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We argue that double scattering in nuclei can be treated perturbatively in QCD, and derive ex-
pressions for double-scattering contributions to short-distance cross sections. These cross sections
are sensitive to the distribution of gluons at low x.

I. INTRODUCTION

Important atomic-number (A) dependence has long
been observed in high-Pj hadron-nucleus reactions, and
more recently in lepton pair production in nuclei. ' One
plausible explanation for A dependence has been found in
multiple scattering of a single parton of the projectile
hadron. When all these scatterings involve large
momentum transfer, they may be treated as localized
QCD subprocesses. In the limit where one scattering is
soft, however, these models require an infrared cutoff,
and are sensitive to nonperturbative effects.

The importance of soft scatterings over nuclear scales
was pointed out in Ref. 5. Although these soft effects
turn out to be higher twist, ' they may still play a role
because they grow with nuclear dimensions.

En the following, we study sequentia1 multiple scatter-
ing in the context of perturbative QCD. We argue that
double scattering, at least, may be treated perturbatively
as a factorizing, first-nonleading-twist effect, and that to
leading power in the nuclear radius (or equivalently in
our approximation, A'~ ), the double-scattering cross

, section is determined by the distribution of gluons in a
bound nucleon. In particular, we find that the leading 3
dependence is sensitive to the small-x behavior of the
gluon distribution. This is in contrast to models in
which multiple scattering is treated in terms of the
quark-nucleon cross section. Finally, triple or higher
scatterings should be suppressed by extra factors of
A' /RoQ (Ro is the internucleon separation), which
we take to be small.

When both scatterings are hard, the model of Ref. 3
(which we refer to as the "hard-scattering" model) should
be adequate, and we review it in Sec. II. In Sec. III we
present arguments which suggest that double hard
scattering is a perturbative higher-twist effect, and that
the leading noncancelling contribution involves the phys-
ical degrees of freedom of the soft gluon. Sections
IV —VII describe the process of verifying this result at
lowest order. Section IV describes the diagrammatic ap-
proach, in which the projectile parton is treated perturba-
tively, and the target nonperturbatively. We develop our
approximations for the target structure in Sec. V, and an-

alyze the projectile in Sec. VI, showing how short- and
long-distance effects factorize and the leading power can-
cels. In Sec. VII we show that the remaining contribu-
tion involves matrix elements of the gluonic field
strength. Finally, in Sec. VIII we summarize our results
on soft scattering, combine them with the hard-scattering
model, and discuss the interplay of nuclear structure with
the gluon distribution in determining A dependence.

II. HARD-SCA I I'ERING MODEL

In order to set the context, we brieAy review the hard-
scattering model specialized to double scattering, and
neglecting "intrinsic" transverse momentum. Consider
the single-particle inclusive cross section for projectile h
with momentum Pz to produce hadron h ' with momen-
tum PI, . on nucleus A, with momentum transfer
Q = —2P&.P„. For simplicity at high energy, we drop
projectile masses in the kinematics.

The active parton, of type i from hadron h, has
momentum

I"=1+v"=x;Pg, (2.1)

Q2 —x Q
2

'Z (2.2)

The parton sequentially absorbs momenta (Q —q)" and
q" from the target. Our main interest will be in the "soft
regions" for which q~ ((Qj or ~Q~

—qj ~
((Qj.

For its part, the nucleus is modeled in its rest frame as
a sphere of radius R =RoA' centered at the origin,
with uniform number density p=3/4mR&. The parton-
model cross sections h v(l;1') =E'do'' J/d 1' for projec-
tile partons to make the transition i~j in fIavor and
l —+l' in momentum on a single-nucleon target with
momentum P„are

(2.3)

where v"=5"+. This parton scatters elastically into the
final momentum 1'=1+Q after two collisions, and then
fragments into the observed hadron h' with momentum
fraction z, so that
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where m labels the partons in nucleon N and dtr/dt is a
standard cross section for elastic parton-parton scattering
at fixed t. The relevant invariants are

s =21.pbbs, t = —21 ~ 1'=Q
(2.4)

Q= 2p~ l ~ x~= s+u

In order to obtain an expression in terms of the ha-
dronic, rather than partonic, initial and final states, we
fold in structure and fragmentation functions for h and h '

with the measure

d(fD)=dx;f, &b(x;,p ) 2DJ&b (z,p ) .Z'

For jet cross sections, fragmentation is omitted. Since
the two collisions have diFerent momentum transfers, it
is not a priori clear what scale p is to be used in evaluat-
ing f;&b and DJ.&b, but in the next section we will argue
that p =Q is most appropriate. Fixing the momentum
of the observed particle, the cross section including dou-
ble scattering becomes

d ik
9Q 4/3 i dq d qg

co&
= Ah' (l, l')+ dx; f &b(x; ) g[h'J(l, l +q)h J"(1+q,1') h'"(l,—l')h "~(l', 1+q)

—h'~(l, l +q)h' (l, l')] . (2.5)

Here the limits on the q+ and Q+ integrals are set impli-
citly by the requirement that x be less than or equal to
one for each scattering. In the 2 part of Eq. (2.5) the
positive term describes physical double scattering into
the observed state. The two negative terms describe "ab-
sorption" from the states of momentum 1 and 1 +Q, re-
spectively, and are proportional to the lowest-order total
cross sections at these momenta. With t-channel ex-
change, h'~(l;1+q)-a, (q ), so that (2.5) is ill defined
when q =0 or (Q —q) =0. If we cut off the integrals in
these soft regions with a parameter t;„,then the strong-
est infrared dependence in the scattering and absorption
terms, proportional to t;„', cancels, but leaves behind an
uncanceled singularity proportional to (Q~ ) 'lnt;„(Ref.
4).

When we analyze this problem below in perturbative
QCD, a structure similar to that of (2.5) will emerge, in
the form of a higher-twist effect. The Q~ lnt;„diver-
gence will then be absorbed into a multiparton distribu-
tion, from which arises the enhanced A dependence.

III. PERTURBATIVK QCD
AND THE COUPLING SCALE

In discussing double scattering from the point of view
of field theory, we will rely heavily on experience drawn
from the proof of factorization at leading twist. ' Stan-
dard factorization theorems assert that cross sections for
large momentum transfer reactions may be written as

id(7=+ dX dxbf yb(X, Q )Q)g ( ~bXb,,Qx)
a, b

&&fbib «b Q') .

This is a convolution of distributions f,zb(X„Q ) of par-
tons a in the colliding hadrons h and short-distance func-
tions co,b(x„xb, Q ). The distributions f, &b must be
determined from experiment at some energy scale Qo,
after which their evolution may be calculated. The
short-distance functions may be calculated in perturba-

tion theory once the distribution is specified. In lowest
order, they are given by Born approximation cross sec-
tions. The parton-model cross section, Eq. (2.3), is of the
factorized form. This is to be expected, since factorized
cross sections are a generalization, and in some sense a
justification, of parton-model cross sections.

The extension of factorization theorems to higher twist
is very nontrivial. Although originally suggested for all
hard-scattering processes, ' most work in this direction
has concentrated on deeply inelastic scattering. "' In
this case, higher-twist contributions to the cross sections
may be expressed in terms of a generalization of parton
distributions to several partons in a hadron. In hadron-
hadron scattering, however, the situation is not so clear.
Perturbation theory definitely allows nonfactoring contri-
butions at higher twist. The failure of factorization is
seen in noncancelling infrared divergences' at two loops
in the eikonal approximation, and even at one loop'
when finite contributions are taken into account.

An important point should be made about these expli-
cit nonfactoring contributions. In eikonal approxima-
tion, the hard scattering is pointlike with respect to soft
corrections, and, in this approximation nonfactoring con-
tributions appear at a relative suppression of s from
the leading power, with s the invariant mass squared of
the system. From a classical point of view, this is a natu-
ral result. ' Factorization fails when the colliding had-
rons may inhuence each others' parton distributions be-
fore the hard collision, and this can only happen to the
extent that they feel each others' fields before they col-
lide. Now in the rest frame of one hadron ( A, say), the
fields of the incident hadron (8) are Lorentz contracted.
In fact, at any fixed time scale before or after the col-
lision, the field strengths due to 8 in this frame are
suppressed by a factor of order (1—

U~ /c ), proportional
to (s/m„m~) . This suppression arises because the
vector potential due to B is nearly gauge equivalent to
zero in the rest frame of 3, until the particles are right
on top of each other. Proofs of factorization in quantum
field theory rely on the analogous feature that soft
gluons exchanged between incoming hadrons are
equivalent to gluons with unphysical polarizations. It is
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thus not unreasonable to expect that nonfactoring contri-
butions to pointlike scattering occur at the level of s
quite generally.

With this assumption in hand, we will argue that the
leading dependence on the nuclear size in @CD is propor-
tional to a, (Q )( A '~ /ROQ ), where Ro is the internu-
cleon separation. It is thus both higher twist and pertur-
batively computable. Contributions of this sort are asso-
ciated with double scattering, and, although the momen-
tum transfer at one of the scatterings may be small, the
coupling is associated with the hard scattering. This
might be a surprising result, because one might expect an
incident parton to undergo numerous soft scatterings,
and absorb numerous soft gluons, as it passes through a
large nucleus. We will try to argue that —because of the
presence of the hard scattering —this is not the case.

Let us begin with a discussion in the style of the parton
model, working in the rest frame of the nucleus. Because
of time dilation, many virtual states of the projectile par-
ticle live long enough to cross the entire nucleus. These
include states in which one or more partons of the projec-
tile possess large transverse momentum. If the total
momentum transfer is low, these states do not contribute
much in the amplitude, simply because they do not
match up with the final state of the system. When the
parton undergoes a hard scattering, however, we know
that there will always be gluon radiation in the final state.
This means that states in which the scattered parton
takes on relatively large transverse momentum, balanced
by the transverse momentum of radiated gluons, dom-
inate the sum of states which contribute to the amplitude.
This large spread in transverse momentum localizes the
scattered parton at the transverse position of the hard
scattering, within an uncertainty of only 1/Q . Without
the hard scattering, of course, it might be anywhere
within the radius of the projectile hadron. Once local-
ized, the probability for the parton to collide with par-
tons from the nucleus is drastically reduced. The density
of partons in the nucleus is proportional to R 0, indepen-
dent of R, the nuclear radius. n additional scatterings
should then occur with a probability of order
[R/(Q Rq)]"=[&' /(ROQ )j", which is the order of
the effective transverse size of the scattered parton times
the number of partons per unit area in the nucleus. For
large Q, an expansion in n is quite reasonable. Note that
the distribution of virtual states in the incoming hadron
is independent of the target only to the extent that we can
ignore "initial-state" interactions which act on long time
scales before the collision. In view of our comments
above, this is the case perturbatively only for n =1. For
n ~2 such initial-state interactions should be taken into
account. Neglecting this effect, however, the scattered
parton propagates near the light cone, in the target rest
frame, and its additional interactions are suppressed, just
as in deeply inelastic scattering. "'

The scattered parton is also unlikely to interact with
other partons from the projectile, for the same geometric
reason. In particular, the projectile takes so short a time
in its own rest frame to cross the nucleus that it has no
time to form a pomeron, which requires long-time in-
teractions between its partons. ' In the following, we will

try to see how this simple picture might emerge in pertur-
bative @CD.

We begin with Fig. 1(a), working in the center-of-mass
frame of the projectile hadron and a typical nucleon of
the target. In the following, s' will denote their invari-
ant mass. In Fig. 1(a), two partons of the nucleus, of mo-
menta pz +q" and p", —q", scatter the projectile parton
by single-gluon exchange, with momentum q" and
(Q —q)". We assume that Q =O(s), while q" may be
quite soft. The projectile momentum is I"=l+V'+, while

p )-q

9 ~ q

(c)
9+q g+k

p -k
I

I

(d)

t
S

I

t

a'

F/Q. 1. (a) Lowest-order example of double scattering; (b)
lowest-order example of spectator interaction; (c) spectator in-
teraction when plus momentum Aows back to the active line; (d)
cut diagram generated from spectator and target poles.
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lE' qy lg

2(l++q+ ) 2q+
(3.2)

Now for q positive, both these poles are in the lower
half-plane, and the q integral may be deformed so that
it never comes nearer to them than O(s'~ ). Then, as-
suming qz is fixed, the gluon of momentum q)" has a
momentum characteristic of a hard parton of the nucleus
along the entire q contour. In this case, the scattered
projectile line 1"+q" is off-shell by 0 (1+q ) =0 (s), and
there is effectively only a single hard scattering. In par-
ticular, this ensures that radiative corrections to this
scattering will have scales characteristic of a, (Q ) (Ref.
16), and that the evolution of parton distributions and
fragmentation functions is determined by Q . This is pre-
cisely analogous ta the observation above that the cross
section of the projectile with a parton of the nucleus is
characteristic of the hard scattering. ' We emphasize
that the soft-exchange gluon q" plays the role of one of
the target partons, and factorizes from the hard interac-
tion.

Simple dimensional considerations, formalized in Ref.
18, show that a hard scattering involving two partons
from the target (in this case, p, and q) is suppressed by a
single factor of at least s ' from the leading behavior
unless one of the target partons is an (unphysical) longitu-
dinally polarized gluon. Contributions from such gluons,
on the other hand, are familiar in leading-twist factoriza-
tion arguments. They either cancel or are absorbed into
the definition of the parton distribution for the hard
scattering. This leaves only the power-suppressed physi-
cal polarizations of the gluon. This power will become
s ' in the squared amplitude, and we derive the energy
dependence of the parton model discussed above, now
times a, (Q ).

We next consider the possibility that q+ is negative, in
which case the two poles in Eq. (3.2) will be on opposite
sides of the real q axis. In this case, we are unable to
deform the q contour as before, unless q+ is so small
that qi/q+ is of order s '~ . This is not surprising be-
cause, whenever q+ is non-negligible, it is no longer natu-
ral to consider the gluon q" as a constituent of the nu-
cleus. So, we must resort to slightly different reasoning.

We observe that in the frame we have chosen, the plus
momenta in the nucleus are small, typically of order

p~& and p~z are assumed to be primarily in the minus direc-
tion. 4 represents a hadron wave function, which in this
frame is spread out in minus momentum, and-is sharply
peaked in plus momentum.

To discuss the role played by a soft gluon in factoriza-
tion, we must first specify its plus momentum. When q+
is positive, the parton-madel picture described above
emerges almost immediately. To see this, we must use
our ability to deform momentum contour integrals in
Feynman diagrams. Consider q, the minus component
of the loop which Aows with the arrows in the figure. In
general, poles will occur near the origin in q only from
the lines with momentum q" and l"+q", the other lines
and the wave function not being strongly dependent on
q for small q . The relevant poles are

m /&s, with m a typical nuclear or nucleon mass scale.
If q+ is larger than this, it must flaw either into the final
state, as in Fig. 1(b), or back to the projectile line, as
along line k"—q" in Fig. 1(c). Let us deal with these
cases in turn.

First, suppose that the plus momentum Aows into the
final state. In this case, the gluon of momentum q" acts
like a spectator to the hard interaction. In particular, if
we deform the q integral into the upper half-plane, we
will cross the second pole in Eq. (3.2), whose contribution
must be added to that of the deformed contour. Along
the deformed contour both q and l+q are far off-shell,
and we may proceed as before. In the pole term, howev-
er, the q" line is fixed on-shell. For this term, we turn to
the q+ contour. Deforming it into the lower half-plane,
we get contributions from discontinuities of the wave
function, the simplest of which is the single-particle pole
when p~2+q" is on-shell. The deformed q+ contour, on
the other hand, gives a negligible contribution, since the
wave function is supposed to be a rapidly decreasing
function of q+. The discontinuities in the lower half-
plane are associated with intermediate states, labeled a in
Fig. 1(b), which, along with the q pole, disconnect the
diagram. The disconnected subdiagram represents the
on-shell scattering of the gluon of momentum —q" with
a subset of partons a from the nucleus. When we square
the amplitude, these gluon scattering contributions corre-
spond to cut diagrams of the form shown in Fig.
1(d). Such cut diagrams are contributions to
S*( q', a';F)S—(F;—q, a) where S(F; q, a) is the—S ma-
trix for the process gluon ( —q")+state a —state F. Fix-
ing the remainder of the diagram, we can sum over final-
state F at a fixed order in the coupling, not forgetting the
possibilities E=( —q, a) and F=( —q', a'). The sum of
all cut diagrams is then proportional to the perturbative
expansion of the unitarity relation S S = 1, and all
nonzero orders in the perturbative expansion cancel.
Thus, the contributions of spectator pole terms of the
type in Fig. 1(b) cancel in the cross section after the sum
over final states. ' This is the analog of the parton-
model statement that interactions of the spectators do
not affect the hard scattering.

In the second case, when the plus momentum fiows
back to the projectile along line k"—q", we can treat the
line k" as an additional parton of the target, just as
above. Then gluons —q" and k" carry large plus and
minus momenta, respectively, into a hard subdiagram,
consisting of lines all of which are far off the mass shell
[k —q, 1+k, and k —Q in Fig. 1(c)]. It may be useful to
note here that this reasoning can easily be generalized to
the ladders which build up Reggeon exchanges. ' Our
ability to deform the k contour destroys the strong or-
dering in plus and minus momenta which characterizes
such a ladder. This corresponds to the parton-model
statement that there is not enough time between the soft
and hard scatterings to farm a pomeron.

While these low-order arguments are far from all in-
clusive, we think they demonstrate that perturbative con-
tributions may be expected to follow the pattern suggest-
ed by the parton model. The conclusion is that in the
presence of a hard scattering, additional soft scatterings
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may be treated perturbatively, even if they carry low
transverse momenta. The contributions of these scatter-
ings are always higher twist, although graph-by-graph
unphysical gluon polarizations may give leading-twist
effects which cancel in a sum over diagrams. The next
four sections of this paper give a detailed treatment of
soft scattering at lowest order. Our aim is to disentangle
in this simple case the higher-twist physical soft scatter-
ing, and to verify the cancellation of the unphysical lead-
ing twist. We work to leading power in 2, and this will
lead to a number of simplifications. In particular, our
multiple-parton distributions will reduce to products of
single-nucleon distributions, as suggested in Ref. 20 in
the context of deeply inelastic scattering.

IV. DIAGRAMS

We now study double scattering on a nuclear target,
working at lowest order in a, (Q ) in accordance with the
discussion of the previous section, but without assuming
the explicit incoherence of the hard-scattering model.
We will isolate the higher-twist (i.e., Qi ) dependence
in the cross section, which scales as 2 ~ in the limit that
one scattering is soft. In the cross section, double scatter-
ing requires an O(g (Q )} interaction for the projectile.
We will work at this (lowest) order for the incoming pro-
jectile, but will not assume that the target may be treated
perturbatively. The contributions to the cross section at
fixed Qi may thus be represented as in Figs. 2—4. These
figures represent an amplitude and its complex conjugate,
separated by a vertical line which denotes the final state.
In each case H labels the "hard" scattering, at which the
large momentum transfer Q" primarily takes place. 0 in-
cludes, in general, annihilation as well as gluon-exchange
graphs. The target, labeled T, is represented by a single
blob, while the incoming quark l", the outgoing quark
I'i'=I"+Q", and the soft gluons are shown explicitly.
For the remainder of the paper we work in the target rest
frame.

Figures 2(a) and 2(b) represent, respectively, a square
of the double-scattering amplitude and the corresponding
interference term. They are analogous to initial-state
double-scattering and absorption contributions to Eq.
(2.5). Similarly, Figs. 3(a) and 3(b) represent final-state
interactions, and Fig. 4 (below) a mixture of initial and
final state. Note that the (coherent) mixed case has no
analog in Eq. (2.5).

In the figures, the momenta k" and q" flow between
the two scatterings. If both k" and q" are hard, the two
scattering s are not independent. Instead we have a
higher-order correction to a single hard scattering. We
shall assume in each case that k" is a soft momentum,
while q" ranges from soft to hard. More detailed as-
sumptions on the nature of T are discussed below, but for
now we assume that k" connects different constituents of
the nuclear state ~P ), and as a result, the k" integral gets
contributions from a limited but finite region on the real
axis whose width is set in the nucleus rest frame by the
nuclear size R =Rod', inside of which the nuclear
wave function is nonvanishing.

When qi and (Qi —qi ) in Figs. 2 —4 are of 0 (s'~ ),
then all projectile interactions are hard. This region of

momentum space is not the source of any infrared prob-
lems in the hard-scattering model, and we will assume
that in this region it is adequate. We therefore concen-
trate on the regions when one of' the projectile interac-
tions is soft. In the case when 8 in Fig. 2(a) consists of
an O(g") t-channel gluon exchange, Fig. 3(a) receives a
contribution from the same graph. There is no question
of double counting, however, since the transverse-
momentum fiow in the two contributions is different.
They are related by the change of variables q"—+Q"—q".
In each case, we shall require a restriction on the trans-
verse momentum q~, as labeled in the graph, of the form
~qi~ (P~ Qi~, where P is some fraction of unity. We shall
see that the ambiguity in choosing P is similar to the am-
biguity in choosing the factorization scale. ' We label
this "soft" region for the ith graph as X;.

With these assumptions, we may write the full contri-
bution of soft double scattering to the cross sections as

(~')
do'sori X do son ~

i =2, 3,4
(4.1)

where i labels the graph and where

b, f3 b ', j3'

(b)

FIG. 2. Initial-state double scattering. 8 is the hard interac-

tion. Momenta of vertical lines all flow up.
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son (1+5 )
1 d q d p dk

d~(i) 4 4

d I' 2As x (2m. ) (2~)

XgP' bb. 'T

1 d q d p' dkRe
As x (2~) (2m. )

Xg ~m bb' +m PP' (4.2)

Here, P,P' (b, b') label the vector (color) indices of the ex-
changed soft gluons, and m labels the identity of the tar-
get parton of momentum p'~. s ' is the invariant mass
of the projectile and an average nucleon in the target.
P'J' labels the projectile tensor of graph j, including the
explicit propagators and vertices of the figure, as well as
the hard subdiagram 8 . V' and 7 label the target

tensors —the remainder of the graph, which includes the
soft gluon propagators and the k+ and k~ integrals.
Note the factor (I+5;~), which takes into account the
mirror diagram of Fig. 4(a). Only k dependence is kept
in the P's, by the following reasoning.

In accordance with our comments above, we assume
that the target tensors are nonvanishing only in a region
in which ~k"~ (O(A '

) for all p in its rest frame.
Thus we assume that, to leading power in 3, we may
drop k" in the projectile tensors, unless P is a rapidly
varying function of k". This is only the case for k (in
the target rest frame), since it is multiplied by I+ = O(s).

Note that V' is the same for all double-scattering
graphs, and 'T for all absorption graphs. In the next
section we analyze these tensors.

V. TARGET TKNSQRS

After a summation over final states, the double-
scattering and interference diagram tensors may be writ-
ten explicitly as

(b)

FIG. 3. Final-state double scattering. FIG. 4. Mixed initial- and final-state double scattering.
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7m pp' fdi}d kid 42exp[ i—q 4+ik u (i}v+g l2) —ip' g, ]

X (P~ T[P (g, )A&((ri+ —,'gz. u )v+g, )]T[Aii((7}+,'g—2 u )v —(2+/, )P (0)]~P),

&p
= f dred g,d g2ex'p[ iq —gz+ik u (gv+gz/2) ip—'

g, ]

X (P~ T[P" (g, ) A»r ((ri+ ,'$—2 u.)v+g, ) A»i((g+ 2$—2 u.)v —gi+g, )]P (0)~P ) .

(5.1)

(5.2)

Here we have chosen the separation between the two P fields as P& and between the two gauge fields as Pz, and v"=5"
and u"=5~ are lighthke vectors in and opposite the projectile direction, respectively. The variable g thus roughly
measures the separation between the two pairs of operators. This separation is lightlike because the k+ and k~ integrals
yield 5 functions. To be more exact, k+ and ki should be cut off at 0 (s/m) and 0 (v's ), respectively, since they are
neglected in P. Compared to the nuclear scale ( A '~ Ro) ', however, their ranges are essentially unbounded.

It may be worth noting that the matrix elements in (5.1) and (5.2) are related to the twist-four parton distributions of
Refs. 11 and 12, at least in the limit where gf and (z vanish. This region might be expected to dominate when both q
and Q are large, and the two scatterings are relatively well localized along the light cone.

To simplify (5.1) and (5.2), we treat the nucleus as a collection of 2 nucleons moving nonrelativistically in the nucleus
rest frame. Thus, we decompose the nuclear state (P~ in terms of A-nucleon states ~p„p2, . . . ,p„). Defining

dp =d p/(2m') 2cop, we have, for instance,

(P~T[P (g, )A p ((ri+ —,'g2 u) v+g, )]T[Ap(( ri+—,'g2 u)v —g2+g, )P (0)]~P)
= fdP1 . dpAdP1 dP'A&P~PI PA&&pl . . PAIT[0 (kl)~g'«n+-, 'k2u)v+41}]

X T[AIi((i}+,'g2 u —)v—gz+g, }P (0)]~p„.. . ,p„)
X&p„.. . ,p„iP& . (5.3)

We assume that nuclear interaction effects are small and that the nucleons carry essentially all of the momentum of the
nucleus. This allows us to write the wave function as

&pi pi. P~l P&=[ (~2')~2]'"5' P —g»; 'P ([p;I» (5.4)

where ql p is a function appropriately symmetrized in the set [p; I, whose normalization is set by requiring

(P'~P &—:f dp, . dp„&P'~p„. . . ,p„& &p„.. . ,p~ iP ) =(2~)'2cop5'(P' —P) .

Substituting (5.4) into (5.3) and assuming that the operator in (5.3) acts on pairs of nucleons, we obtain

(P
~ T[P (g, ) A»r ((ri+ ,'gz u )v—+g&)]T[Ati((g+—,'gz u )v —$2+/, }P (0)]~P )

=(2')2cop f dp'', dp 2dp, dpz5 (pl +p2 —p', —pz )(PI,pz ~ T[P (g, )A& ((i}+—,'$2 u )v +g, )]

(5.5)

where

X&6»2~d2~pl P2&

X T[Aii((g+ —,'g2 u )v —g2+g, )P (0)]~p„p2)

(5.6)

A A

&P' Plld P,P &=—f /de; 5' P yp; +*(P',P—' P P )q' (P P P P )
i=3 i=1

(5.7)

is a two-particle density matrix. We discuss the Geld matrix element and density matrix in turn.
The field matrix element in Eq. (5.6) may, be further simplified by assuming that the constituent nucleons scatter in-

dependently. Different contractions correspond to different physical processes. For instance, the contraction

(p',
~
T[y' (g, ) a~((q+-,'g, .u )v+g, )]~p, ) (p, ~ T[&~((q+-,'g, .u)v —g, +f, )p (0)]lp, ) (5.8)

describes double elastic scattering of individual nucleons, and is highly suppressed compared to the dominant inelastic
process. Also, we expect that the density matrix, Eq. (5.7), vanishes for ~p;

—p,'~ ))(3 ' Ro) '. Then the fact that Qi
is large leads to the suppression of the contraction

(P 1 ~4 mk(l ~)/3 (7(+ 2k2 u )v f2+el)~pl & &P2 ~

~ p(( 7+Tk2 u )v+(1)4m(0)~P2 & (5.9)

This leaves only contractions which pair the two P fields and the two A fields. So, we make the replacement
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&p 1 &p21Tlk. (4) ) ~ p « I+-,'4 &» +ki )ITt. ~p«)+ -, k2 + )U 02+01)4m (0)) lp 1 &p2 &

~bb'
&pl l(t) (kl)(t' (0)lpl &&p2l~p (('9+ —42'li)U+kl)/I p((ri+ , k2—li)'U f2+k()lp2& ~

8

(5.10)

where we have used the color-singlet nature of the nu-
cleon.

Now let us treat the density matrix. The assumption
that we may ignore two-particle correlations to leading
power in A allows us to write

&x'ld2lx&=, ,p16~ Ro
«(lx —x'I) . (s.ls)

For a homogeneous spherical nucleus centered at the ori-
gin, this is

&pl, p2ld2lpl p2&=&plldllpl &&p2ldl lp2&

Here &p'ld, lp& is a one-particle momentum density ma-
trix, which may be written in terms of a configuration-
space density matrix as

&x'ld, lx&=, , 8 R-
16m Ro

r(lx —x' ) .

(5.16)

&p'ld 1 lp & =V'4~, ~p fd'«'r
& x'ldl lx &

More complex and realistic forms for the density matrix
are, of course, possible. Using (5.15) in (5.12) gives

—iR (p' —p) —ir 1/2(p'+p) (5 12) &p'lp, lp& =+4co co ~ 6p(bp)r(P),9 (5.17)

where

R= —,'(x'+x), r=x' —x . (5.13)

where p and r are the Fourier transforms of p and r, re-
spectively, and where

—(P+P) ~P=P P (5.18)

By construction, the diagonal matrix elements of d
&

give
the particle density, which we represent as

& xld, lx &=, ,p(x),9
16~ Ro

(5.14)

with Ro the average internucleon separation. We assume
that d, decreases for x'Ax, and that this decrease is de-

scribed by a rotation and translation invariant function
r(lx' —x'l), normalized by r(0)=1, except near the nu-
clear surface. We assume r(x) decreases on a scale small
compared to Rod' . Then, up to surface corrections,
which we expect to be suppressed by 0 ( A '/ ), we have

are conjugate to r and R, respectively. For fixed lb, pl, we
expect P(b,p) to decrease with /I, and we shall assume
that this decrease is fast compared to the variations in hp
of nucleon matrix elements of the form &p'l(fields)lp&,
since these matrix elements are determined by nucleon,
rather than nuclear, scales. In contrast, r(P) need not
decrease with A, since r(x) is a universal function. So,
r(P) may be taken to describe the (Fermi) momentum
distribution of nucleons in the nucleus.

We are now ready to give an explicit form for the tar-
get tensor (5.1) by using Eqs. (5.10), (5.11), and (5.17) in
the matrix element (5.6). This gives

'T =2') fd g, d ge
ik u (gu+f2/2) 3 3 3 +imp). (y+1/2g)) )1/2X dye d y d p, d p', e . 4')p co,P) Pl P P1(& )

&&r(P))&pl lp ( —,'kl)(t ( ——,'kl)lp) &

P2 16 2A 6 P P2(& )

+ i EP&-(,qv+ gl
—g2//2)Xe

xrip~)(p' A A (5.19)

where /~2=@2 —($2 u )U"=(0+,g2, g2) ), and where we have represented the factor (2m) 5 (p, +p2 —p'1 —p2) in Eq. (5.6)
as an integral over the variable y. We now make a crucial further approximation. Consider the p2 and p2 integrals,
which can be carried out in terms of P2= —,'(p2+p2) and bp2=P2 —p2. As we observed above, we expect the function
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p(bpz) to be more sharply peaked in Ibp2I than r(P2) is in IP2I and than the nucleon matrix element

(p2 I
3 & (g2/2) 2 &(

—$2/2) Ip2 & is in b,p2. As a matter of fact, this last point is a subtle one. For, inserting a complete
set of states in the two-field matrix element gives

(p2 I A&((q+ —,'g2 u )U+g, ) A p((g+ —,'gz u )U —gz+g, )Ipz &

= exp[~'&p& (gv+g& —g2)]+exp[~(p2+p2 —2p. ) g2/2]&p2I & p (0)lp. &&p. I
~ p(0)lp2&, (5 20)

where the vector v is the spatial part of the vector U" in
the projectile direction. %'e have also explicitly removed
the phase in the second matrix associated with the vector
gu" +P&, assuming that bp is a small number compared
to Ap, as is appropriate for nonrelativistic motion of the
constituents. Because p(b, p2) is sharply peaked about
Apz =0 as 3~~, we may reasonably set hpz to zero in
the matrix element, which then becomes diagonal for the
purposes of the b,pz integration in (5.19). This step is
justified, however, only after the explicit phase

ihp2. ( vg+ g'&
—

g2)e ' ' ' is factored from the matrix element by
translation invariance, since the scale of the vector
gv+g, —

$2 is as yet undetermined. In the remaining ma-
trix element

the Apz dependence is entirely in factors such as
& p2

—
—,'~p2I & p' (0)Ip. & which depends only on nucleon-

ic scales. By similar reasoning, we set hp to zero in the
factors 4' co, which become 4cop in Eq. (5.19).

j

Once hpz is set to zero in the matrix -element, as well as
the Aux factor, the remaining Apz integral gives the re-
verse Fourier transform of p(Spy ), that is, p(y+ r)v
+g't —$2). Going through the same procedure for the
p„p, integral will give p(y —g&/2) times the diagonal
relatrix element

&P)ly' (g, /2)Q ( —g /2)IP) & .

Before giving the final result, we observe that in the re-
gion of interest the parton with momentum p" in Fig. 2
is energetic (large x). We thus expect the Fourier trans-
forrn of the pi matrix element to be dominated by —if
not short distances in the target rest frame —at least dis-
tances which do not grow with A. Hence, we claim that,
up to surface corrections, we may neglect g', compared to
y in Eq. (5.19). In addition, as we shall see below, qT and
q+ are not fixed to be small. So, we expect the pz matrix
elements to be suppressed once g'~2 reaches nucleon scales.
Hence, we also neglect hp2 g~ below. With this in mind,
we may now write Eq. (5.19) to leading order in A as

b'b
+m, P'P P

16m Ro

X f d y f dq e' ~p(y)p(y+gv) f d g&e
' f d~P~r(P~ )&P, Ip'. (g, /2)0. (

—kj/2) IPi &

~bb' 4
—i(q —1/Zk u).$2x d'ge

X fd'P, r(P, )(P, I
2 p (g~/2)A p(

—g2/2)IP2 &,

(5.21)

where d P,. =d p,. /2m~. In this form, the target matrix is a geometrical factor times the Fourier transforms of two
I

constituent nucleon matrix elements, each averaged over the constituent's momentum. This is the form of 'T which we

will use below. Almost identical reasoning may be applied to T which appears in Figs. 2(b), 3(b), and 4(b), with the re-

sult

b'b 9
Tm, pp 16m Ro

2

X f d y dye'" "p(y)p(y+rlv) f d g&e
' ' f d P&r(P&)&P& IP~(P&/2)P~( f&/2)IP& &

4
—i(q —1/zk u).g~X d'ge

x f d Pzr(P2)(PzIT(Ap($2/2)Ap( —Pz/2))IP, & .

(5.22)
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The only difference from (5.21) is in the second matrix
element, which involves the anti-time-ordered product.

VI. PRO JKCTILE TKNSORS AND FACTORIZATION

We now analyze the projectile tensors P(J) in Eq. (4.2).
For definiteness, we choose the initial-state double-
scattering diagram, Fig. 2(a), to illustrate the method.
We take the incident and final partons to be quarks;
essentially identical reasoning can be given for antiquarks
and gluons. P "is given by

P2(a)P'P
g

2 ) tr[ J'yP 7 (j'+ g 1(.') —1

Xuz(l+q)B "uz(1+q), (6.5)

where h =+ 1 is the helicity of the incoming quark. If the
target is unpolarized, the y5 term in Eq. (6.5) does not
survive in Eq. (4.2), because the target tensor is sym-
metric. That is,

(5.21), which is proportional to ebb, the color matrices
Tb Tb may be replaced by —,

' 6» Cz. The Dirac trace may
be reduced, using helicity conservation (we work, of
course, with massless quarks), to

r~p=g«IEy~(l'+g) ,'[1 -( ——1)"y,]y'j
h

XH "(1",Q",p'", q", k )

X (E+g ) 'y~Tb ],
H 2(a) ~ e2(a)yeH2(a)

m m m

(6.1)

(6.2)

2

41~t ~' +21~'q ~+2q ~'I P+g
«' q

2

X guz (1 +q)H "uh (1 +q) + 2 ~)

h

(6.6)

The factor —,
' is for the spin and color average of the in-

coming projectile quark. In accordance with the discus-
sion of Sec. IV, k "=k "V and we have dropped k~ and
k+ dependence in P.

We have described Fig. 2(a) as an initial-state interac-
tion, and this suggests that we do momentum integrals in
a way that makes this time-ordering manifest. This can
be accomplished by performing the q and k integrals
first, using the explicit exponentials in the target tensor,
Eq. (5.21)~ These integrals can be done by closing the q
and k contours in the upper or lower half-plane, de-

pending on the sign of the coefficient of q and k in the
exponentials. The integral then equals the sum of the
residues of propagator poles (if any) enclosed, ™es0
functions involving g and g2 . In general, k and q ap-

pear in propagators internal to H ",as well as in the ex-

plicit quark propagators in Eq. (6.1). Putting the former
on-shell, however, requires q and/or k to be large,
typically of order Q) IQ+. This forces the explicit quark
propagators far o6'-shell, and large q or k are not as-
sociated with enhancements in A. We therefore ignore
poles in H "for the purposes of the q and k integra-
tions. Using (5.21), these integrals become

q~(p, ~ ~,"(o)~n ) =o, (6.7)

where ~n ) is a physical intermediate state. This gives, in
Eq. (6.4),

Q~'b', b =g CIAO(g&+/2 —g)0( —$2+ l2 —g)

where A~~ does not contribute to Eq. (4.2). We now use
Ward identities to show that only the first term in
parenthesis in Eq. (6.6) contributes to our final answer.

For this purpose, we note that the leading term in Eq.
(6.6) is proportional to 4lpl~ =4(l+) u~up. The fourth
term is thus suppressed by q l(1+) =O(q m Is ). A
suppression by two powers of s in the soft region is
sufticient to neglect this term. The second and third
terms are suppressed by a single power of s only. They
are, however, proportional to q ~, so that in their contri-
butions to Eq. (4.2), one of the gluon fields, either A &

or
3&. in Eq. (5.21), is contracted into a longitudinal polar-
ization. Inserting a complete set of states between the
gluon fields, both contributions are proportional to ma-
trix elements such as

dq dk —((q —k ~2)g, +()' g+2(~)p p
b b f (2m—)2

mb'b

~b'b
X u~'u~

8 I + +q+

2

(6.3)

The k and q integrals are easily carried out by the
method described above, and

X exp[ iq) g~+l2(l —+q+)]

X ,' tr [(E+((I )K"'*j"—H"'] (6.8)

Q (b)lb'1 =g 8($2+l2 —g)0( —gz+l2 —q)[4(l++q+)]

X exp[ iq ~ f2+ l2( l +—+q
+

) ]

x, tr[yy) 'T, , (1' y)N (')(t+()I)yi r,—] . (6.4)

In Fig. 2(a) k =O. Because Q
"is multiplied by 'T, Eq.

where we have used (6.2) for the hard part to exhibit the
fermion spin structure. We should note, however, that
the functions H " and K "have implicit indices for
parton m.

We can define a similar quantity for each of the
remaining diagrams in Figs. 2 —4. The initial-state in-
terference graph, Fig. 2(b), and the double-scattering and
interference graphs, Figs. 3(a) and 3(b) may be treated in
an almost identical manner to Fig. 2(a). The results are
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Q ' '~~= —g C~O( —
g2 )8( —g+g~+/2) v~v~

~b'b ~+

I+~ + exp[ —iq g+ /2( I + +q
+

)]—' tr(IX * 'b 'P'H ' ') (6.9)m m

Q by =g C ~(g +(2+/2)&(1}+—g+/2) v'~v'~ u '.l'
expI' —

q

—2Qi qi+ qua+21' q+
2(l'+ —q+ )

X —' tr[N.'~ "(I"—y)H "]
Q.3I'„',}„'}'=—g'C, e(~+ —

—,'g,+)e( —g, )

X —' tr(N. *""I"H"")
m m

(u' ~ I')
exp i

(I 1+ + }It+

—2Qi qi+qi+21' q+

2(I '+ — +
)

(6.10)

(6.11)

Here we de6ne the lightlike vectors U'~ and u '~ by the requirements

I'~=(u'-I')v'~, u'. v'=1 .

That is, U'~ is a lightlike vector in the 1' direction, while

1u'~=(v', —v')
&v'+ v'

(6.12)

(6.13)

The mixed-state diagrams, Figs. 4(a) and 4(b), also give similar results, although their evaluation involves a few slight
differences. First, we find that k no longer vanishes for k+ = ki~ =0; rather, we have

+qi +qi 21' q+ —2Qi qi+qi
k = +

2(l++q+ ) 2(l++q+ ) 2(l'+ —q+ )
(6.14)

Second, we cannot reduce the trace in quite the same manner as in Eq. (6.5). To see this, we apply helicity conserva-
tion to the Dirac trace in Fig. 4(a),

T""I'I'=
Im *"'(r+i y}yl'T, .—rH"'(I+ y)} I'T, I

=guI, (l)K*+'Tb uh. (l'+k q)uh (I')H+—'~T&ul, (l +q)uh(l +q)y~uz(1)uz (I'+k q)y~uz —(I'),
hh'

(6.15)

where the color trace is understood. Here, unlike in Eq. (6.5), the spinors no longer pair in the form of projection
operators. We can, however, expand scalars of the form ul, (I +q)y uh (I) around q"=0, by using the relation

u(1+v" +q")= 1+ [g, y ] u(1+v")+O((I+) },1

4I+
(6.16)

C

which follows from the fact that the matrix A"=5 +(q"/I+)+O((I+) ) transforms the vector I"=1+5"+ into
I"+q". Using Eq. (6.16) in Eq. (6.15},

T "~~=4I~I'~cruz(I)K* "Tb.u(l'+k —q)u&(l')TbH "uh(I +q) .
h

(6.17)

Unlike Figs. 2 and 3, the trace in Figs. 4(a) and 4(b) is of the form of a cross section only for q"=0. In any case, corre-
sponding to Eqs. (6.8)—(6.11), we find

Q '"I ~=g 8(g+/2+g)0(g+/2 —g)v'~v~
I'+(1E' I')

m, bb 2 (lr+ +)(I+~ +)

X exp

~ 2 + 2'qAz +t2(1++q ) 2(1++q+ )

2r'- + —z . +'Qi'qi
2(l'+ —q+ )

X —'gu„(l)K* "Tt,.u1, (1'+k q}u„(l')H "Tt,uf,
—(I+q) (6.18)
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and

Q "p= —g 8(g+/2+g)8(g+/2 rl—)U'~U~
(l'+ —q+ )(l+ —q+ )

2/' q+ —2 i qi+qi
(i/+ g~+ /2)

2 l'+ —q+
+ iqQ' —q

X exp +i +
2( l+ —q+ ) 2(1+—

q )

X —,'gu (l q)E—* ' 'T u„(l'+k —q)u„(l')H '"'T u„(l) .
h

(6.19)

Finally, substituting Eqs. (5.20), (5.21), and the Q's in (4.2) we can write the following expression for the contribution
of diagram i (i =2, 3,4) to the soft double-scattering cross section:

d(7Ior(
2u), , =, f dk dq [( I+5,~)()'")(q,k, /)o, (,)(l, l', q, k )5(k —k, (,))5(q —q;(, ))

+2Reh" ( '(q, k, /)cr;(b)(/, /', q, k )5(k —k;(b))5(q —q;(b))] . (6.20)

Here, the double-scattering [i(a)] and interference [i(b)] terms each appear as an integral of the product of a "hard" fac-
to o and a "soft" factor S. k,.(,) (b) and q, (,) (b) are functions of qT and q+,

q2(q) =q2(b) =ql/2(/ +q+ ), k2(, ) =kq(b) =0,
—2Q q +qua+2/' q+

'q3(a) 'q3(b) I+ + & k3(a) k3(b)2(/' —
q )

(6.21)

q4(a) 2(/++ +
)

& 4(a) q4(a) 2(/i+ +
)

k = +q', —2Q, .q, +q', +2l' q+

q
—

q

q
2

q4(b) k4(b) q4(b) +
2(l —q )

2Qi 'qi+ qi. +2/

2(l'+ —q )

The soft factor for Fig. 2(a) is defined as

g~"=g2(Q~) f d $2exp( —iq g2) fO'P, r( P2)( P2~ U. A"(g2/2)U. A "(—g2/2)IPp)U($2+/2&2, R, O)
l++q+

(6.22)

The function U is a geometrical factor,

U(y, R, k )=
6 f d y p(y) f dae+' " p(y+an),

&T p

(6.23)

where a=i//&2 is the 3 component of the vector flu"=r/5"+, and n is a unit vector in the 3 direction. The upper limit

on the a integral is the effect of the 8 functions linking r/ and $2 in Eq. (6.8). For a spherical homogeneous nucleus, the

explicit form for U is

U(y, R, O) =
2

8(R —~g~/2)f (y/2R),
6~&0

where

f (P)=2(1—P') —-', IPI(1 —P') —(1—P')' .

(6.24)

(6.25)

Note that the A dependence in U does not reside completely in the overall factor.4" is an average over constituent nucleon momenta of an expression which, except for the geometrical factor
U($2+/2&2, R), would be a forward-scattering amplitude. We may note that in 4 ' ' the gluon fields are anti-time-

ordered,

4 ' '= —g (Q ) fd"(2exp( iq g2) f dP —2F(Pz)(Pz~T[U A ($2/2)U ~ A ( —gz/2)]~Pz)
q+

The hard factor in Eq. (6.20) is given by

(6.26)
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o2(,)= —f —gtr[(E+g)X "E'H "]f d g)e ' fdP, r(P, )(P, ~P (g)/2)P ( —g)/2)~P, ) .
8 I++.q+ (2m ) 6

(6.27)

o.2(, ) by itself is proportional to the cross section for the scattering of a quark of momentum (I +q)" with momentum
transfer (Q —q)" by a nucleon of momentum P, , averaged over P, .

For comparison, o z(b] is given by

4 g

cr~(b)= f „—gtr(EK„" ' )E'H ' ') f d g)e
' f d P) (P, )(P, ~P (g)/2)(I) ( —g, /2)~P) ) .

(2~)" 6. (6.28)

K and H are ultraviolet coefficient functions, and to define them beyond lowest order requires a specific factorization
scheme. To lowest order, however, they are given by the Born approximation. To this order, cr becomes a
momentum-averaged elastic parton-hadron cross section of the parton model,

d P, r(P, ) dx f »(x )2cu, , , (x P„I+q;I'),
8

o2(b)= d P(r(P) ) dx f yx(x )2cor', (x P( I'I )
8

(6.29)

where d P, =—d P, ) dP) . Here f »(x ) is the distribution of parton m in hadron X and der(x P„k,k') describes
the process

quark(k)+parton(x P()~quark(k')+X,

where

p", = —[(P,+mN )'~ +
~ P, ~

]5"1

(6.30)

(6.31)

and where the final parton is on-shell.
The contributions of Figs. 3 and 4 follow the same pattern. 4 ')' ' ) diff'ers from 1"' '"' only by overall kinematic

factors,

+ +
3(a) l +q

l+

2(u'. I') 2(, )

l' —
q

' (u', q3(, ) ),
(6.32)

2ReS ' '= l++q+
I+

(u'. I ) 2ReS (u' q3(b)),2(b)
(I' —q+ )I'+

where the arguments on the right-hand side indicate necessary replacements. Note that the geometrical factor U, Eq.
(6.25), is numerically the same as in Fig. 2. The hard parts are also of the same functional form

(73(g) d P, r(P( ) dx~f~&&(xm )2'( 3 (I,xmP(' , I' —q )

c73(b)= d P)r(P) ) dx f »(x )2'( (I,X P(, l )

(6.33)

The mixed-state graphs, Fig. 4, give related results for the soft factors,

I lt+"(Jp', q, k )=g (Q ),+ f d g2e
' " 'f d P2r(P2)(P2~u' 3 (g'2/2)u 2 "(—$2/2)~Pz)l&+ +

X 8(g~+ ) V(g~+/2&2, R, k ),

I+@' '( ' k )= — '(Q') d"g e ' d'P r(P )

(6.34)

&& (P2 I
T(u' & "(g,/2) 2u"( —g, /2) ) ~P, )

XO(f2+)V($2+/2&2, R, k ),
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where

V(y, R, k )=
z 6 f d y p(y) f dae+' " p(y+an) .

16m Ao —lyl

Note that, unlike UEq. (6.23), Vdoes not vanish for ~x ~

)R. In fact, for ~g~ )R and k =0, we have

9&4"
V(y & R, R, O) =

16m.R ()

(6.35)

(6.36)

The short-distance functions are a bit more complicated than for Figs. 2 and 3 because for q "%0 they do not describe
squared matrix elements. At lowest order, however, their hard scatterings are still given by the Born approximation
and we may write

a,() ' f——d P, r(P, )f dx f,z(x ) g&b~*(x p&+k, &;I'+k q)—

5((l +x P, —/'+q)2)TbM(x P„l+q;I'),
2(2~)

(6 37)

o+b~= —,
' f d P, r(P, )f dx f &~(x ) g&bM*(x~p~+k ~ q'I'+k

x,5((l+x p, 1')')&q—~(x p~, ~,' '),
2(2m)

where M is the Born approximation to the transition ma-
trix. T& and Tb are color generators in the representa-
tions of the projectile and observed partons, respectively.

g indicates appropriate sums and averages over helici-
ties and colors of these partons. In the q"=0 limit, of
course, these expressions do become parton-model cross
sections.

In the following sections, we will show how the double
scattering and interference terms for each diagram com-
bine to suggest a gauge-invariant factorization of soft and
hard contributions to the cross section.

[g —(x)+R]= [q&A (x) —
q &+(x)

+qi. Ai(x)], (7.1)

leading term in each of the projectile tensors is propor-
tional to u"=5"+ and u'"=5"++0(Q&/l+ ) =5"+
+0(m /s' ). In each case also, the index p is contract-
ed with a field operator in one of the matrix elements of
Eqs. (5.21) or (5.22). Thus, we always have for terms
linear in q+ the combination

VII. EXPANSION IN SOFT MOMENTA

Equation (6.20) gives the soft cross section in a partial-
ly factored form. It has, however, two drawbacks. First,
the soft and hard factors are still linked by the q+ and q~
integrals, and second, the matrix elements in the soft fac-
tor involve the gluon field, and hence are not gauge in-
variant. In this section, we shall address these limita-
tions, showing how an expansion of the hard factor about
q+ =q~=0 leads to a fully factorized form, in which the
soft factor involves field strengths. This corresponds to
eliminating longitudinal degrees of freedom in the soft
scattering, as mentioned in Sec. III. Although the non-
Abelian field strengths are gauge covariant, rather than
invariant, enforcing gauge invariance requires only terms
which are higher order in a, (Q ).

We may begin with the variable q+. Since the expan-
sion about q =0 must be boost invariant, it will be in
terms of powers like q+/l+ -q+/Q+ =0(mq+/s). We
therefore need consider only first order in q+, since
higher orders are suppressed by two powers of s. We can
now show, however, that terms linear in q+ are them-
selves suppressed from 0 (s ') to at least 0 (s ~

) by
virtue of the Ward identity, Eq. (6.7). This is because the

where R =0 if A (x) is contracted with u", and
R =0(s '

) if with u'". The first term on the right-
hand side of Eq. (7.1) gives zero by (6.7). The second
term is suppressed by at least an extra factor of
Qi/1'+-m/s' by Eq. (6.21). Finally, the third term
vanishes under symmetric integration at this order, and
can only contribute if the hard part is also expanded
about q~=O, which will cost at least an extra factor of
order ~qi~/~Qi~ =0(s ' ). In summary, the complete
contribution of terms proportional to q+ is suppressed by
at least s, and may thus be dropped in our approxi-
mation. This leaves us with only an expansion in q~. As
observed above, terms proportional to q~ alone vanish, so
that the first nonzero terms appear at order qi/Q -qi/s.
Higher orders in qz can be dropped since they are
suppressed by further powers of s.

Once we drop the q dependence in the o; (and in

overall factors in the 4"), the q+ integral produces a fac-
tor 2n.5($2 ). This, in turn, leads to a simplification for
4' ', since with gz =0, an ordering in $2 is the same as
an ordering in time. For instance, using the fact that
cr2~b~ and o.2~, ~

are real, the relevant real part in (6.20)
with i =2 is
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d2Re f S ' '= —2g~Re f d4(ze ' ' f d3p&r(p )fi(g )

X(( )iq )(Pq U A U A — P~)U(i'+/2V2, )(,0), (7.2)

where we have used (6.26) and where we define [see Eq.
(6.21)],

(2)dsoft
26) (~

d 3I'

q~ =(0' q2( ) qi) .

Elementary manipulations then give the equality

g2(b) f q g2(a) E(q& )
oo 2' 2TT

(7.3)

(7.4)

I(Q,R)=
~ f qiE(qi),

Ro d q

R' x (2~)'

dC;(Q')= —,
' g, o„(p', l, l', q, )

(7.6)

where we note that q ~2 is a function of q~. Now, combin-

ing (7.4) with Eq. (6.20) we find

soft d q J.
(2) 2

2')), — E qd 1' & (2')

X [crq(, )(/, 1',Qq )
—crq(b)(l, 1')] . (7.5)

Since o.2(, )
is a short-distance function, we may expand it

about qua=0 in powers of qi/s. Keeping, in accordance
with our basic approximation, only the first-order term in
this expansion, we find simply

We have used the facts that E can only be a function of
lq&l, and that oz„(g,=0)=orb). C, behaves as Q, ', as
compared to the Qi of each term individually. Thus, as
promised, the leading twist cancels. At this point, we can
make the connection to the gluonic field strength antici-
pated in Sec. III. To do so, we notice that q~v A' is one
term in the Fourier transform of the contraction v F"".

P
The other terms are q 3 ', q+ 3, and
C,h, g(Q )v A "A"'. Of these, the first is higher order in
qi, since q-=qi/21', the second ls proportional to q+
and hence suppressed by Ward identities, and the third is
higher order in the e6'ective coupling. Thus, to the order
at which we work, we may make the replacement

qgv A qgv'2 ~F ""(g~/2)F„(—g~/2)
2

(7.7)

in qiE(qi), so that

I= ~(Q )f f d $~5(g~ )e ' 'f d P~r(Pq)(Pq~)F "(g~/2)F„"(—
gq /2)~ P~) u(gq+/2&2, R),

(2m )

u(y, R)—= f d yp(y) f dap(y+an) .9 -i+I

16m R oo

(7.8)

This is the connection to gauge-covariant matrix elements anticipated above.
We can give a more physical interpretation to Eq. (7.8), by introducing the distribution of gluons at fixed-momentum

fraction x and fixed transverse momentum qz. This is given for a free hadron h by

)= 'e '" ' '" '«PIF "'(g/2)F ( g/2)lP& .glh x'ql P (2 )3
e- P (7.9)

From (7.9), Eq. (7.8) may be rewritten as

I =4m a, (Q )f d P r(P)P

X f d'q, f '
dx xn, )~(x,q, )

Xu(qi l21+ xP,R), —

(7.10)

where, once again, d P =d P~dP, and where u is the

I

Fourier transform of u with respect to gz+

u(l, R)= f e '~ ' u(g+/2V2, R) .
2m

(7.1 1)

Finally, we note the following relation, which holds to
leading-logarithm approximation:

xfg&z(x, Q )= d qi2)gz)v(x, qi), (7.12)
q2 (Q2

where fg &~(x, Q ) is the distribution of gluons in the nu-



39 SCATTERING IN NUCLEI AND QCD 2601

dx x
0

X u( —xP,R), (7.13)

cleon at momentum fraction x. The precise upper limit
in (7.12) is set by our choice of X; in Eq. (4.2), which we
now see has the usual interpretation of a factorization
scale. ' We cannot apply Eq. (7.12) to the qi integral of
Eq. (7.10) as it stands, because u depends on qi. We may
note, however, that if we expand u(qi/21+ xP —) about
qi =0, the first-order term is proportional to A )~3(l+ )

relative to the zeroth order, which is already suppressed
to O(QJ ). Such contributions we have agreed to
neglect, so we find to this order that we can rewrite I in
(7.6) as
I(Q', R) =8rr2a, (Q') fd'P r(P)P—

where we have used the fact that xf zz(x) is even in x,
as is u( x—P ).

We should note here that f z~ in (7.13) is observable
independently of r(P) only to the extent that we neglect
interactions between nucleons. If we do, however, f~z~
may be identified with the free nucleon distribution.

It is convenient now to consider the analogous reason-
ing for the graphs of Fig. 4. There are a number of
differences in both the soft and hard contributions, which
require a slightly different approach, and lead to slightly
different results.

We begin by formally expanding the short-distance
parts of (6.20) with i =4 about q"=0. Using Eq. (6.34),
we find that adding the mirror diagrams of Figs. 4(a) and
4(b) has the effect of replacing 0($2+)6)( —,'$2+ —

~q~) by
g( —,'((2+( —)i)(), so that, for y=a or b,

f q J. (4 ) 2 2 u '1 f i f 4 2 J. J. J. J.

(2' ) 1'+ (2m ) 2+2 21+ 21'+

2

X exp i qi $2J + i g2 + +i g24l+

—2Qi. qJ.+qi
4I'+

X f d Pzr(P2)(P2~U & (-,($2)U ~ ( ——,'(2)lP2&

dX cr4 (qi =0)+q; o.4r
dqi

+—q;q) 04
q,

——O' q =0

(7.14)

where i,j =1,2. Here the upper sign refers to y=a, the lower to y=b. The only property of the expansion of o.
4&

which we will need is that each derivative results in a suppression by 0 (s ' ). We shall refer to the term in (7.14) with
n powers of q; as ~4

The essential difference between Figs. 2 and 4 is that V, Eq. (6.35), does not vanish for ( —,'&2)~(2+~ )R. We must
therefore be careful in expanding exponentials whose arguments include $2+. To handle this problem, we proceed as fol-
lows.

We divide the $2+ integral into two regions, (i) ~g'2+
~
(41+/qi and (ii) ~f2+ j )41+/qi. In region (i), we may safely ex-

pand exp[+i —,(f2+(q J
/21+ )], and our treatment is relatively straightforward. Region (ii) is potentially troublesome, but

we can easily show that it can be ignored. Consider, for instance, the contribution to o4, ' from (ii). If we define a new
variable p=qig+/41+ [p) 1 in region (ii)], we have

d2
(0) (ii) g2(Q2)

' f f d2g
' J 2, J.

4(a)
1
I+ x (2 )2

X"'
d V

~21 pR+" +2 ] 2 2I + 2( +

X exp[ —ip(1 —1+ /1'+ ) —ip(2Qi. qi) /qi]

X f d P2r(P2)(P2~U' 3 (g2/2)U 2 ( —g'2/2)~P2)o4r(qJ =0) . (7.15)
—

I Q„ I /'Iq, lIn this term, we see an essential singularity at q~=0. This results in an exponential suppression like e " ' of the
low-q~ region, as can most easily be seen by changing to polar coordinates and making appropriate deformations in the
integration contours. Region (ii) does not contribute at all to an expansion in qT/QT (which is incidentally an asymp-
totic expansion). As a consequence, all contributions to the expansion of each r4(r ' are from region (i), where we can ex-
pand exponentials of (q /41 )g2, since this argument never exceeds unity. With this in mind, we may treat the cases
m =0, 1, and 2 in turn.

For m =0, we first note that by Eqs. (6.27) and (6.28), o4(, )(q =0)=o4(b)(q =0), so that
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n'. l d qj.(0) + (0) 2(Q2)
' f f d4g g(g

—
)l'+ (2m )

X f dg d y p(y)p(y+(21/&2)n)

X 8(
~
gz+ /2

~

—
~ g ~

)exp i
+ 2—2Qi qi+q)

2l '+

X 2i sin (21
—

—,
' gz+ )2l+

X f d Pzr(P2)(Pz~u'. A ( —,'gz)u 3 (
—

—,'gz)~P2)o4(, )(0) . (7.16)

In region (i), the sine function is associated with a
q) /l -qi/Q suppression. This is the power we are
after, and if we can show a further suppression, (7.16) will
be negligible. In our approximation, we may replace U'"

by U" in the matrix element, since the vectors difFer only
in components suppressed by a power of l+. After this
replacement, the matrix element becomes symmetric un-
der the replacement Pz~ —P. This is because, with

gz =0, p is either a spacelike (uzi&0) or lightlike

(gz) =0) vector. For spacelike pz, u A ( —,'gz) and
u 2 ( —

—,'gz) certainly commute. In connected matrix
elements —as all of ours are—these operators effectively
commute on the light cone as wel1. ' ' Now, once we
know that the matrix element in (7.16) is even in P~, we
can make the change of variables

by O(1/Qi), we may drop exponential q) /l+ depen-
dence in ~4~,') and ~4~ b), since this dependence is
suppressed by O(1/Qi) compared to the leading term.
Once this is done, it is easy to check that the remaining
expressions for ~4'~,') and ~4~b) are both odd under the same
change of variables, Eq. (7.17), which we applied to
~4~,')+~4~b). As a result, the single-derivative terms may
also be neglected.

These considerations leave only the second-derivative
terms r4(,') and r4(b) in Eq. (7.14), which may still contrib-
ute at O(1/Qi ) relative to leading behavior. The factors
(d /dq;dqj)o4r~~ 0 are already at this order, so once
again we may neglect the qi/l+ terms in the exponen-
tials. Then, using

qi. P —P— (7.17)
2m

d 0 e ""'cosO sin0=0,
0

(7.18)

We easily see, again because of the sine, that (7.16) is odd
under the transformation (7.17), and hence vanishes at
this power.

We may now turn to the single derivative terms in Eq.
(7.14). Noting that (d/dq;)o4 ~ 0 is already suppressed'r

I

we may make the same replacement q, q —+ —,'q,25," that we
made for Fig. 2 in deriving Eq. (7.6). As a result, we will
once again find field-strength matrix elements. From
Eqs. (7.14) and (6.20},we have

(4)do SOrt

d l' KB,
R 0

d
I( (Q,s,R)=g (Q )f dgz+d gz) f exp —i(2+ +iqi $2 i V . —,R, —

(2vr) 2l'+ ' R 2 2

X f d Pzr(P2)(P2~F„"( —,'gz)F" "(——,'gz)~P2),

1 d
& (Q ) —— X 2 lo4(a)(04(a) ) o4(b)(q4(b) ) 1

q=0

Qi qi
l'+

(7.19)

where s =&21 m, with m the nucleon mass. o.4(, ) 4(b) is given by Eq. (6.37) with q~@,) 4(b) =(0+,q4(, ) 4(„),qi), where

q4(, ) 4(b) is given in Eq. (6.21). Here we have used the fact that once the qi /l+ terms are neglected in exponentials, the
soft factors in r4(()) and r(4(b)) become equal. K(Q, s) difFers from I, Eq. (7.8) only in that the density function V Eq.
(6.35}has replaced U, Eq. (6.24), and in the values of q and k . So, in place of Eq. (7.10) we find

K =4m a, (Q )f d P r(P)P f d qi f dx x2) q~(x, qi) V,+ xP, R, —Ro — Q)..qi —Qi qi
(7.20)

where Vis defined by analogy to u, Eq. (7.11).
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To relate der,', (I to the gluon distribution, we use the fact that, by comparing Eqs. (6.24} and (6.35), we can relate V to
U. This comparison is made easier if we realize that k -Qi qi/l may be neglected in V, since it is multipled by a,
whose limits are set by R. Higher orders in Qi qua/l+ are suppressed by at least an extra (l+ ) '. With k set to zero
we easily find

V(z, R, O) =U5(z) —2u(z, R),

f d y f da p(y)p(y+an) .
16m R" OO

For a spherical, homogeneous nucleus, v =9/8ir. Substituted into (7.20), this in turn results in

(7.21)

I(. (Q, s, R)=4m. a, (Q )U f d P r(P) f d qi 2)s&)v, , qi 2I—
2/'+ P 2/'+ P

=J(Q,s, R) —2I(Q R), (7.22)

dO
2' (

d I'
— ICI,

R0
(7.23)

where, again, I is given by (7.13), and where

where I is given by (7.13) and where the second line is a
definition of J(Q,R ).

Finally, for Fig. 3, the approximations developed above
may be used to show that

where h," is the single particle inclusive cross section due
to gluon exchange in the t channel, and is hence Aavor di-
agonal. u is defined in Eq. (7.8), and for a spherical
homogeneous nucleus, u (0,R ) =9/16m.

Using Eq. (8.1), we find that co(do (,
rI /d I' +co d(o I,r), /

d I' is well approximated by

W
4~3

L' = u(0 R)
R0

C/(Q') =
—,
' g, (r3(, )(qg)

I =] dqi
(7.24) d qgX f + + q', [h,"(l, l +q)C,'"+h,"(l', I+)q C/]k,I++q+

do so«
2col

d l'
W4"

[I(C;+C~ }+(J —2I)B]
R0

(7.25)

with C;, CI, and B specified by (7.6) and (6.29), (7.24) and
(6.33), and (7.19) and (6.37), respectively.

VIII. THE DOUBLE-SCATTERING CROSS SECTION

Having derived the soft-scattering cross section, Eq.
(7.25), we can now combine it with the hard-scattering
model of Sec. II, and exhibit a full double-scattering cross
section. In doing so, we must be careful to avoid double
counting and to pay attention to our approximations.
The soft-scattering form, Eq. (7.25), has been derived un-
der the assumption that qi is small compared to Q, and
it fails for large qj. Similarly the hard-scattering model,
Eq. (2.5), fails for qi of order A&cD. To deal with the in-
termediate region, we can define an appropriate "subtrac-
tion" term, which cancels redundant and inaccurate
parts of do.„«and do. h„d. This term may be identified by
noting that for q~)&A&CD, the soft cross sections S'"'
with n =2, 3 obey

S'" '(k, k') =S'" "(k,k')

~4» h,"(k,k')
=u (O, R)

R0 k'+

As usual pi=(0 qi, qi). In summary, we can combine
Eqs. (7.6), (7.19), (7.22), and (7.23), for a complete form of
the soft 0 ( A ~ /R OQ ) correction to the cross section,

(8.2)

whenever qi »AQcD But Eq. (8.2) can also be derived
directly from Eq (2.5) in. the limit qi «Q by neglecting
higher-order terms in qi/Q . As ~qi~ approaches 0(Q),
however, doh„d will difFer from Eq. (8.2) as these terms
become important. In the combination co) do,', r', /d l'
+co(do'„rI/O 1'+co(dcrh„d/d l' L, L can—cels doh„d
where der,',&,

+do. ,' fg is appropriate and vice versa, while
it cancels either in the overlap region A&cD «qi «Q .
To make do.»,d formally comparable to do.»«we should
replace the factor (9/16m. ) in (2.5) by u (O, R ).

To get a complete formula for double scattering, we
must add the contribution of Fig. 4, Eq. (7.19). These
mixed-state interactions have no analog in the hard-
scattering cross section, Eq. (2.5) so there is no problem
with double counting here. Strictly speaking, to get the
complete contribution of Fig. 4, we should use the form
of Eq. (7.20) in which we have not expanded V about
qi =0. The reason for this is that when qi =0 (Q) the os-
cillations in V, Eq. (6.35), due to the factor
exp[ ii/2(Qi qi/1—'+)ri] will cut oIF the 2 ~ behavior
and return it to 3'. This, by the way, shows the self-
consistency of the hard-scattering picture for qua =0(Q).
Then the complete double-scattering cross section is

ik g 4/3 ik

[I (Cik+ Cik)+~Bik]+ h+~d L ik
l' d3I, R2 I f I

0

(8.3)
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ik

+ hard

d I' (8.4)

We have derived Eqs. (8.3) and (8.4) for jet or single-
particle inclusive cross sections for hadrons. Nothing
prevents us from applying it as well to leptonic cross sec-
tions such as deeply inelastic lepton production of jets or
high-P~ particles or the Drell-Yan process. In these
cases only final- or initial-state corrections contribute,
and Eq. (8.4) is considerably simplified.

Of special interest in Eq. (8.4) is the factor I, Eq. (7.14),
which can be computed from the gluon distribution
f &tv(x) and the density function p(r) in Eq. (5.15). For
leptonic processes this is the only nonperturbative factor.
We can illustrate the nature of I, and its sensitivity to the
low-x behavior of the gluon distribution by making the
approximations

p(r) =8(R r), r(P) =5 (P ——m /&2) (8.5)

appropriate to a homogeneous spherical nucleus in which
we neglect Fermi motion. In this approximation,

P u( xP,R)=—9
16~

2

Z dX

where doI,"„d is given by (2.5) and I '" by (8.2). We can
relate Eq. (8.3) more closely to the final form of der, ft,
Eq. (7.25), by noting that K Eq. (7.22) involves

2)priv(x, qj ) at x =Qt q~/2l'+P —k /P . Now
2) &iv(x, q~) is expected to decrease rapidly as x~1.
Thus, when k is large enough to make K decrease in

, it is also large enough to give a suppression in IC

via the gluon distribution. To a reasonable approxima-
tion, we may therefore replace the form (7.20) of K with
(7.22) in the complete cross section. Equation (8.3) then
becomes

ik g 4/3
[I( Cik+ haik 2gik )+JIl ik]

CO I i f

where

z=—4IR . (8.7)

Cxf ~tv(x)= ~g(x), (8.9)

where c is a constant and g (x) is, typically, some polyno-
mial in x with g (0)= 1. Then it is not dificult to isolate
the leading behavior in 3 =R /R o in (8.7),

9a,I=c (4rnROA' ) I (1—b)
2

X sin
2+ 36,

b, (2+ b, )

5

12+36
4

9+36

4 1

9+36, I'( —2 —6) (8.10)

We see that the leading power in A, from I in (8.3), is
directly dependent on b, . [We note that E, Eq. (7.22) is
independent of A for a homogeneous nucleus. ] Whether
Eq. (8.10), or a more sophisticated expression of this type,
can actually be used to relate actual data to the gluon dis-
tribution is a natural question, which we leave for future
work.
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