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We have examined the bounds on nonstandard 8'WV couplings that can be extracted from the
existing low-energy data, without assuming some couplings are zero; we use a regularization pro-
cedure for loops that gives a gauge-invariant limit and results that do not depend on how integra-
tions are performed. These bounds turn out to be only a little bit better than those given by unitari-
ty requirements; in addition, some relations between parameters can be extracted. The results
should be interpreted to mean that the 8 O'Z and 8 8 y vertices are not very well constrained at
present, though very large deviations from standard-model values are not allowed. We have also
examined how well the measurements of the 8'+ 8' cross section at the CERN e+e collider LEP
II, and 8'Z and 8'y production at hadron colliders, can restrict the values of the anomalous O'O'V

couplings. We found that significant improvement, with respect to the bounds set from low-eriergy
experiments and unitarity, can be achieved at an upgraded Fermilab Tevatron, at LEP II, and at a
400-GeV e+e collider. Considerably better bounds can be set from experiments at the CERN
Large Hadron Collider and at the Superconducting Super Collider.

I. INTRODUCTION

Testing the non-Abelian character of the three gauge-
boson couplings of W Z, and y is one of the definitive
checks of the SU(2)U(1) gauge structure of the standard
model of electroweak interactions. Until now, within ex-
perimental accuracy, all the available data agree with the
predictions of the theory. No direct measurement of
those WS'Z and W8'y couplings has yet been per-
formed. High-energy machines fCERN e+e collider
LEP, Fermilab Tevatron, CERN Large Hadron Collider
(LHC), and the Superconducting Super Collider (SSC)]
will produce those vertices at the tree level, so direct
measurement will be available in the future (see, for ex-
ample, Refs. 1 —8 for recent studies at hadron colliders
and Refs. 8 —13 for e+e machines). Indirect measure-
ments through radiative corrections to low-energy pro-
cess' can give some bounds on the nonstandard cou-
plings. Another possibility is to examine what kind of
constraints can be extracted from unitarity. ' ' The
advantage of the direct production of the vertex is that
no further assumptions about the behavior of the non-
gauge-invariant, nonrenormalizable theory have to be
made.

The WWV vertex has been extensively discussed.
Some authors ' studied the behavior of the radiation
zeros in Wy scattering amplitudes —predicted in the
standard model —in the presence of a nongauge W mag-
netic moment y&. Others allow arbitrary "magnetic
moments" yr and yz (the analog of the magnetic mo-
ment for the WWZ coupling) in e+e ~W W
Effects due to magnetic moments and the electric quadru-
pole moment A, (and the corresponding for the WWZ
coupling, A,z) have also been studied in the energy dis-
tribution of the leptons from W decay from e +e
~8 +8'

In the next section of this work we describe the La-

grangian we are going to use. In Sec. III we show the
bounds that can be extracted from low-energy data and
then from unitarity (Sec. IV). As we will explain later the
chosen procedure for the loop calculations will allow a
smooth transition to the standard model when the non-
standard couplings go to zero, so the gauge invariance of
the theory is restored in this limit. In Sec. V we summa-
rize the bounds that are obtained. Sections VI and VII
are devoted to the analysis of the WWV vertices at LEP
II and at a 400-GeV e+e collider, and at hadron collid-
ers (Tevatron, LHC, and SSC), respectively.

Our philosophy is that we would be happy if the WWZ
and WWy vertices were given by their gauge-theory
forms, but we believe it is important to demonstrate ex-
perimentally that they are. We had initially hoped that a
more complete analysis would show that they were more
constrained than turned out to be the case. We also
wanted to understand which future machines would be
most effective in tightening the constraints. In Sec. VIII
we present a discussion of the results and in Sec. IX we
summarize our conclusions.

II. THE LAGRANGIAN

Several Lagrangian densities for two charged and one
neutral vector boson have been proposed in past years.
Neglecting the scalar component of the vector boson
(B„V"and B„W"), the most general description for the
WWV interaction allows seven form factors' ' in this
vertex. By imposing C and P symmetries separately the
number of parameters can be reduced to three:

ie (g,'W—„'.W&V —W„'V„W& )

V )M V ~2 AP V

(2.1)
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where

w„.=a„w.—a.w„, v„.=a„v.—a.v„. (2.2)

8'" is the 8' field, and Vstands for either Z or y. We
do not consider the effects of ZZZ vertices (which do not
occur in the gauge theory) since constraints on them are
independent of constraints on 8'+ 8' Z vertices unless a
model ' ' ' connects them.

For V=@, the first term of (2.1), with g, =1, corre-
sponds to the covariant derivative prescription for spin-1
charged particles. The second (1~v) and the third (A, v)
are related to the magnetic dipole and electric quadrupole
moments by

e
pw (1+lrv+A, v)2M~

(2.3)

e
Qw= 2 (sv Av) .

M~
(2.4)

Using these, the Lagrangian (2.1) coincides with the
8'8'V sector of the one proposed by Grifols, Peris, and
Sola. ' ' It is a generalization of the electromagnetic in-
teraction of spin-1 charged particles to include the weak
interaction of the Z boson (A, v= —

A, and l~=y have been
defined in order to follow the notation of Ref. 14):

0""+M W W"+—'M~Z"Z
pv W p Z p

lg A, .
pv~p + y» pJ /trpb~

z =,,z Mw

(2.5)

with

0„=(8„igr A„— igzZ„)—W,

(d, ig —A, —igz Z„)W-„,
F J„=FJ +ig y (W„W —W W. „),

(2.6)

F~ =B„A —8 A„, F„=d„Z, d+„, —

g~ =g sino~=e, gz =g cosO~
(2.7)

Values of A, . and hy. (
—=y, —1) differing from 0 will

indicate deviations from the standard model. As we will
show later, it is convenient for our purpose to adopt this
parametrization because it allows us to separate the
standard-model amplitudes from the nonstandard ones.

III. LOW-ENERGY PROCESSES

No processes have been observed experimentally in
which the 8'+8' Z or 8'+8' y vertices occur at the
tree level, because present colliders do not have sufhcient
energy or luminosity. However, these vertices occur in
loops, and contribute to observed processes. Although
loop contributions are small, if the deviation from the

standard-model predictions were very large, an effect
might have been observed. As discussed in the Introduc-
tion, a number of authors have already examined what
bounds could be extracted from the low-energy data, but
generally they have made assumptions that some parame-
ters were very small or fixed in order to get good limits
on others. We have avoided such assumptions.

If the 8'O'V vertices deviate from their standard-model
values, the resulting theory is necessarily not gauge in-
variant and there is no unique answer to any loop calcu-
lation. That does not mean one should not study such
possibilities, since nature could behave that way; devia-
tions would imply that the low-energy theory was an
effective one, and a more basic theory would hold at a
scale characterized by some parameter A with dimen-
sions of mass.

A particular concern that arises in such a situation is
that there will exist Lagrangians, gauges, or regulariza-
tion procedures where apparent constraints of the form
A 5 (b, exist (as they have for some authors), where 5 is
one of our parameters and 6 is an experimental error or
limit, while normally the constraints are of the form
A 5 & A. From our Lagrangian and regularization pro-
cedures none of the A 5 constraints occur, which means
that none of our constraints is unduly strong or likely to
change because of the regularization, etc. Our goal is to
determine what kind of information on the nonstandard
parameters we can extract from the existing low-energy
experimental data. Because in our calculation some one-
loop diagrams with ultraviolet divergences are involved,
we have to fix a procedure to obtain finite results. In the
standard model the divergences appearing in loop calcu-
lations can be removed by an adequate renormalization of
some of the parameters, and Ref. 33 shows how to get
finite results for physical quantities beyond the tree ap-
proximation by fixing three free parameters in low-energy
experiments. As was already pointed in Ref. 14, the new
interaction present in the Lagrangian (2.5) has to be tak-
en into account in the redefinitions of the electroweak
parameters. We will use a regulator only for the
ultraviolet-divergent loop integrals that involve the new
nonstandard couplings. The advantage of this procedure
is that we do not break the gauge invariance of the
standard-model part; there is a smooth transition to the
standard model when the new couplings go to zero. For
the nonstandard part we will only keep terms in positive
powers of the new scale, A, and neglect logarithmic
terms. It is important to understand that we are not giv-
ing a general analysis of this entire problem, but an ap-
proximate one which is appropriate for the level of accu-
racy we need and consistent with the conclusions we find.
In particular, one-loop radiative corrections to the nor-
mal standard model are numerically smaller than the de-
viations we are sensitive to, so we can neglect them.

As it is well known the use of a regulator has the ad-
vantage, over the momentum-cutoff regularization
scheme, that the results are always well defined and they
do not depend on the procedures used in performing the
integrations. Only three types of ultraviolet-divergent in-
tegrals are involved in our one-loop calculation, when
neglecting the logarithmic divergent terms:
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(2n )

I,=f d'
(2n }

(2m. )

Ip' p' p']
[p —M, ][(p +q) —M2 ]

lp'I
[(p +q) —M, ][(p +q +k) —M2]

p2 ~2

d 4p A' A

(2~) p' —A' (p +q)2 —A'

Ip «p &p ]

(p —M
& )[(p +q) —M', ]

2

d p A

(2n) (p +q) —A

r 2
A

(p+q+k) —A

with M& 2 the masses of the gauge bosons O', Z, or y.
The first and second integrals come from the three-
point-vertex (WWV) contribution to the W and Z self-
energies and fermion-fermion- V vertex (when the fermion
mass is neglected), respectively, and the third one takes
into account the four-point vertex ( WWWW or WWVV)
contribution to the 8'and Z self-energies. We consistent-
ly regularize these integrals with the minimum number of
regulators that makes all of them finite. Then our in-
tegrals become

s~ =
—,'(1 —g)(1+53)—:s~(1+53),

16mo. —:2

(1 g)
2 3(1 —5 —5)—=g (1—5 —5)2 3

(1+5 —5 5—}w (1 g)G 1 2 3

(1)2

=M~( 1+5, —52 —53),
23/2m a

(1—g)[1—
—,'(1 —g)]G~

2

X 1+5]—52 —53+ 2 53
Cw

2sw—:Mz 1+5,—52 —53+ 2 53
Cw

(3.5)

where Cw=1 —Sw. These are the bare quantities we
have to use to get the expressions for the observables at
one loop. The 5] 2 3 are the contributions of the new in-
teraction vertices to the different amplitudes involved in
the processes named above. An explicit calculation gives
the following expression for these shifts, in terms of the
new-physics scale A:

2 A2
[~Xz+(cw+ —')~Xz+~X sw]32~2 ~w2

[(p +q) —M, ][(p +q +k) —M2]
(3.2)

g A 2

24'-' Mw

d p A

(2') p —A
I 1 p']

p' —~2

Gp g Sw
2 2

a=, —,'(1—&)=s~
&Z SM2' 4~ ' (3.3)

where g=U/a is the ratio of the vector and axial-vector
couplings of the electron current to the gauge boson Z.

Because we are interested in seeing how the new in-
teractions affect the redefinitions of these three free pa-
rameters, we write the nonstandard contributions at one-
loop level' ' in the form

where A is the scale where the new physics shows up.
Our underlying attitude is that if the gauge theory is to
fail, then effectively all the particles are composites, and
we are trying to guess a sensible procedure to represent
how integrals becomes convergent from structure effects.

Three low-energy processes —p decay, ep Coulomb
scattering, and the ratio of v„e and v„e scattering —can
be used to fix three electroweak parameters of the
theory: Gz, a, and sin 8~ ( =s~ },

2 4
g 1 A 2&2

2 3 ~4 (3.6)

A. Neutrino-nucleon scattering

The p z parameter is defined through the ratio of neu-
tral and charged currents in vN scattering as

g 1 A53=
2
—

2 tc~[6(Az+A~)+2(byzkr+byrAz)
32~ ~w

+2byzb yr 4A~Az] ,'b y~)— ——

g 1 A+
4 cw~z~y

32m 3 Mw
The results, in the limit of small couplings (i.e., second
order in couplings —+0), only differ by a factor of —,

' from
the ones given in Ref. 14. As we checked, the absence of
a A term in 5, is due to an exact cancellation among the
various diagrams contributing to the 8'-boson self-energy
at zero momentum [II~(0)].

In the following, we are going to examine several exist-
ing low-energy experiments, and extract the constraint
equations on the four form factors we introduced in the
Lagrangian (2.5).

(1+5,), a= (1+52)
(3.4)

o(vX~vX) 2, 2» 4
R»N =

( ~ X) P»N( 2 W 27SW—) & (3.7)

—'(1 —g)=s~~ (1—53) .

Then

where the ratio of antiquark momentum to quark
momentum distributions in the nucleon has been neglect-
ed for simplicity. The computation of the nonstandard
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contributions to R & up to one loop can be easily done by
using the scheme shown in the previous section, and in-
troducing the appropriate regulator (3.2) to perform the
ultraviolet-divergent integrations. The result can be writ-
ten as

R, .~, =(1—6, ) ( —,
' —s~+ —",,'sH, ) . (3.8)

One can now interpret 5, as the contribution of the new
interaction described by the Lagrangian (2.5) to the p, ,z
parameter, and then use the accuracy of the experimental
measurement to set a bound on the deviations of these
two form factors, biz and Ay~, from the standard-model
predictions (bgz=bg&=0). A two-parameter (sinI9II,
and p z) fIt to the data on deep-inelastic scattering
determines the value of p & within an accuracy hp z=+0.015, so we can write

(3.9)

For 4=1 TeV, the resulting bounds on Ayz and Ay&
are shown in Fig. 1. The aHowed values of the parame-
ters are in the region between dashed lines, and the mean
values lie on the solid line. Notice that because the prox-
imity of the bounds, one can take hy& and Agz to be re-
lated through the equation

[~xz+ 1/(2cI'I +1)1'

[1/(2cII + 1]

~x',

[I/(2sII +CI22, + 1/2) ]'

i..5 I I 1

)

I k I I

I
1 i I I I I I I I I I I

i

I I i I

1.0

(3.10)

which is the average curve in Fig. 1. As can be seen,
(3.10) is a scale-independent relation and for bigger A it
becomes more accurate to describe the allowed region of
parameters. If the value Ap„&=+0.015 is thought to be
too optimistic, the dashed lines get separated somewhat
more, but the parameters Agz, Ay~ still approximately lie
on the ellipse. In Ref. 14, the bound b,yz ~0.013 (for
A= 1 TeV) can be now reproduced by Fig. 1 (for b,y&=0)

apart from a factor of 3 due to the regularization pro-
cedure we adopted.

We also checked the process' (V) e~(v)„e. As can
be easily seen from its amplitude, ' the deviation from
the standard cross section, at low energy, is proportional
to 5&. Because of the errors in the experimental measure-
ments, one finds that the bound on 6] is almost 20 times
looser than the one given by (3.9), so the constraint on 5,
corning from the p, ,z parameter is the best we can get so
far.

B. Polarized electron-deuterium asymmetry

%e have calculated the nonstandard one-loop correc-
tion to the polarized electron-deuterium asymmetry in
order to set bounds on the new parameters. The correc-
tions to all the relevant vertices and self-energies have
been computed up to one loop. The results for the gauge
boson self-eriergies are given in Sec. 1 of Appendix A.
The deviations induced by the new couplings in the
a &, a2 parameters defined though

A' (x,y) —9G
q' 5&2~a

are given by

a, +a2 1 —(1 —y)2
(3.11)

1+(1—y)

a, (1+ha, )=(—9sII
—

—,')(1—5, ),
az(1+ha~)=(s~~ —

—,')(1—QI) .
(3.12)

Now the results of Ref. 21, where only the anomalous
8'8'y coupling was considered, can be obtained as a spe-
cial case of our formula [a factor —,', due again to the regu-
larization scheme, appears in (3.12)] just by putting all
the nonstandard couplings of the Z boson equal to zero.
For A-1 TeV, because the momentum transfer q is (in
average) 1.6 GeV, the contributions of quartic terms in
A, (q /MII )(A /MII ), turn out to be 30 times smaller
than the quadratic terms (5, ). Therefore we can only get
a bound again on 5&. The experimental measured
values give

~Abs. error (a, )~
aa =0.27,

a,

0.5 ~Abs. error (a2)~
6, =ha2 ~ =1.6

(3.13)

ee 0.0

-0.5

—1.0

I I I I-1.5 I I I I I I I I I I I I I I I I I I I I I I I I I t I I

—1.5 -1 -0.5 0 0.5 1 1.5

If A-1 TeV, the bound we have on 6& is looser than
the one obtained in Eq. (3.9) from the p z parameter
measurement. Again, the bound would be tighter for a
bigger new-physics scale A.

C. e+e ~p+p .
Cross section and forward-backward asymmetry

FIG. l. Values of Ayz and hy~ (region enclosed by dashed
lines) allowed by the measurement of the p parameter in vX ex-
periments. A value of the new physics scale 6= 1 TeV has been
used. The solid line is the average curve.

Data on muon-pair production in e+e experiments
can also provide some information about the allowed
values of the new couplings. The V-V and 3-A parts of
the amplitude for this process can be expressed in the
form
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SMh vv, we =h vv, we +Ah vv, ww . (3.15)

In Eq. (3.14), hvv AA are the efFective couplings. In
Eq. (3.15} we have separated the standard contributions
h vv ~ z from the nonstandard ones hh vv z ~. The expres-
sion for bhAA (b,hvv), which includes one-loop non-
standard corrections, is given in Sec. 2 of Appendix A.
Keeping only leading terms in A and using the formulas
in Sec. 1 of Appendix A for the gauge-bosons self-
energies, the expressions become

S
"vv, ww =h vv, we 1+SM

S —Mz
(3.16)

where

1 A5= — [cwkz+(sw —cw)AZA, —swA. ] .
32m Mw

(3.17)

2

Tvv= U(e)y u(e)u(p)y U(p)(1+hvv)
(3.14)

TAA = —
S U(e)y ysu(e)u(p}y. y5U(I )h AA

with S =E, , and

i5i & l. 5 . (3.24)

(Bigger values of the new-physics scale A would improve
this bound, but we will consistently restrict ourselves to
A-1 TeV. )

As we will show later, this loose bound can be substan-
tially improved by measuring the mass shift of the Z,
where the nonstandard couplings enter in the same com-
bination as (3.17).

D. Mass shift of the gauge bosons

ables is then strongly suppressed by the factor q /Mw, so
no good bound on the parameters can be set. This result
also holds for the energies of the DESY and SLAC e+e
storage rings PETRA and PEP.

For higher energies ( ~30 GeV), assuming A terms
dominate (in fact the quartic terms in A turn out to be
-20 times bigger than the corresponding quadratic ones
for A= 1 TeV and 3/S ~ 30 GeV), the expressions of b,R
and AA+z shown above can be safely used. Assuming'
b,R -0.02 and b, AFB/AFB-30%%uo (results from PE-P'

2TRA and PEP data), and due to the factor S/(S —Mz)
present in Eqs. (3.22) and (3.23), and the efFective cou-
plings h vv „~, we conclude that the combination of pa-
rameters 5 cannot be constrained better than

The standard couplings h vv z & are given by

SM 1
2 2S Mz 16$wcw

SM 1
AAA= 2 2 2Mz 16swcw

with

U =( —1+4sw), a = —1 .

(3.18)

(3.19)

The physical masses of the gauge bosons are defined as
the poles of the vector boson full propagators. Up to one
loop, only considering nonstandard contributions, the
physical masses are given by

(MWZ)ph™WZ +WZ(MWZ) & (3.25)

where the self-energies, II w and IIz, are given in Appen-
dix A. From Eq. (3.5), one gets the final expressions of
the mass shift due to the new interaction terms as

cr(e e —+p, +p )
PP @ED

1+2h vv+ (h vv+ h „„)
and forward-backward asymmetry

(3.20)

Then the nonstandard contributions to the cross sec-
tion

EMw Mw(5i 52 53)+ II w(Mw) y

(3.26)

AMZ Mz 5i 52 53+ 3 53 +IIZ(Mz )
Cw

The shift of the pM parameter (bpM=bMw/Mw—DMz/Mz) is then derived from the previous equa-
tions. Notice that 5, and 52 contributions cancel out, so
that

3
AFB (2h A A +4h A A h VV )

4R„„
(3.21) II w(Mw)

Mw

IIZ(Mz')

Mz2

2sw
53 . (3.27)

can be written as

2 [ ( h V~V+ h A „)+h v~v 1&
S

S —M
(3.22)

~AFB 2 (hAA + ~AA VV }5SM SM SM

2R„„g—M' (3.23)

respectively.
For low-energy experiments, where nonleading terms

q /Mw are neglected, the A terms do not contribute.
As can be checked from the expressions in in Sec. 2 of
Appendix A, the nonstandard deviation for the observ-

The complete expression for the shifts can be obtained
from the formulas shown in Appendix A, but we will
only keep the leading term in A (for A ~ 1 TeV). In this
approximation the Ap~ and AMz are given by

b,PM- — sw(A, —
A,zi. ),

32m 3 Mw
(3.28)

z — g 1 A 2 2 2 2 2
2 4

[cw~z+(sw cwQ'zky sw~yf
z 32~ Mw4

Using now the experimental uncertainties ~hpM~ «3%
and ~EMZ ~ /Mz ~ 2%, we are able to restrict the values
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0.75

0.50 ~2~3

1
3/2 V 1Q4$W 1

aP
Mz
S (4.1)

0.25

0.00

where P=[1—(4M~/S)]'~, and A2, A3 define the polar-
ization state of gauge bosons. In our notation (2.5) the
different nonstandard amplitudes contributing to (4.1)
can be written as

—0.25

-0.50

~+o= ~o+ =)'(~Xz —~z»
S

2M w

~ oo =~'2~HZ

(4.2)

—0.75-0.75 —0.5 -0.25 0 0.25 0.5 0.75
A,~

FIG. 2. Values of A.z and A.~ allowed by the measurement of
the pM parameter (region enclosed by dotted lines) and the mass
of the Z (solid). A value of A = 1 TeV has been used.

for ~A, ~ z ~

~ 0. 1. Recall that this numerical value is found

by setting A=1 TeV, and also keeping only A terms.
We have also calculated the contributions from A terms
and verified that it is safe to impose the constraint

(3.29')

of the quadrupole terms kz z to the ones enclosed by the
solid (bounds from b,Mz ) and dotted (bounds from bpM )

lines shown in Fig. 2, for a value of A=1 TeV. The re-
gion enclosed by both the solid and dashed lines is the al-
lowed region for kz and A,&. We see that we can impose
the approximate relation

(3.29)

where the factor y is y =E~/M~.
At the energy scale &S =A (assuming that the cou-

plings have no energy dependence for S (A and drop to
zero at A), only the amplitudes A++ and A oo are
relevant, and the condition (4.1) takes the form

Mw 96 sw
2A, +(6 )z +z A4

(4.3)

If, as we did in the previous sections, one fixes the new-

physics scale A to be 1 TeV, then the absolute bound on
the quadrupole moment that we can extract is

/X, /

~0.6 . (4.4)

Combining with the bounds obtained from the mass
shifts (Fig. 2), we conclude that A, r also has to be smaller
than 0.6 and therefore no value bigger than 0.6 for quad-
rupole moment ~A, , ~

is allowed. Other bounds on A, ~ can
be obtained, for instance, from the (g —2) factor of the
muon, ' ' but the value they found is at least 1 order of
magnitude bigger than the one given above.

for A=1 TeV. For a bigger A the bounds will be more
restrictive than the ones in Fig. 2. The result qualitative-
ly agrees with the one in Ref. 15, which was obtained by
taking both b,y; =0 (which we have not assumed).

IV. UNITARITY

From the analyses shown in the previous sections, one
can see that some useful constraints can be set on the
magnetic-moment parameters Ay;, basically from
neutrino-nucleon scattering [Eq. (3.9) and Fig. 1]. Re-
garding the A, , parameters, the mass shift of the gauge bo-
sons [Eqs. (3.28) and Fig. 2] restricts the allowed values
to be in a well-defined region of the A, &-A,Z plane, but no
bound on the absolute magnitude of either kz or kz can
be extracted from the measurement. The situation will be

improved by fixing an upper bound to the absolute value
of the A,z parameter, corning from unitarity conditions.

The authors of Ref. 23 found that by imposing unitari-
ty on the amplitude of the elastic process f,f2 ~f3f4 for
a certain combination of leptons in the initial state, the
following condition on the nonstandard amplitude for
8 + 8' production through the Z exchange could be es-
tablished

V. SUMMARY OF BOUNDS FROM DATA

From Secs. III and IV, the bounds on the four form
factors (2.5), from the existing low-energy data, can be
summarized as follows.

(i) The bounds on these four parameters, b,y~, b,yz, A, ~,
and A.z, can be found from Figs. 1 and 2 and Eq. (4.4).

(ii) We can now derive from (i) the lower and upper
bounds on each single parameter as

—0.6~ A, ~0.6, —0.6~ A,z &0.6,
(5.1)

0.94~ ~yy ~0-94~ 0 80(~yz ~0

where for hyz, hy~ we used the average curve in Fig. 1.
From there, the uncertainty of Agz is about +0.04, for
A=1 TeV.

(iii) To simplify the discussion in the next sections we
will take the following approximations: (a) Use (3.10) as
the relation between 4yz and Agz, whenever both of
them are present, to reduce the number of free parame-
ters to three. (b) Set A, r=A.z, for ~A, ~~

~0. 15 to give two
parameters. Otherwise, treat A, z and A,z as two indepen-
dent parameters.

Comparing these results with the ones given by irnpos-
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ing unitarity, for A=1 TeV,

lx, l

~ l.o, lx I
~o.6,

laqzI ~o.85, lay, l
~1.86,

(5.2)

8 iji iii jiiii jiiii jii1

one can see that the bounds on the magnitude of the pa-
rameters are of the same order (a factor of 2 for b,yr) as
the ones we extracted from low-energy data. The main
impact of existing data is to effectively reduce the number
of free parameters from four to two, approximately.

VI. O'-PAIR PRODUCTION IN e +e COLLISIONS

We have shown how well the low-energy data can con-
strain the nonstandard parameters of the Lagrangian
(2.5). What we want to address now is a twofold ques-
tion: (1) What kind of constraints on the new parameters
could be obtained from e+e ~8'+8, at LEP and
ILC energies, assuming the measurements agree with the
prediction of the standard model within the experimental
uncertainties? (ILC is an e+e collider with &S above
about 400 GeV, and luminosity above about 10
cm sec '. Its possible parameters and physics were
studied extensively at Snowmass, 1988, in Ref. 8.) (2)
What is the maximum allowed deviation of the cross sec-
tion from the standard model, imposing the constraints
obtained from low-energy experiments discussed in the
previous section? Related questions have been studied by
a number of authors, ' '" but our perspective is a little
different because of our analysis of the low-energy data,
and because we do not assume any of the parameters are
determined by theoretical arguments.

In order to show as much as possible the dependence of
the observables on those four form factors, we study the
cross section for different polarized final states. The heli-

I
5

Ms=200 QeV h~(+li~ -j.)/(2c ~+ g)

Qo

K 14

A
I

I

I

13

b
12

V

I i i i i I i i i i I i i i i I « i i I

-0.5 —0.25 0 0.25 0.5

FIG. 4. Cross section for transverse 8"s (solid), at LEP II as
a function of A,z (=A,~). Values of the anomalous couplings, as-
suming measurement of the cross section with a 5% accuracy,
are the regions of the solid line enclosed by the dashed lines.

city amplitudes are given in Refs. 3 and 37, where the
relevant form factors f, , f2, and f3 are

, ~v f2'= —~v f3'=2+~tv ~v
v

W

(6.1)
The computation of the cross section can now be car-

ried out and it shows that, for the longitudinal-8' cross
section (oLI ), the deviation from the standard model
only depends on the magnetic moments Ay~ and Agz.
For transverse W's (o TT), only the quadrupole moments

and A,z give nonstandard contributions. For the
longitudinal-transverse cross section (oz T =o TI ), and of
course o „„both sets of parameters contribute to the de-
viations.

+ +e e ———) V

I

A

!
~2

I

Q Wsa

+

b
+5%

I i i

'

r i I

—0.2

-0.5 0 0.5 —0.8

FICx. 3. Cross section for longitudinal 8 s (solid), at LEP II,
as a function of hyz and Ay~. Existing low-energy data require
that results must lie on the solid curve. Values of the anoma-
lous couplings, allowing for the measurement of the cross sec-
tion with a 5% accuracy, are the regions of the solid line en-
closed by dashed lines. Note that if an accuracy of order 10%%uo is
the best that can be done (for o.«, not for o, ,), then this mea-
surement only fixes —0. 15 & g ~ 0.90 with values of Ay; deter-
mined by the equations shown.

vs = 200 Gev +5%
i i i i I i i i i I i i & i I i i i i I

5 —0.25 0 0.25 0.5

FICx. 5. Bounds on 4gz and A,z (=A,~) from the measurement
of the total cross section o.(e+e ~8 + 8 ) at LEP II
(&S =200 CxeV). The shaded area is the region of the parame-
ters that give a cross section in agreement with the standard
model within a 5%%uo accuracy.
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In order to evaluate these deviations, we fix the energy
for LEP II at &S =200 GeV. We will use the approxi-
mate bounds summarized in Sec. V to do the following
analysis.

The behavior of O.LL can be seen in Fig. 3 in terms of
the free variable i) ( —1 ~ i) ~ 1), defined by (because of
the constraint of Fig. 1)

1.0

0.5

I I I I
i

I I I I

I

I I I I
i

I I

e+ e ———)W+ V

~x = 1

2[s (c + 1/2) ]'i

by = (+(/I —il —1) .1

2(c11,+ 1/2)

(6.2)

0.0

—0.5

In ozl the nonstandard contribution Ao.LI can be as
big as 3 pb ( -2o 11 ). Therefore, if o LI is shown to be in
agreement with the standard-model prediction--up to 5%,
one can set a better bound on byT and byz (as shown in
Fig. 3) than the one set by measuring the total cross sec-
tion o „,at the same accuracy (Figs. 5 and 6 below).

Notice that there are two allowed regions in Fig. 3.
The one nearby g=0. 8 is due to some cancellations be-
tween these two parameters 4gz and 4g~. If one simply
puts b,yz or b.y~ to zero (as some authors do) in order to
set bounds on kg~ or Agz, one will never find the al-
lowed region far from g=O in Fig. 3. Note also that if
o.

LL (which, is a small part of the total WW cross section)
can only be measured to accuracies of order 10% or
worse, then the entire region —0. 15 ~ g ~ 0.90 will be al-
lowed.

The a. TT is given in Fig. 4 (assuming A, z=A, ~ in the
whole allowed region). In this case the maximum devia-
tion is reached for extreme values of A, , and Ao. TT can be
as»g as o. TT If one can measure the cross section o TT
and find it agrees with the standard-model prediction up
to S%%uo, then one can get a better bound on both ! A,z! and
!I(~!(~0.2) than the ones obtained from the total cross
section at the same accuracy (6.3).

For o.LT and o.„„allfour form factors must be includ-
ed. Here we will only consider the results for o.«, . The
maximum deviation of the nonstandard contribution
b,cr„I is about 11 pb ( —50%%uo o.„,), and is reached for
~z ~ 0 6~ ~y = —0.84, and ~yz 0.57

By fixing two of the parameters (e.g. , A, z, A, ), minimiz-
ing the deviation from the standard-model Aa.„, with
respect to the remainder free parameter (let us say hyz ),
and assuming certain agreement (e.g. , 50%) with the
standard-model predictions, we would be able to exclude
some regions in the two-dimensional parametric space
(I(,z —

A, T). From b,o„„and with this procedure, we can
set the bounds

0.35~A, ~0.35, 0 35~hz ~0.35 (6.3)

for a 5% agreement.
In o.„„taking both A.'s to be equal (and assuming again

a 50%%uo agreement), we can get the allowed region for A,
T

(=A,z) and byz (b,y ) showed in Fig. 5 (Fig. 6). As can
be seen there, the results for A.'s agree with (6.3). Figures
7 and 8 show the results for a e+e machine of
&S =400 GeV, where a 10% agreement with the stan-
dard model (Fig. 9, o.„„)has been assumed.

Vs = 200 GeV +5%

—1.0 —0.5 —025 0 0.25 0.5

FIG. 6. The same as Fig. 5, but for kg~ and A, ~
(=A,z).

or
0.05+ ~y +0 19 0 08~~yz ~0 0

Oe 61 Agy Oe 80& Oe 19 Agz Oe09

(6.4)

(6.5)

for the two ranges of Fig. 3.
(11) F101110 TT

0.30~ Az +0 30

(iii) From a „,„

—0.30~A, ~0.30 . (6.6)

0 35 ~ ~y —0.35~ 0 35 ~ Az —0 35

0 42 ~ Ay —0 94 0 58 ~ Ayz ~ 0
(6.7)

+ +e e
0.00 I I

I

I I I I I I

I

I I I I

I

—0.01

—0.02

—0.03

—0.04

—0.05

Ks = 400 Gev
I I I I I I I I I I I

—0.5 —0.25 0
=xz

!

!

+10%
I I I I I « I I I

0.25 0.5

FIG. 7. The same as Fig. 4, but for an ILC machine
(e+e ~ 8'+ 8', +S =400 GeV) and 10% accuracy.

Summarizing the previous results, assuming a 5%
agreement with the standard model, experiments at LEP
II would obtain the following bounds on the magnitude
of the parameters.

(i) From cri I,
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FIG. 8. The same as Fig. 5, but for an ILC machine
(e+e ~8'+8', &S =400 GeV) and 10% accuracy.

FIG. 9. Standard total cross section for e+e ~ 8' 8' as a
function of the c.m. energy.

Decreasing the accuracy in the measurements of the
total cross section to 10%%uo, the above bounds would be-
come

(i) o«
—0. 14~ Ayy ~0.87, —0.24~ 5yz &0.0 .

(11}O'TT

(6.8)

—0.40~A, (0.40, —0.40~A, (0.40 . (6.9)

(111}0'(0)

—0.52~ A. 0.50, —0.52(kz ~0.50,
0 54+ ~y ~0.94~ 0-77~~yz (0 0

(6.10)

A summary of the results for e+e collider is given in
Table I. Detailed explanation of bounds from ILC can be
found in Appendix B.

It should be emphasized that the results of this section
and the remainder of the paper only use tree-level dia-
grams and do not depend on the analysis of the low-

energy data, except through using the results of Figs. 1

and 2 and the unitarity limits on A, to simplify the
analysis (as explained in Sec. V).

A weakness of e+e colliders compared with the had-
ron colliders is that all four parameters are involved, so
less strong constraints can be obtained on any of them. If
cr TT and a L,L could be measured, bounds on (A,z, A.~) and
(b,yz, hgr), separately, could be given. At the hadron
colliders, sensitivity to only two parameters [(A,~, by~)
and (Az ~Xz), separately] per experiment is actually ob-
tained because the O'O'Z and 8'8'y vertices occur in
different processes. Also, the 8'8'Z and 8'8'y vertices
occur in diagrams suppressed by a neutral-current vertex
for e+e, while the diagrams of interest are more dom-
inant for the hadron collider.

As we described before, when studying the sensitivity
of the observables of e+e to one of the couplings, no re-
strictions on the value of the other anomalous parameters
has been made (aside from constraints and relations com-
ing from low-energy data). For our analysis, we have as-
sumed that only cross sections are measured. This gives

TABLE I. Bounds that will be obtained on the four nonstandard couplings Xz, A,~, hyz, and Ag~, from LEP II, ILC, Tevatron,

LHC, and SSC. Bounds from LEP II and ILC also assume low-energy and unitarity constraints. For hadron colliders (upgraded

Tevatron, LHC, and SSC) we only assumed that the parameters have to be in the range of values allowed by low-energy data and uni-

tarity. The propagation of the errors in the bounds coming from low-energy data have not been evaluated and the errors in the pa-

rameters are not given in the table. As a rough approximation, we think that the error for the upper bound (0.00) of hyz can be eval-

uated, from Fig. 1, as +0.04.

LEP II
10%

&s =200 GeV

ILC
10%

&s =400 GeV
L dt =5X10 pb

Tevatron
25%%uo

&s =2 TeV
L dt =10 pb

LHC
25%

+s = 17 TeV
L dt =10 pb

SSC
25%%uo

&s =40 TeV
L dt=—10 pb

~Xz
Az

~x,
Ay

—0.77—0.00
—0.50—0.50
—0.54—0.94
—0.50—0.50

—0.24—0.00
—0.40—0.40
—0.14-0.87
—0.40—0.40

—0.08—0.00
—0.11-0.10
—0.15-0.35
—0.11-0.10

—0.08—0.00
—0.36—0.30
—0.50—0.80
—0.18-0.24

—0.20—0.00
—0.03-0.03
—0.20—0.20
—0.02—0.02

—0.15-0.00
—0.02—0.02
—0.10-0.10
—0.01—0.01
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us a comparative idea of how well each collider (LEP II,
ILC, Tevatron, LHC, and SSC) can constrain the anoma-
lous couplings. The bounds will probably improve if
differential cross sections are considered. For A, 's and
b,y's, the bounds we got from LEP II [Eqs. (6.8)—(6.10),
for a 10% accuracy], are approximately 5 times larger (4
times, if cross section for transverse W's is measured) and
approximately 8 times larger (2 times, if cross section for
longitudinal W's is considered), respectively, than those
obtained by measuring the angular distribution of the
produced W's (Ref. 10). Results similar to ours can be
obtained by using polarized e —beams. " On the other
hand, in both cases, the authors of Ref. 10 and 11
checked the sensitivity of the observables to one of the
nonstandard parameters assuming values for the other
anomalous couplings that are involved. We have avoided
such assumptions. Notice that the cross sections are in
general polynomials in the couplings, so there might be
cancellations among the parameters, that could lead to
bounds (when setting constraints on one of them) looser
than those extracted by assuming some fixed values for
the rest of the nongauge couplings.

ation of d cr /dM~z (—:d o + /dM+z ) from the
standard-model prediction by minimizing da /dM~z
with respect to biz(Az). If the minimum deviation, at
fixed Mzz, exceeds a certain percentage (we take 25%) of
the standard contribution do /dM~z, the Xz(Ayz) is
assumed to be excluded by the measurement. This en-
sures that, if agreement with the standard model is found,
the value of a given parameter can never be bigger than
the one set by the procedure described above, whatever
the values of the other parameters. Nevertheless, because
constraints found by this method for one of the couplings
have not been used as input to constrain the other param-
eter, bounds might be looser than the ones one can get
from a fit to real data. They are certainly looser than
what some other authors have quoted by fixing some pa-
rameters by assumption.

In order to eliminate backgrounds at hadron colliders,
we require both the 8'and Z to decay leptonically

Z —+e+e,p+p, 8 —~e —v, p —v .

The branching ratios are

B ( W+~e+v) = —,', , B (Z~e+e ) =0.03 . (7.1)

VII. 8'Z AND 8'y PRODUCTION
AT HADRON COLLIDERS

In this section we discuss what kind of bounds on the
four form factors, Ay&, hgz, A, ~, and A,z, could be ex-
tracted from future experiments on WZ ( Wy ) production
at hadron colliders: (an upgraded) Tevatron, the LHC,
and the SSC.

In this case, because there are only two free couplings
(b,y~, A, ~) involved in each process, the analysis is more
straightforward. We use the bounds on the magnitude of
the parameters (listed in Sec. V) that we obtained from
both the low-energy data and unitarity requirements.
Notice that no relation between b,yv and A, ~ (e.g., Ay~
and A, , for Wy production) will be imposed. The follow-
ing discussion applies for the three colliders named
above, Tevatron, LHC, and SSC, but for brevity the
description of the procedure is given only for the SSC.
The results for the three machines are given in Table I.
In this section we assume an integrated luminosity of 10
pb ' for SSC and LHC, and 10 pb ' for an upgraded
Tevatron; at a Tevatron collider of much lower luminosi-
ty useful limits are not obtained, though at 10 pb
some information is gained. To draw these conclusions
we have assumed that reliable results can only be ob-
tained from leptonic modes of O', Z; if hadronic modes
can be used then correspondingly less luminosity is need-
ed.

so&
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abs(Y~) & 2.5

To identify the signal, one has to be able to reconstruct
the momentum of the missing neutrino from 8' decay.
Since there are two solutions for the longitudinal momen-
tum (P, ) of the missing neutrino, one has to fix a
prescription to choose the one which will most likely give
the correct distribution of the invariant mass of 8'Z. We
tried two possible prescriptions: the dashed line in Figs.
10 and 11 is obtained by choosing the solution which has
the smaller absolute value of P, ; the dotted line is for the
one which gives the smaller M~z. The solid line histo-
gram in Fig. 10(11) is the theoretical prediction of the
standard model for the SSC (upgraded Tevatron). These
results are obtained using a parton level Monte Carlo
program. From the good agreement shown in Figs. 10
and 11 of either method of choosing P, and the actual re-

A. O'Z Production

To extract the constraints on the two form factors hgz
and A.z we adopt the following procedure.

Because the nonstandard contributions grow with the
WZ invariant mass (M~z ), the strongest constraints
come from the behavior of the differential cross section
( d o' /dM prz ) as a function of M~z and b yz or A z . For
fixed M~z and A.z (biz ) one can find the minimum devi-

I I I I I I I I 4 I t I I I I I I I I I

2OO 4OO eOO aOO OOOO &2OO

(0 v)

FIG. 10. Reconstruction of the shape of the di6'erential cross
section do. /dM~z for the pure leptonical decay mode at Teva-
tron. The dashed line correspond to a smaller absolute value of
P, . The dotted line is for the one which gives the small M~z.
The solid line is the theoretical prediction.
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FIG. 13. The same as Fig. 12, but for LHC.
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suit, we conclude that it is indeed possible to reconstruct
the shape of the differential cross section do. /dM+z for
the pure leptonical decay mode.

The differential cross sections do™/dMpz are shown
in Figs. 12—14 (for Tevatron, LHC, and SSC, respective-
ly) where a rapidity cut

~
1'tt,

~
&2.5 has been imposed.

From these figures one can see that, picking large invari-
ant masses (which are more sensitive to anomalous cou-
plings) has the disadvantages of reducing considerably
the number of events. Our criterion, to obtain con-
straints on the couplings, will be to apply the procedure
of minimum deviation (described in the previous para-
graph) at the invariant mass that gives us at least 25
events in a 100-GeV bin. However, for the Tevatron, due
to the small number of events, we require at least a
three-standard-deviation eC'ect to say that new physics is
showing up; this leads to the result that no rigorous im-
provement in the bound of Ayz can be obtained from
Tevatron for 10 pb

However, since several parameters are involved, we
want to emphasize that one can proceed in several ways.

%'e have given excluded ranges for parameters such that
they are excluded for any values of other parameters. On
the other hand, it can easily happen that a larger range of
one parameter is excluded for some values of other pa-
rameters. Thus as soon as any experiment reaches the
standard-model cross section, it begins to get useful re-
strictions, even if it cannot absolutely reduce the allowed
ranges. Rather than compute all cases before there is
data, we have only done the analysis one way. One exam-
ple is that for the Tevatron, with an integrated luminosity
of 10 pb ', the number of events expected from the stan-
dard model is very small ( -2, in the range
200~M~z &400), so little improvement on the bounds
from low-energy data can be made, using the procedure
of minimum deviation. However, for values of the cou-
plings that give the maximum allowed deviation from the
standard model, the number of events could be —10, for
the same range, so some improvement is achieved with
such an integrated luminosity. This agrees with the re-
sult of Ref. 5, provided that only leptonic decays of the
8 —are considered. Once there is specific data for the
Tevatron, improved bound are likely to result with close
to 10 pb ' of integrated luminosity.
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FIG. 12. DifFerential standard-model cross section for 8'Z
production at the Tevatron as a function of the invariant mass

M~z,' decay branching ratios are not included.
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FIG. 14. The same as Fig. 12, but for the SSC.
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For the SSC, using the branching ratios for leptonic de-
cays (7.1), we found that -30 events can be expected in
the range 850 GeV ~M~z 950 GeV, so one can extract
the bounds on A,z and hyz shown in Table I. The same
procedure was applied to LHC. The results are collected
in Table I. There we can see that bounds for LHC and
SSC are of the same order (smaller by a factor of 1 —4) as
the ones given in Ref. 4; but, on the other hand, we have
not assumed any structure for the couplings.

B. 8'y production

The difFerential cross section der /dPT are give in

Figs. 15—17 (for Tevatron, LHC, and SSC, respectively),
where Pj is the transverse momentum of the photon, and
a rapidity cut

~ Yr ~
(2.5 has been imposed (see also Ref.

38). In this process the two form factors involved are A,r
and 4yz. Following exactly the same analysis procedure
given in Sec. VII A one can achieve the bounds on Xz and

Ay& presented in Table I. As for 8'Z production, the re-

pp --& y W+
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FIG. 16. The same as Fig. 15, but for the LHC.

FIG. 15. Differntial standard model cross section for 8'~
production at the Tevatron as a function of the transverse
momentum of the photon PT, no branching ratio factor for 8'
decay is included.

FIG. 17. The same as Fig. 15, but for the SSC.

suits for LHC and SSC are of the same order (smaller by
a factor of 1 —4) as those obtained in Ref. 23 where form
factors with a certain structure were used. For the
Tevatron, our bounds on k~ are a factor 2 better than
those of Ref. 6, when an upgraded Tevatron with 10
pb integrated luminosity is assumed. We have as-
sumed that only leptonic decays of the 8 are used,
S'—+ev or pv; if other modes can be used tighter bounds
can be obtained.

VIII. DISCUSSION

In examining the implications of the low-energy data,
we have adopted a regularization scheme to perform the
required loop calculations so that the integration is well
defined and not dependent on the way one does it; this
procedure is Lorentz invariant, unlike the momentum
cutoff scheme.

The results we have presented have to be seen as the
loosest bounds each collider can set. The criterion used
to fix the bounds on each anomalous coupling has led to
some constraints looser than some of those found in the
literature because we have not made any assumption
(apart from those coming from low-energy data and uni-
tarity) about the values of the other couplings that are in-
volved. In this sense, our procedure assures us that for a
value of one of the nonstandard couplings outside the al-
lowed region, the measured cross section will always be
bigger than the predicted standard-model value, no
matter which values the rest of the anomalous couplings
take (provided they are in the range allowed by low-
energy data and unitarity). We have, then, excluded the
possibility that a "conspiracy" between parameters can
spoil the obtained bounds. Because we deal with more
than one variable, this possibility is not excluded if one
sets bounds on one of the parameters assuming the rest of
them are zero (see, for example, Fig, 3; the region far
from g=0 can never be found if some couplings are set to
zero). In a sense, we have given bounds which are or will
be certainly satisfied, while most earlier authors have
given examples of bounds that might be achieved if par-
ticular assumptions hold.

As we mentioned, in most of the cases some particular
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combination of values for the couplings can give a big de-
viation of the measured cross section from the standard-
model value. Once the cross section is measured, its
value will probably imply tighter bounds, because restric-
tions on one of the parameters lead automatically to re-
strictions on the allowed values for the rest of the in-
volved couplings. These correlations have not been taken
into account in our calculations, so that some regions of
allowed values for the parameters can actually be incom-
patible once the measurement is done; nevertheless we
think that the analysis gives a good idea of how well
difFerent colliders can restrict the anomalous couplings.

The result of Ref. 14 is a special case of our Fig. 1 pro-
vided bg&=0, apart from a factor of 3 due to the regular-
ization procedure of the ultraviolet-divergent integrals.

Much better bounds than those presented in this work,
for low-energy data and unitarity, can be found in Ref. 22
where a different Lagrangian, based on SU(2) global sym-
metry broken by electromagnetism, ' is used. There
unitarity limits were given in the absence of scalar contri-
butions, and the one-loop corrections to M~, Mz, and

pM are performed without the redefinition (3.4) of the
standard parameters, so terms of the form A 5 appear.
As we already mentioned in the analysis of the low-
energy data (3), in our procedure we did not find this kind
of extremely constraining conditions; they are an artifact
of the regularization procedure.
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IX. CQNCLUSK)NS

We have first studied the constraints that low-energy
data can impose on the four C- and P-conserving anoma-
lous couplings (A,z, A,r, hyz, and bgr). The results are
somewhat improved compared with the ones coming
from unitarity. Because of the loose bounds obtained
from the low-energy existing data, we have examined
how much those bounds can be restricted at future high-
energy machines. The process e +e —+ 8'+ 8' for
e+e colliders (LEP II and ILC), and WZ and Wy pro-
duction, for hadron colliders (Tevatron, LHC, and SSC),
have been considered. For LEP II some of the relations
obtained in low-energy experiments have been used to
reduce the number of anomalous couplings involved. No
relation among the couplings has been assumed for had-
ron collider experiments. We give the results for high-
energy colliders in Table I. It shows the comparison for
how well various facilities can do at restricting the four
parameters that measure deviations from the WWZ and
8'8'y vertices. The first column shows what can be
achieved at LEP II, if an absolute measurement of o„,
can be made to 10/o accuracy. The second column is the
analogous result if 10' accuracy can be achieved for
o.i L and o. TT separately; that is very dificult since o LL is
only a few percent of o.„,. In the third column we
present the results for the ILC (400 GeV e+e collider)
for a 10% accuracy in o„,. The Tevatron column show
the analogous results for a 25% measurement of the o.

,„,
for an upgraded Tevatron. Only leptonic modes are used
to reconstruct the Z8' final state. The LHC and SSC
column shows the numbers for the standard 17 TeV, 10
pb ' and 40 TeV, 10 pb ', respectively, hadron collid-

FIG. 18. Summary of bounds. Low-energy bounds for A, z
and A.~ use results also coming from unitarity. Bounds from
LEP II and ILC also assume low-energy constraints (see Appen-
dix 8 for a detailed discussion about bounds extracted from
ILC). Hadron colliders (upgraded Tevatron, LHC, and SSC) as-
sume the range of values for the nonstandard couplings are
those given by low-energy data, but no relation among cou-
plings is used.

ers. In all cases the numbers improve if difFerential cross
sections are measured, ' but the relative efFectiveness of
various colliders is not afFected much. The bounds are
tighter for the LHC, SSC, and the Tevatron because they
are sensitive to the shape of do /dM~z, at the Tevatron
events can be detected for 20~M~z ~400 GeV, at LHC
for 600 ~ M~z ~ 800 GeV, and, at the SSC for
800~M+z ~1000 GeV. Figures 9 and 12—17 show the
reach in M~~, M~z, or PT, note the large extra leverage
gained at ILC or at an upgraded Tevatron. Figure 18
summarizes our results for present and future tests.
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APPENDIX A

1. Self-energies for gauge bosons

Self-energies for gauge bosons are as follows:

A 2

IIz(q )=II@(q )(sw~cw, bx ~hxz, A, ~Az),
2 Q2

IIw(q )=
q ~zcw[~~q ~Mw(2+1/cw)]

24m 4MW
2

+bXzcw[ —,'q —3Mw(1+1/cw)]+ —,'Azcw [q +5Mw(1+1/cw)]
W

4bxzkzcwq 12Azcwq +bxysw(~q 3Mw)

g A 1 2 2 2
2 4

24 2 M4 4 r

(A1)
(A2)

2

+AX&sw( ', q 3Mw)—+—', —A, sw (q +5Mw) 4bx A, s—wq 12K&swq-r r M2

g A 1 2 2 2 2 2
2 4

, —
q (~zcw+~, sw»24~' M' 4

g2 +2 1 q2
II z(q )= swcwq — (Ax~+Axz) —

—',(Xz+X~)

(A3)

—
—,'(ax, x, +ax,x, )+-,'ax, ~, q, —4 + —,', x,x, q, +1o

g' A4
swcwq ~z~r2 4 4 W W Z (A4)

2. Effective couplings for e e ~p+p scattering

Defining the amplitudes
2 2

T~~= =
z

v(e)y"u (e)u(p)y„v(p)(l+hvv), T~„=—
z v(e)y"y5u (e)u(p)y„ysv(p)h„„,

q

the effective couplings are given by

hvv=hvv+Ahvv~ ha~ =has+Ah

where

hsM q
2

U2 hSM q 1
g U= —1+4$ g = —1VV 2 2 2 2 & AA 2 2 2 2Mz 16$wc w q

—Mz 16swcw

and the nonstandard contributions can be written as

(A5)

(A6)

(A7)

II~(q )
Ahvv=

q

2

s,+s,—
q

—Mz

II( )r +2 q rr
2 2

q~=O Mw

M II (q)
+hvv

q Mz q Mz

$2
53

Cw

2 z4swI r+ cwI +—swcw
V Mw U

II„(q')
q

n,z(q')

q

11z(q') Mz
Ahww =how —

2 2
+

$2 2
Wg 8 2 q pz

3 Cw
cw ~ Mw

(A8)
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with

(A9)

measurement. The region obtained can be further re-
stricted once some values (or allowed regions) for biz
and b,gr are fixed. From (86) we can extract the bounds

APPEND1X 8
—0. 15 ~ A.z + 0. 15, —0. 19 & A,

y
~ 0. 18 . (87)

where a &, b „and d are function of kz and A, z given by

a, = —(4.29+ 5.75K,~+0.829k,z ),
b i

= —( 2.46+0.829K, +8.41k,z ), (82)

d =37.5A. +54. 8kz + 1.27K, +0.542Az + 10.8kzA

and the coefficients, a, b, and c, are 20.2, 29.5, and 5.82,
respectively.

Equation (81) corresponds to an ellipse in the bg-
byz plane. If 10% agreement (~her~ ~1 pb) with the
standard-model prediction is imposed, then we have

—1~ahy +b5yz+alby +b&5y +cQyzQy +d 1 .

(83)

In this Appendix we give an analysis of the bounds
that can be extracted from the total cross section
e+e ~ 8'+ 8 at &S =400 GeV, assuming that a
10% agreement with the standard-model value is mea-
sured.

The nonstandard cross section (in pb) for the process,
in terms of the anomalous couplings, can be written as

Ao. =a Ay~+ b AXz +a I A&y+ b
& Ayy +cAXz AX~+ d,

(81)

with

a I
= 1.27 —5.756&&—0.8294yz,

b ] =Oe 542 00 8296/y 8 ~ 4 1Ayz

d = 20.26& +29, 5&+z 4, 295+ 2 465+z
(89)

+5.82hy Ay

a =3.75, b =54.8, c =10.8 .

Now the condition (84) will restrict the allowed values
of the Ay& and Agz couplings to those enclosed by the el-

lipse

These values have to be taken as limits for the parameters
in the sense that the box represented by the bounds (87)
is the smallest one that contains the ellipse (86). Once
one of the parameters is fixed the other one becomes
more constrained than (87). Also, for given values (or re-
gions) of b,gz and Age, the left-side inequality of Eq. (83)
can exclude some values of the ellipse (86).

The same procedure described below can be applied to
the expression for the cross section written in the form

5g =a5y +b5yz+a, Ay +b, hgz+cAgz4g +d,
(88)

It turns out that the previous equation has a real solution
if

(bye+0. 09) (biz+0. 06)

(0.26) (0.20)
(810)

a' b'
1 1

, +, —4(d —1)~0,a' (84) Again, the maximum and minimum values of each cou-
pling is bounded to be in the range

with a', b', a'„and b', defined in terms of the coefficients
of Eq. (83), as

—0. 18 ~ b yz ~ 0.24, —0. 15 + Ayy & 0.35 . (811)

a'=a cos O+b sin O+c cosOsinO,

b'=a sin O+b cos O —c cosOsinO,

a', =a, cosO+b, sinO,

b', = —a &sinO+b, cosO,

tan2O= c
a —b

(85)

In our case, Eq. (84) is another ellipse, in the A, -A,z
plane

(k' +0.008) (A,
' +0.003)

(0. 188) (0. 150)
(86)

where k' and A,z are the rotated axes (16 ) in the clock-
wise direction. Equation (86) establishes constraints for
A,z and k&, independently of the values of Ayz and hg&,
only the values enclosed by the elhpse (86) satisfy Eq.
(84), therefore, only these values are compatible with the

0 08 + Agz —0 04~ 0 15 —~g —0 35 (812)

Notice the improvement in the bounds for Agz due to
the small overlap between low-energy and collider data,

Notice that the bounds given by this method are in-
dependent of any other source of constraints for the non-
standard couplings. They have been obtained from the
condition that the measured cross section has to agree
with the standard-model prediction within a 10% accura-
cy.

If now, in addition, we impose the constraints by uni-
tarity and low-energy data (for A = 1 TeV), we see that no
improvement for A,z and A, z is achieved. For Ayz and
b,yr, low-energy constraints and Eq. (810) reduce the al-
lowed values of the parameters to those enclosed by both
the ellipse (810) and the region between dashed lines in
Fig. 1. From there, the maximum and minimum values
that Agz and Ay~ may reach are
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along the Ayz axis. If one uses the average curve in Fig.
1 to relate b,yz and b,yr (in the same way that we did for
LEP II) the results for b,gz (Fig. 7) are of the order of
magnitude of the uncertainties in Fig. 1. It is clear now

that in this case the whole region of Fig. 1 has to be used,
and that the method which leads to the bounds (B12) is
appropriate for combining low-energy data and very-
high-energy e +e collider data.
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