out" the latter.

The absorptive part of Fig. 2 can be calculated with the
two intermediate photons on shell. For the first part of
this process, K2~~ yy, there are two invariant ampli-
tudes. ' If we take the momenta as p, p', q„and q2, re-
spectively, and define x, 2

=p q, 2/p .p, then they may be
expressed in a gauge-invariant way as

(~yyK2) = A(x„xz)(qz e, q, e~ —q, q2 e, .ez)

+B(x„x~)(p x,xpE, e2+q, qpp E, p'Ep/p —x, q2. e, p e'z —xz q, .ezp e, )
2 2

with E'] 2 the polarization vectors of the two photons.
When joined with the QED amplitude for yy ~/ / to
form the amplitude for K2~~ l+l, the contribution
from the A amplitude gets a factor of mI in front of it.
This is not hard to understand, as the total angular
momentum of the yy system that pertains to the A am-
plitude is zero; the same is then true of the final l+l sys-
tem. However, the interactions, being electroweak, al-
ways match (massless) left-handed leptons to right-
handed antileptons and vice versa, causing the decay of a
1=0 system to massless leptons and antileptons to be
forbidden. Hence the factor of m& in the overall ampli-
tude for K2 —+m I+i, so that the A amplitude provides
a negligible contribution for K2~m e+e . A corollary
of this theorem applies when the K2~a. yy amplitude is
calculated using traditional current-algebra techniques in

the limit of vanishing pion four-momentum. Only a non-
vanishing A amplitude is predicted. The factor of m,
then found' to be produced in the absorptive part of the
amplitude for K2~a e+e merely rejects the presence

KL

FIG. 2. Diagrams involving Kz~m yy~n I I which give
a CP-conserving contribution to KL ~m I+I
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of only an A amplitude in the current-algebra calcula-
tion. If this were the end of the story, the CP-conserving
contribution to IC2~~ e+e would produce negligible
branching ratios at the 10 ' level' or smaller. '

On the other hand, the contraction of the amplitude
for yy —+e+e with the B amplitude produces no such
factor of m, . B does however contain a coefficient with
two more powers of momentum, and one might hope for
its contribution to be suppressed by angular momentum
barrier factors. Because of the extra powers of momen-
tum, in chiral perturbation theory this amplitude is put in
by hand and its coefficient not predicted. An order-of-
magnitude estimate may be obtained by pulling out the
known dimensionful factors in terms of powers off, and
asserting that the remaining coupling strength should be
of order 1 (Ref. 18). The branching ratio for
E2~m e+e is then of order 10 ' . Again, the CP-
conserving amplitude would make a negligible contribu-
tion to the decay rate.

However, an old-fashioned vector-dominance pole
model predicts comparable A and B amplitudes in
E2~m yy and a branching ratio for E2~m e+e of or-
der 10 ", roughly at the level of that arising from the
CP-violating amplitudes (see below). The B amplitude is
far bigger ' than would be estimated' in chiral perturba-
tion theory. The applicability of such a model, however,
can be challenged on the grounds that the low-energy
theorems and Ward identities of chiral perturbation
theory are not being satisfied. The consistent im-
plementation of vector dominance with the chiral and
other constraints may lead to an extra suppression factor,
and to a smaller prediction than in the old-fashioned
model.

At this point the burden is still on the theorists to show
that the CP-conserving contribution is truly negligible in
EL ~n e e . After a short period when factors of m,
seemed to assure this, we are presently not able to claim
it. In the longer run, it will be in the hands of experimen-
talists to measure El ~m yy and eventually to separate
the 3 and B amplitudes by measuring the Dalitz-plot dis-
tributions, particularly the invariant mass of the two pho-
tons.

III. THE CP-VIOLATING AMPLITUDE
FROM THE MASS MATRIX

As already noted in the Introduction, the presence of
CP violation in the mass matrix of the neutral-E system
results in a small admixture of the CP-even EI state be-

ing found in the long-lived eigenstate:

(2)

where the denominator is unity to an excellent approxi-
mation, as ~e~ =(2.275+0.021)X 10 . We define "in-
direct" CP violation as arising from the E i component of
the KL eigenstate in Eq. (2): CP is violated within the
mass matrix itself, producing the E, admixture in the
EL, while the decay E. , —+sr l+l itself proceeds in a
CP-conserving manner.

So defined, the magnitude of "indirect" CP violation is

dependent upon the choice of phase convention for the
E and E states, as the value of e depends on this
choice. We choose the commonly used convention where
the weak-interaction amplitude for E —+m.m is real when
the mm system has isospin zero. As we do most calcula-
tions in a quark basis where this is not true (precisely be-
cause of CP violation in the decay amplitude for K ~arm. ),
we will have to do a transformation

with 15.6~ /~
= ~e'/e

~
from strong-interaction "penguin"

effects, to get to the commonly used phase convention.
This induces a term in the EL —+m l+l amplitude pro-
portional to i sing=if (which is about an order of magni-
tude smaller than that which is proportional to e); we
shall take due account of this term later when we consid-
er the total CP-violating amplitude that includes both
"indirect" and "direct" pieces. This net amplitude, being
a physical quantity, is independent of phase convention.

With the above definition of "indirect" CP violation we
may estimate its contribution to the decay rate from the
identity:

B(Ki ~ir e e );„d;„„

K=B(K+ m+e+e )

K

I (K, —+ir e+e ) I (KL —+m. e e );„d;„„
X

I (K+ ~7r+e+e ) I (K, ~7r e+e )

(4)

This allows us to relate the desired quantity to the known
branching ratio for the CP-conserving decay
E+—+m.+e+e . Experimental values of 2.7X10 and
4.2 may be inserted for the first two factors on the right-
hand side, while the last factor is ~e~ by the definition
above of what we mean by "indirect" CP violation. The
third factor can be measured directly one day. For the
moment it is the subject of model-dependent theoretical
calculations, with a value of 1 if the transition between
the E and the ~ is AI= —,'. This is the case for the short-
distance amplitude which involves a transition from a
strange to a down quark. For AI= —,', the corresponding
value is 4. With both isospin amplitudes present and in-
terfering, any value is possible. Using a value of unity
for this factor makes

B(KI ~m e+e );„d;„„=0.58 X 10

This is quite close to the previous estimate in Ref. 13, al-
though the discussion is phrased in a different manner.
Instead of relating the branching ratio back to that for
E+~~+e+e, one could proceed directly from the am-
plitude for K, ~sr e+e using the theoretical, QCD-
corrected, short-distance contribution to the real part of
this amplitude. This is dangerous; the QCD corrections
to the real part of the short-distance contribution are so
large as to change its sign, as pointed out in Ref. 13, and
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discussed in the next section. As a result, its magnitude
cannot be calculated reliably. It is too small to explain
1(K+~m.+e+e ) and there is a high likelihood that
long-distance contributions are important. , Ultimately,
all of this discussion can be bypassed by an experimental
measurement of I (Ks~m e+e ). This will provide a
direct determination of the third factor on the right-hand
side of Eq. (4), removing all the present uncertainty that
stems from our theoretical inability to supply a precise
prediction for this decay rate.

IV. CI' VIOLATION FROM THE DECAY
AMPLITUDE

We now turn to the principal part of our investigation,
the calculation of the CP-violating contributions to the
K2 —+m I+I amplitude itself. We work in the standard
model with six quarks arranged in left-handed doublets
with respect to weak isospin, quark weak eigenstates re-
lated to quark mass eigenstates by the Kobayashi-
Maskawa matrix, and CP-violating contributions to the
decay amplitude possible because of the nontrivial phase
present in that matrix.

We will express our calculation in the language of
forming an effective Hamiltonian written in terms of the
low-mass quarks u, d, and s which are involved in the ini-
tial and final states of strange-particle decays. The calcu-
lation proceeds by starting with the theory written in
terms of the weak gauge boson and quark fields, and suc-
cessively integrating out the heavy quanta from the
theory. One starts at the largest momentum scale and
moves to the lowest, at each stage making use of
renormalization-group equations to calculate the
coe%cients of the operators in the effective theory com-
posed of those quarks still extant at that stage.

In previous calculations applied to this process, the
succession of scales was characterized by M~, m„mb,
m„and finally p, which represents the momentum scale
relevant to the hadrons involved in the decay. In this pa-
per we consider t-quark masses comparable to or greater
than that of the 8' and the first step ceases to exist. In-
stead, we remove the t quark and 8' from the theory to-
gether.

At each stage of the calculation we will be left with an
effective Hamiltonian in the form of a sum of Wilson
coefficients times operators:

Q4 = [s y„(1—y~)dp][upyi'(1 —y~)u

+d py"(1 —y5)d

+spy"(1 —y5)s ],
Q5=[s y„(1—y~)d ][upy"(1+y5)up

+dpy"(1+ y5)d p

+spy"(1+y~)sp],

Q6 = [s y„(1 y5)—d p][u py "(1+y5)u

+d py"(1+ y~)d

+spy"(1+y~)s ],
2

Q7v 4
[s y„(1 ys)d

e
Q7+ [s y„( 1 —y~)d ](ey"y5e )

The color indices a and P are summed over the three
colors, while the combination V„,V„d of Kobayashi-
Maskawa matrix elements is the usual one involved in de-
cays of strange particles. The quark fields appearing in
the second factor in the definition of Q3, Q~, Q5, and Q6
generally include all those which have not yet been re-
moved from the theory. At the last stage, where this in-
cludes only the u, d, and s quarks, one of the operators in
Eq. (6) is linearly dependent (this is usually taken to be
Q4). We have chosen the same operators as in Ref. 13,
with the addition of Q7~, whose presence is required now
that we include the contributions from the "Z penguin"
and "8 box" graphs in Fig. 1 (Ref. 28). We have neglect-
ed operators of the form m, so„g" d as giving a very
small contribution to the net amplitude.

If we think first about the situation in the absence of
strong interactions, then the only one of the first six
operators with a nonzero coefficient (to order g in weak
interactions) is Q2, with cz= 1. To order g in weak in-
teractions and order e in electromagnetic interactions,
the diagrams in Fig. 1 generally give nonzero coeScients
of Q7v and Q7„(Ref. 29). For example, if we consider
m, -M~, then at the scale M~, we have an "electromag-
netic penguin contribution [Fig. 1(a)] involving the t
quark,

V„', V„„gC, (p, ')Q, +H. c. ,
2 "'"",

where, for example, at the last stage,

Q 1
= [s y p(1 —y5)d. 1[upy "(1—y 5» p l

Q = [s y„(1 y)d p][u py "(1—y—)u ],
Q3=[s y„(1 y5)d ][u—py"(1 —y~)up

+d py"(1 —y~)d p

+spy"(1 —y, )sp],

(5)
where the coefficient with the Kobayashi-Maskawa factor
removed is represented with a tilde over it:

(25 —19x; )x;
C ~(~v', (Mw) =

72~(x; —1)

( 3x,"—30x, + 54x, —32x, + 8 ) ln(x; )

36m(x; —1)"

and x, =m, /Mii, . The "Z penguin" contributes [Fig.
1(b)]
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V„*,V„d
(9a)

the quark i is generated at scales from m; down to p and
the leading term is

V„*,V„d
(9b)

((M') —C '~) (p') =—
x

2 ~i
1

9m p
(14)

where

C 7), ;(M)),)—
4 sin ggr 1

sin 0~ 16m.

(x; —6)(x; —1)+(3x;+2)ln(x; )

(x; —1)

(10a)

(10b)

The "8'box" contributes [Fig. 1(c)]

C(box)(M2 )
— (x ~d

C (box)(M2
7V, t W V~ V

7v, t
QS Qd

(1 la)

C(box)(M2 )
— (x (d C (box)(M2 )7A, t W Vg V

7A, t
QS Qd

where

(1 lb)

C (box)(M2
X.

7 t/'i 8'
sin Ogr

1 —x, +ln(x;)
(x, —1)

(12a)

C (box)(M2 )7 A, i 8'
sin 0~ 8m.

1 —x;+ln(x; )

(x; —1)
(12b)

C 7„';™))')=
s1n Ogr

(x; —6)(x; —1)+(3x,+2)ln(x;)

(x; —1)

as in Ref 1.3. The other contributions in Eqs. (10) and
(12) due to the "Z penguin" and "Wbox" graphs, respec-
tively, all vanish in comparison to Eq. (14) in the same
limit by at least one power of x;. In the limit x;~0 such
nonleading contributions are numerically small and
therefore dropped, as are the nonleading terms in the
"electromagnetic penguin" contribution.

Even though there is a p dependence in the Wilson
coefficient in Eq. (13), we know that there can be no
dependence upon p in the total amplitude, as it
represents a physical observable. This p dependence is
canceled by a corresponding dependence which occurs
when we take the matrix elements of the efT'ective Hamil-
tonian & to order e . This occurs as follows: The contri-
bution involving C7& is of order e from the operator it-
self, and of order e from taking its matrix element.
There also is a contribution from Q2 involving "light"
quarks, where the coefFicient and operator is of order e,
but the matrix element is of order e by having a "light"
quark and antiquark annihilate through a virtual photon
into I+l . This gives a term which has an exactly can-
celing (M dependence. Note also that Eq. (8) may contain
different (nonleading) constant terms, depending upon
which renormalization scheme is used, but that in going
from one scheme to another, changes in the coefficient of
C7 p" are compensated by corresponding changes in the
matrix element of Q2, as they must be.

Now let us introduce the strong interactions in the
form of quantum chromodynamics (QCD). First, to or-
der e, nonzero coeScients are generated for the first six
operators as we move successively down from the weak
scale to one quark mass and then another. The operators
Q3 Q4 Q5 and Q6 arise from "penguin" diagrams in-
volving gluons. The operators Q+ =

—,'(Q2+Q) ) are mul-

tiplicatively renormalized:

The contribution of the t quark to C 7~& at the scale p is
given by

a, (Mw)
C+(p )= C+(M)) ),

a, ()(4')
(15)

M

C2)', ()M )=C7),', (Mw) f, 2 (C2+3Ci)
9m p' q2

(13)

where, since we are considering mt-M~ and there are
no large logarithms of the form in(M)i /m, ), we take the
full expression for C7i, , (M)), ) as given in Eq. (8). Since in
the absence of QCD the coefficients C2=1 and C, =0,
the integral contributes the large logarithm in the prob-
lem,

2 ~w
ln

9m p2

to the right-hand side of Eq. (13).
Note that if we had considered the situation where

m; &(M~, i.e., xi (&1, then the full contribution from

with C+(M)), )=1, and where a+ =6/(33 2N&) and-
a = —12/(33 —2X&) for X& quark ffavors in leading-
logarithmic approximation between the scale M~ and the
scale p. At the same time, to order e the coe%cients of
the operators Q7V and Q7„are generated from their
values at M)) plus mixing effects of the operators Q, and

Q2 with Q2& or Q2&. The "penguin" operators Q3, Q4,
Q~, and Q6, which arise only through QCD effects, have
coefticients which start out at zero at the weak scale.
They typically never grow to be more than an order of
magnitude smaller than the coefficients for Q+. So, while
we in principle consider the whole 8 X 8 anomalous-
dimension matrix which describes the mixing among all
the operators in Eq. (6) as we go from one scale to anoth-
er, it is an excellent approximation to consider the mixing
only of Q+ with Q7), and Q7„(Ref. 13) and the renor-
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malization of Q+ as in Eq. (15). In the same spirit we
neglect the effect of taking order-e matrix elements of
the "penguin operators, " which is also known to give a
small effect. '

The derivation of the QCD-corrected contributions
when m, -M~ proceeds in a straightforward manner, if
one follows the general method given in Ref. 13. This is
outlined in the Appendix. Instead, we give here an ac-
count of the derivation following along the lines of the
correct results for four quarks, illustrating it for the
case of the "electromagnetic penguin" contribution.

For this purpose we start with the case of the contribu-
tion to C7Yv from the t quark without QCD given in Eq.
(13). The corrections to this due to QCD arise simply
from the fact that C2+ 3C& acquires a q dependence:

C2(q )+3C, (q )=2C+(q ) —C (q )

a, (Mw)

a, (q )

(16)

To carry out the integral in Eq. (13), we need only
remember that

dq 127r da(V )

q 33—2Nf &(q )

and then to split the region of integration into subregions
characterized by different numbers of active fermion
species to obtain

C {'Y1
( 2)=C {'Y1 (M2 ) (1 K —33/27)K —6/25K —6/23 (1 K —31/25)K —6/23

7V t 8 7V t W 99 ( 2) p/c c/b b/W 93 ( 2) c/b b/1V

( 1 K —29/23) + ( 1 K —15/27)K 12/25K 12/23

87 ( M 2
)

b / W 4~ (
2

)
p /c c /b b / W

K —13/25 )K 12/23+
( 1 K

—11/23
)

9 (
2

)
c / b b / W

33 ( M 2
)

b / W (17)

where Kb/w =a,, (mb ) Ia, (Mw ), K, /b =a, (m, )la, (mb ),
and K„/, =a, ({M )/a, (m, ) in effective five-, four-, and
three-quark theories, respectively.

In the case of C7~„the situation is much simpler since
the relevant Wilson coefficient is only generated at scales
between p and I, :

m d 2
C'Y' (P )= — I, (C2+3C, ) .

7T p q
(18)

C {Y1 ( 2) ( ] K —33/27)K —6/25K —6/23

99 ( 2) p/c c/b b/Wa, m,

( 1 K —15/27 )K 12/25K 12/23

45 ( 2) p/c c/b b/W

(19)

In both these examples, the recovery of "free quarks"
as the limiting case o.,~0 is obtained trivially by looking
back to the starting point in Eqs. (16) and (18). It also
may be obtained from the final answer by expanding the
factors of E;& to order o.„keeping the leading term as
o.', ~0.

The situation with an experimentally reasonable n, (q )

is far from the free quark model, however. The QCD
corrections to C ~~&, are large. Those for C z~z, are enor-
mous, for they can easily change not only the magnitude
but the sign of this coefficient. As pointed out in Ref. 13,
this is readily understandable by considering the right-
hand side of Eq. (18), rewritten as

The result of putting in the QCD-induced dependence of
C2 and C, onq isthen

m 2

2C+ q
—C q

9m p' q2

Before QCD effects are considered, the integrand is
(2X1—1)=1. When QCD is included, the coefficient
C+(q ) decreases and C (q ) increases so that the can-
cellation between the terms in the integrand becomes
more complete. In fact, over most or all of the region of
integration from p to m, the second term overwhelms
the first and the integrand is negative.

For the real ( CP-conserving) part of the short-
distance-generated amplitude, the contribution from the
top quark is negligible because of the Kobayashi-
Maskawa factor in Eq. (7). The charm quark gives the
important short-distance contribution to the real part of
the amplitude for K—+~l l, and the possibilities for
making a precise theoretical prediction are nil because of
the situation we have just described: The QCD correc-
tions typically change not just the magnitude but even
the sign of the coefficient of Q7v. Aside from this explicit
indication of danger from delicate cancellations in the
calculation, a comparison of the magnitude of the result-
ing amplitude with that required from the measured rate
for E+—+~+e+e shows that the theoretical calculation
gives a result that is much too small to explain the data.
Long-distance contributions, not unexpectedly, are neces-
sary to understand the magnitude of the real part of the
amplitude.

This is entirely different than the situation with regard
to the imaginary (CP-violating) part of the amplitude.
The Kobayashi-Maskawa factors for charm and top are
the same, up to a sign:
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X[(C7v) +(C7~ ) ] (22)

The factor in square brackets is shown in Fig. 6. With
@CD corrections, and with m, between 50 and 200 GeV,
it ranges between about 0.1 and 1.0. While the combina-
tion $2$3$& enters other CP-violating quantities such as e
and e', imprecisely known hadronic matrix elements and
I, presently allow a broad range of values of this corn-
bination. From measurement of Kobayashi-Maskawa
matrix elements, $2$3$& ~2.5X10 . For m, at the low
end of the acceptable range (as constrained by B B-
mixing), the allowed region of Kobayashi-Maskawa pa-
rameters contracts and $2$3$& must be quite close to
10 . More generally, a typical value is in this neighbor-

integration over scales with a big ratio. In fact, the con-
tribution from C ~rv', (Mii, ) is a small part of the full C ~7','.
Some of the ambiguities in the charm- or top-quark con-
tributions by themselves (e.g. , at a low scale p) also cancel
out in the imaginary part of the amplitude where the
different sign in Kobayashi-Maskawa factors for charm
and top quarks makes the resulting amplitude arise from
scales larger than rn, .

To proceed to actual branching ratios or decay rates,
we may avoid some arithmetic by relating the hadronic
matrix element of the operator s y„(1—yz)d which
occurs in Q7v and Q7~, to that of the corresponding
charged-current operator s y„(1—ys)u, which occurs
in KI3 decay. Then the form factors and phase space in-
volved in this latter decay are automatically entered by
nature into the measured branching ratio for that mode.
Using this, we find from the measured branching ratio
for E,3 decay that

B(K2~rr e+e )=1.0X10 (s2s3ss)

FIG. 6. The quantities (C7v)' and (C7+ ) as a function of m„
and their sum (C7&) +(C»)', with (solid curve, AQcD 1SO
MeV) and without (dashed curve) QCD corrections, which
enters the branching ratio induced for I(:L~m l+l by CP
violation in the decay amplitude.

hood. Putting this information into Eq. (22) we see that
the branching ratio for KL ~m e+e from CP violation
in the decay amplitude alone is around 10

V. CONCLUSIONS

From the results of the previous three sections, it ap-
pears that from our present knowledge, the three contri-
butions to the process EL —+~ l+l could each give rise
to a branching ratio in the 10 " range. With further
theoretical and/or experimental work, discussed in Sec.
II, it is possible that the CP-conserving contribution
might yet be shown to be well below this level.

This is not the case for the effects of CP violation in the
mass matrix and in the decay amplitude. Their contribu-
tions are comparable, roughly at the 10 " level in
branching ratio, and in general will interfere in the ex-
pression for the total decay rate.

Some care must be exercised about phase conventions
in calculating this interference. We have been calculating
the CP violation in the decay amplitude in terms of what
happens at the quark level, where strong-interaction
"penguin" diagrams induce a EI=—,

' K —+am transition
which has a CP-violating phase. The standard conven-
tion, on the other hand, where e= (2.275 X 10 )e ™/4,
starts from making the amplitude for K~m~ real when
the final state has I=0 (as it would from a b,I=

—,
' transi-

tion). To get to the standard convention from the quark
basis requires absorbing a phase g proportional to e' into
the neutral-K field, as described in Sec. III. As a result,
in the amplitude for "indirect" CP violation, e~e i g, if-
~/~ is small. A somewhat abbreviated expression for the
branching ratio from all CP-violating effects is then

B(K ~~ e+e )= 0.76 e' ~ i— 1/2
1 (Ki~m e+e )

I (K+ 7r+e+e )

$2$3$g+i C7~
10

2
$2$3$g

7AC X 10
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where we have taken into account the phase conventions
mentioned above. In the last term of Eq. (23) we have
neglected the contribution from e times the real part of
C7 g which is much less than the imaginary part of C7 g
Equation (23) indicates the interference of amplitudes
coming from "indirect" and "direct" CP violation.
Neglected is the fact that the two interfering amplitudes
(which involve vector coupling to the lepton pair) can
have a different dependence on the pair invariant mass
and the interference can then vary with this quantity. If
both amplitudes came from short-distance effects (which
we have indicated is very unlikely for the "indirect" CP
violation), then

[I (K, ~~ e+e )/I (K+ ~~+e+e )]'

is negative, the interference is the same for all values of
the pair invariant mass, and Eq. (23) stands as written.

Since e'/e= —15.6$=3X10, the extra piece from
the change of basis is small, but interferes constructively
with that from e. The terms coming from "direct" CP
violation are comparable to those from the mass matrix
("indirect" CP violation), and we cannot give a definitive
conclusion as to their relative magnitudes without further
knowledge of A(E, ~rr (+1 ), szs3ss, and m, . Nor can
we give a statement as to constructive or destructive in-
terference without a model for the long-distance effects
which we suspect are inherent in the "indirect" CP-
violation amplitude. As m, becomes larger, more of the
"direct" CP violation comes through Q7~ (see Figs. 4—6).
As a result, the theoretical predictions become more
definitive, as the QCD corrections to C7„are very small
and this contribution does not interfere in the expression
for the decay rate with that from "indirect" CP violation'.
Even for large m„however, it is hard to get a branching
ratio that is more than a few times 10

We have a major advantage over calculations of other
CP-violating effects in the K system in that the hadronic
matrix element of the relevant operators (Q7i, and Q7„)
from the short-distance physics is given to us from KI3
decay. There is no uncertainty here. Nevertheless, we
would assign an uncertainty from the QCD corrections,
the neglect of nonleading QCD terms, and possible
"direct" CP-violating contributions from order-e matrix
elements of Q, —Q6, of 10—20% for C7i„even if we knew
m, precisely along with all the Kobayashi-Maskawa pa-
rameters. Conversely, if there were both a precise mea-
surernent of m, and of the KL~~ l l branching ratio
that resulted in an isolation of the amplitude for "direct"
CP violation, there would be an uncertainty of this mag-
nitude in the extracted value of s2s3s&. While not as pre-
cise as one might like, this would be far better than the
determination from e and e', where nontrivial hadronic
matrix elements enter.

There are a number of experimental observations
which would help to sort out various contributions and
their magnitudes. We conclude by briefly discussing
some of them.

(a) The short-distance-generated amplitudes have a
dependence on the kinematic variables of the final state
which is identical to that in EI3 decay, with obvious sub-

stitutions of particle names. This allows an easy calcula-
tion of decay rates with cuts on final-state kinematic vari-
ables, e.g. , restrictions on ml&. Comparison with

observations of K+~m+l+l, Kz~m l+l, and KL
~m l+l, would help to sort out long-distance contribu-
tions from short-distance ones.

(b) The relative rates for ICI ~ri. e+e and

Kl ~m. p+p are sensitive as well to the CP-conserving
two-photon contribution, with the factor of mI that ac-
companies the A amplitude (see Sec. II) acting to
enhance its contribution in the latter reaction in compar-
ison to the former.

(c) The direct measurement of ICI ~sr yy can be used
as an input to calculations of the two-photon, CP-
conserving contribution to KL —+m. I+l . In particular,
one could separate the 3 and B amplitudes by measuring
the Dalitz-plot distributions, such as the invariant-mass
distribution of the two photons.

(d) If both CP-conserving and CP-violating amplitudes
are present with even roughly comparable strengths, they
will in general interfere on the Dalitz plot, giving rise to a
large lepton-antilepton energy asymmetry.

(e) The "indirect" CP-violating amplitude can be ob-
tained from a measurement of Kz —+~ l+l . Any devia-
tion in the then measured rate for KI ~w l+l from the
straightforward prediction involving multiplication of the
former rate by ~e

—ig~ is then evidence for "direct" CP
violation in the decay amplitude (assuming the CP
conserving contribution has been shown experimenta11y
or theoretically to be small).

(f) One can imagine a full interference pattern being
measured, as was done for the m~ mode, where one sees
both the regime of Kz~m l+l decay followed by that
for Kz~m. l+l, with an interference region between
the two regimes of exponential decay. This would permit
not only the measurement of the two rates, but the phase
between the "indirect" and "direct" amplitudes whose in-
terference is indicated in Eq. (23).

As of now, we have a long way to go experimentally.
While recent upper limits ' are around 4 X 10, and
are improvements by orders of magnitude on earlier lim-
its, we have about 3 orders of magnitude further im-
provement in sensitivity needed to see the standard-
model signal.

Finally we note that in the large-m, regime, all the de-
cays K+ ~a.+vv, KI ~m. l+l and KL ~~ vv have am-
plitudes which are dominated by contributions from the
"Z penguin" and "8'box" graphs. The latter two, which
are CP violating, have comparable rates in this regime.
The decay KL ~m vv arises almost entirely from "direct"
CP violation.
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APPENDIX

In Sec. IV the leading-logarithmic QCD corrections to
the "electromagnetic penguin" were derived following
the approach of Ref. 32. Here we carry out this calcula-
tion using an effective Hamiltonian formalism, as in Ref.
13, where the heavy fields are removed from the theory in
successive steps, and the coefficients of the operators ap-
pearing in the effective Hamiltonian are determined by
means of renormalization-group equations.

At the scale of Mw or above, the terms in the Hamil-
tonian are taken to be those in a free (no strong interac-
tions), six-quark theory. Below M~, the effects of QCD
are included through the mixing of the effective operators
using the machinary of the renormalization group. We
first assume a succession of scales characterized by the
"old" hierarchy of scales: Mw, m„m&, m„and finally p.
At the end of the appendix we remove the 8'boson and
the top quark together in order to treat the case
m~&Mw

After the 8' is treated as heavy and removed from the
theory, the effective Hamiltonian can be expressed as

(A 1)

where

(A2)

1
Q7v . (A3)

A factor of 1/a, is absorbed in the normalization of 07
to make all the elements of the anomalous-dimension ma-
trix be of the same order in a, (see below). At the end of
the calculation the effective Hamiltonian will be ex-

Note that each of the operators 0+' only involves the
charge 2e/3 quark, q; we do not follow the more tradi-
tional procedure' of using the unitarity of the
Kobayashi-Maskawa matrix to rewrite Eq. (A 1) in terms
of operators 0+' —0+' and a sum over only charm and
top quarks. Instead, we follow the evolution of the con-
tribution from each quark to lower scales, imposing uni-
tarity only at the end when just u, d, and s quarks are left
in the theory.

We recognize that 0'+' —=Q+, and that the appropriate
operators Oz~' for q =u, c, t are

pressed in terms of the operators Q+ and Q7v, and the
factor 1/a, put back into the coefficient of the latter
operator. The operators 0+~' appear only at scales above
m where the quark q is still extant in the theory and
where they mix with 07 ' through one-loop corrections.
The operator 07 appears at all scales, and its coefficient
contains leading-logarithmic QCD corrections as well as
nonleading terms coming from the free quark theory
above Mw. As discussed in the text, the mixing of the
strong-interaction "penguin" operators [Q3 —Q6 in Eq.
(6)] with Q~v has been neglected, as their effects are
small. This has allowed us to truncate Eq. (Al) with just
the three operators 0+ and 07 (rather than seven opera-
tors).

As we go to scales p below Mw, these operators satisfy
a set of coupled renormalization-group equations of the
form

(A4)

with a summation over j implicit, and

2)=p +P(g) — +y (g)m~
a a

C)P Bg 8mq
(A5)

Since the Hamiltonian is p independent, the coefficients
A.'~' must satisfy the equation

(A6)

with the boundary conditions at p =M~ given by
3'+'(I)= 3' ~(1)=1. The value of 2~7~'(I) corresponds
to the coefficient of 07 in an effective free quark theory at
the scale Mw. In the case where all quarks are much
lighter than the S'boson, the coefficient of 07 ' at Mw is
negligibly small compared to the leading-logarithmic
contributions to it from mixing with 0+'. It can be taken
to be zero, as was done in Ref. 13. However, for the case
where m, ~Mw, discussed at the end of this appendix,
A7~'(I) receives important nonleading-logarithmic con-
tributions, which should not be neglected.

If all the elements of the anomalous-dimension matrix
y are of the same order in the strong coupling g and the
quark masses m, the solution to Eq. (A6) can be readily
found by first transforming to a basis where y is diagonal,
solving a set of uncoupled differential equations, and
finally transforming the solution back to the original
basis. Although numerical values change from one re-
gion to another, the anomalous-dimension matrices, in
the basis 0'+~', 0'~', and 07 ' and above m, have the gen-
eral form

'V+ 0 '7+7

y- y-7
0 0 y7

(A7)

Below m, all entries are zero except y7. The transforma-
tion matrices that diagonalize the matrix y in Eq. (A7)
are of the form
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(y+ —y7)/3 +7

0

0 0

(y —y7)/y 7 0 . (AS)

0
—g /27r

0

—2g /9m

g '/97r2
—(33 2Nf—)g /247r0

For the "electromagnetic penguin" the anomalous-
dimension matrices to order g are

r

g /47r

y= 0

with greek indices for the diagonal basis, the factor
KI1 /„=a, (MII )/a, (IM), r(a) —=247r y(a)/(33 —2' ), and

Xf denoting the number of quark Aavors operative at the
scale under consideration. For scales above the top-
quark mass, Xf =6.

Similar steps in scale to that outlined for Mw to m„al-
low us to move from m, to mb, from mb to m„and final-
ly from m, to p, a somewhat ill-defined scale characteris-
tic of a typical momentum in K decay. In consequence,
the effective Hamiltonian at a scale p below m, is given
by an expression of the form

(A9)

If we let y(a) denote the eigenvalues of y/g, then the
solution of Eq. (A6) takes the form

MW
2,'9' =g (T), K1v/„'(T ') /Iiq'( I ), (A10)

p where

V„*,Vd(C+Q++C Q )
G~

2. "' "'

+ g ( Vq*, Vqd C7, q )Q71'
q=u, c, t

(A 1 1)

~6/21~ 6/23~ 6/25~ 6/27
+ W/t t /b b/c c/p (A12)

~ —12/21~ —12/23~ —12/25~ —12/27
W/t t /b b/c c/p (A13)

g(u)(1)+[(1 K27/21)( 16 )+(1 K9/21)( 8 )]
+s W

+ [K6/21( 1 K 29/23)( 16 )+K —12/21( 1 K I I/23)( 8 )] a, mt

+ [K6/21K 6/23( 1 K 31/25)( 16 )+K —12/2IK —12/23( 1 K 13/25)( 8 ))W/t t/b b/c 93 W/t t/b b/c
s(mb )

+ [K6/21K6/23K 6/25( 1 K33/37 )( 16 )+K —12/21K —12/23K —12/25( 1 K 15/27 )( 8 )3W/t t/b b/c c/p 99 W/t t/b b/c c/p
cx ~m

(A14)

g(c)(1)+[(I K27/21)(16)+(1 K9/21)( 8 )]
+s W

+[K6/21(1 K29/23)( 16 )+K —12/21(1 K 11/23)( 8 )]W/t t /b gp W/t t /b 33

+ [K6/21K6/23( 1 K 31/25)( 16 )+K —12/21K —12/23( 1 K 13/25)( 8 )]W/t t/b b/c 93 W/t t/b b/c 39
Lmb )

(A15)

+s 8'
(A16)

In order to fix the boundary conditions 3 79'(1) at the scale of MI1, we require that the Hamiltonian of the free elec-
troweak theory coincide with the a, ~0 limit of the effective Hamiltonian:

G~
V„*,V„„O'+'+0'"'+ 27'"'(1)—27r(y+7+y 7)a, ln2. 07 .

+ V,*, Vd A7" (1)—27r(y+7+y 7)a, ln

+ V,*, Vd A -',"(1) 27r(y+7+y 7)a,ln—

MW

m c

MW

m
07 (A17)
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In addition, we must consider the matrix element of 0+'
to one-loop order, which is

2

(0(")+0(")) =2sr(y +y )a, ln (0 ).
p

(A18)

Equations (A17) and (A18), while written for the
a, —+0 limit, are illustrative of general properties with
respect to p dependence, renormalization-scheme-
dependent matrix elements, and subleading terms in &,tr.
Although these points are only of academic interest (see
below) for our calculation of the contributions to "direct"
CP violation, we note them here for completeness. First,
the p dependence explicitly cancels between Eqs. (A17)
and (A18), as it should. Second, there are possible sub-
leading terms on the right-hand side of Eq. (A18) which
depend on the renormalization scheme, as do subleading
terms in &,tr. Since we use the anomalous dimensions
and P function calculated in leading order we do not con-
sistently predict subleading terms in the expansion of
&,s; consequently only the leading-logarithmic terms in
(A18) are meaningful. The subleading terms are intro-
duced only as boundary conditions in A (7~'( I ), which are
obtained by comparing the free Hamiltonian with the
limit of the effective Hamiltonian in Eq. (A17):

(A19)
9m.

where the C 7rv (Mii ) are given in Eq. (8).
While the Hamiltonian separates into three pieces, for

q =u, c, and t, there are cancellations among these terms
due to unitarity of the Kobayashi-Maskawa matrix. In
particular, V„*,V„„+V,*, V«+ V,*, V,„=O implies that the.
"electromagnetic penguin" contributions to 07 due to
mixing from 0+ cancel in the region between M~ and
m, . Finally, but very importantly, the contributions to
"direct" CP violation in KL +tr I—+l come from Im&.
Since V„*,V„d is real, the contributions from the "elec-
tromagnetic penguin" are restricted to the region be-
tween m, and m„and the matrix elements of 0+ ' are ir-
relevant [as are subleading, renormalization-scheme-
dependent constants in A (7q'( I )].

The above expressions were developed for mf ((M~
The case where rn, ~M~ can be easily obtained by sim-

ply letting Kii z, ~1, K,zb ~Kii,zt„and ct, (m, )

~tz, (Miv) in Eqs. (Al 1)—(A16) and dropping the second
term on the right-hand side of (A19) for q =t. Using the
unitarity relation of the Kobayashi-Maskawa matrix, the
terms involving V„*,V„d in Eq. (All) can be absorbed into
the other terms, casting the expression for the effective
Hamiltonian into a form identical to Eq. (5) in the text;
then the coefficients C 7V';(p )=C7,. —C7 „can be read
off and proven to agree with the expressions in Eqs. (17)
and (19) of Sec. IV.
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