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The calculated results of our formalism for multiplicity distribution in hadron-nucleus collisions
are demonstrated and compared with experimental data. The leading particles are found to be re-

sponsible for the energy dependence of multiplicity distributions both in hX and hA cases. For
shower particles in hA, the Koba-Nielsen-Olesen (KNO) scaling is approximately valid only when

the nucleus is heavy but its universality breaks down. The peak of the KNO distribution shifts to
smaller values of n, /(n, )„~ when A increases. We also calculate fluctuations of various types. The
advantages of measuring the gray-particle multiplicity Xg are discussed. Because of the fluctuation
in the number of collisions, there should be no universal behavior for the multiplicity distribution at
various impact parameters. Without any free parameter, all the results agree extremely well with

experiments.

I. INTRODUCTION

In this second paper of a series of two we shall use the
formalism developed in Ref. 1 to investigate the Auctua-
tion in multiplicity. We shall present our predictions on
the energy and A dependence of multiplicity distribution
in high-energy hadron-nucleus collisions and compare
with experimental data.

In the preceding paper' we formulate the problem of
both hN and h A collisions in terms of effective multiple
scatterings and Furry branching process. The common
nature of the soft interaction in hN and h A collisions en-
ables us on one hand to have a parameter-free description
for the particle-productivity function in hN case, and
determine on the other hand the particle-production-
related parameter a in h A collisions. The average multi-
plicity derived, which is a phenomenologically familiar
formula, fits the experiments very well without any free
parameter for different projectile, target, and incident en-
ergies from around 100 GeV. As in hN collisions, the
geometrical branching is also the crux of particle produc-
tion in our formalism for multiplicity distribution in h A
collisions in which the geometrical effect is even more
enhanced than in the hN case because of the large size of
nucleus. As a result, the particle production and the Auc-
tuation in h A collisions should very from one impact pa-
rameter and another and on the average should depend
on the size or the mass number A of the nucleus. To-
gether with the effects of multiple collision, it is one of
the major results we are going to demonstrate in this pa-
per.

Since our formalism is based on the Gribov-Glauber
theory of multiple collision, we shall further investigate
the Auctuations in the number of collisions v and multi-
plicities on a very general ground that the two are closely
related. An immediate benefit is the recognition that the
detection of the number of gray particles Ng is a superb
way to specify the impact parameter of an h A collision.
The agreement between our calculation and experimental

data on the multiplicity distribution of shower particles
for various values of N indicates that a universal Koba-
Nielsen-Olesen (KNO) scaling cannot exist for each Ns
therefore at each impact parameter b, contrary to the as-

sumption made in the other model. We shall also study
the energy dependence of the multiplicity distribution
and see whether the KNO scaling is violated for a fixed

target which is certainly true in the inelastic pp col-
lisions. ' We shall show that the KNO scaling is approx-
imately valid especially for a heavy nucleus, but its
universality breaks down due to the A dependence of the
multiplicity distribution similar to the N or b depen-

dence for a fixed nucleus. The peak of the KNO distribu-
tion of shower particles is found to shift to smaller values
of z&'„' =n, I( n, ) t, ~ for heavier nuclei. All of these prop-
erties agree well with experimental data available. It is
one of the advantages of our formalism that we shall also
be able to explain both the physical and mathematical
origins of these properties.

Since the hadronic interaction we are considering here
is short ranged, the presence of the other nucleons should
not affect the first inelastic scattering that h has with a
target nucleon in a hA collision. Therefore, when going
to the extreme case that A is a nucleon, our formalism
should also give the correct results for hN collisions. The
energy dependence of multiplicity distribution in the in-
elastic hN collisions that we get in the following indeed
agrees well with experiments. One can consider it as an
immediate support that our formalism is realistic and
manifests the universality of the particle production in
hN and h A collisions. On the other hand it is also an im-

portant and fundamental connection that ensures the suc-
cess of our model in hadron-nucleus collisions.

We shall not repeat all the relevant equations unless
necessary since most of the formalism has already been
derived in detail in Ref. 1. In the following we shall refer
to the equations in Ref. 1 with the prefix I. We only

briefly demonstrate how to calculate the moments of the
multiplicity distribution in Sec. I and put the detailed
derivation in Appendix A.
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A. Fluctuation in v

Consider first the fluctuations in v holding b fixed. We
define

v"(b)= G—'(b) g v"m, (b) .
v= i

It follows directly from (I2.7) that

v(v —1) . (v —m )(b) =G '(b)[cr;„T(b)]

Similarly, we have, for fixed Ng,

(2.1)

(2.2)

II. FI UCTUATIONS
V

Before we present our results on the multiplicity distri-
butions, we give here first some selected features that can
provide an insight not only to our model in particular,
but also to some characteristics about h A colhsions in
general. Those features pertain to the fluctuations in v
and n. It is instructive to consider all three forms of v:
v(b), v(Ng ), and ( v). The latter two are measurable, but
the first one is of greater theoretical interest because of its
specification of b. There has been a long-standing at-
tempt to isolate the value of b by experimental means.
Our result should shed some quantitative light on such
e6orts.

I

7

FIG. 1. Fluctuation D2(v) =(v~ —v )' ' and D, (v)
—:(v —n ')' ' of the number of collisions as functions of v for
three types of averaging corresponding to v= (v) (solid lines),
v(Ng ) (dot-dashed lines), and v(b) (dashed lines). The thick por-
tion of the solid line represents expermentally the accessible
range of (v) up to 4.11 for "U. The dot-dashed lines are cal-
culated for '9 Au with (Ng ) =3.39 (Ref. 8).

But for the other two cases they vary as (V)'/2 for v) 3:

v"(Ng)—= g v"P(v, Ns) g P(v, N ), (2.3) D2(v) =0.5D3(v) =0.94v '/ (2.9)

and, for the overall average,

(2.4)

(v(v —1) . . (v —m)) = f d b[o;"„T(b)] +'lo;„" .

(2.5)

From these equations we can calculate

D (v) (
2 v2)1/2

D (-) (
3 —3)i/3

(2.6)

(2.7)

D2((v) ) =0.58D3((v) ) =0.67(v) . (2.8)

where v" stands for v'(b), v"(N ), or (v"). In the calcu-
lation for v"(Ns), we assume, for illustrative purpose,
(Ns ) =3.39 which is an experimental number for ' Au
(Ref. 8). For (v") the value of A is to be varied. The re-
sults for D2(V) and D3(v) plotted against the correspond-
ing values of v for all three cases are shown in Fig. 1.
The solid curves are for (v). The break in the thickness
of the lines at ( v) =4. 11 indicates that the experimental-
ly accessible range of ( v) is represented by the thick por-
tion (for 3 ~238) and that the theoretical extrapolation
to hypothetically larger nuclei is represented by the thin
portion. In contrast, even the experimental values of
v(Ng ) can reach at least twice the range of ( v). For v(b)
there is a theoretical upper limit for a fixed value of A. It
is evident from Fig. 1 that D2((v) ) and D3((v) ) in-
crease almost linearly with ( v), approximately as

where v=v(b) or v(Ns). For small v all three cases are
about the same.

Because of the difFerence between (2.8) and (2.9) and,
more importantly, because of the similarity between the
two cases where either b or N are varied, V(Ng ) is clearly
a better experimental variable to choose to describe hA
collisions. Compared to (v), it has a wider range of
values, has smaller fluctuations from the mean. , and ap-
proximates very well the properties associated with hold-
ing b fixed. This last feature provides an important con-
nection between experiment and theory. These charac-
teristics will become even more apparent, as we consider
the fluctuation in the multiplicity of shower particles.

B. Fluctuation in multiplicities

it is not necessary to first know the whole multiplicity
distribution. That is by virtue of the Furry distribution
(I3.3), which satisfies the property

I (N+m) pk I (k+m)
I'(N) I (k)

(2.11)

Thus for m =2 we have

N =N +(w —1)N=av'(av'+a)(n )hz, (2.12)

where (I3.5) and (I3.8) have been used. Now, it follows
from (I3.9) that

We consider now the fluctuation in the multiplicity of
produced particles. For the normalized moments,

(2.10)
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n "(v')=
y n "g„(v')= y (J)(n')))vN"

j=0
(2.13)

where ( n") )~ is the average over the hN distribution,
P„" . Combining (2.12) and (2.13) yields, for r =2,

0

n (v') = ( n )hz[C2 + (2+a+ a )av'+a v'(v' —1)],
(2.14)

given by (2.3); finally, for (v), (v(v —1)) is given by
(2.5). Note how (n )„„(v)is infiuenced by the fiuctua-
tion in v, i.e., v .2

The last step is the conversion to the multiplicity of the
shower particles, which is what is measured. From (I5.2)
we have

n,"(v') =g n,"Q„' (v')
n

where we have used

(2.15)

= g (,")(m +1)'(v')n" '(v'),
i=0

(2.18)

to denote the moments of the multiplicity distribution of
the produced particles in the hlV collisions. Finally, in
averaging over v', we see from (I2.20) and (I2.21) that the
relevant distribution in (I3.11) and (I3.12) is the binomial
distribution B .(v l,p ), —which possesses the property

B ( 1 )
(v 1)p

o
(v' —m )! '

(v —m —1)!
(2.16)

Thus, we obtain, from (I3.11), (I3.12), (I1.13), and (2.16),

(n ) „i(V)=(n )i~[Cd +(2+a+a —2P)P(v —1)

+P (v(v —1)) ], (2.17)

where p=ap. In (2.17), ( . . ) denotes the averages of
types (2.1), (2.3), or (2.4) according to what v is. Then for
v=v(b), v(v —1)(b) is given by (2.2); for v(N ), v"(Ns) is

I

where n" '(v') is given by (2.13) and

(m+1)'(v')=—g (m+1)'B (v', q) . (2.19)

Note that, for r = 1, we have

n, (v') = 1+qv'+ n (v'), (2.20)

n, (v')=1+3qv'+q v'(v' —1)+n (v')

+2(n ) zh[1+(q+a+aq)v'
+aqv'(v' —1)] . (2.21)

Using (2.16) and then (I3.11), (I3.12), and (I3.13) we ob-
tain

which, by virtue of (I3.10) and (2.16), yields (I5.1). For
r =2 we have

(n, ) („(v)=1+2(n )1,„(v)+(v—1)Pq[3 2Pq+2(1+a ——2P)(n )h)v]+(v V)Pq(Pq+—2P(n ) i)v) +(n )z„(v) .

The determination of ( n, )(,~(v) is similar but more tedi-
ous. It is given in the Appendix.

With these results we now construct the normalized
moments:

(2.23)

In calculating these moments we need C„" and the pa-
rameter a defined in (I3.5), as is evident in (2.17), (A19),
and (A20). It should be stressed that C„do not corre-
spond to the moments of the KNO scaling curve in non-
single-diffractive (NSD) events. The reason is that, as
defined in (2.15), they are the moments of the multiplicity
distribution that includes only produced charged parti-
cles from all inelastic events, not just those arising from
NSD reactions. It is the latter that exhibit KNO scaling
for v's &100 GeV (or E„b &10 GeV). When all inelastic
events are considered, including the single-di6'r active
(SD) ones, the multiplicity distribution does not have the
scaling property any more even in the same energy
range. ' This may be attributed to the fact that the lead-
ing particles in the SD events are not negligible among
the produced particles which are quite fewer than in
NSD events. It is conjectured' '" that only the produced
particles in inelastic pp collisions obey KNO scaling.
Evidently, the SD events decrease the average multiplici-
ty and thus increase the fiuctuation or the moments

D(s)/ ( n ) (C(s) 1 )1/2

g(s)/( n ) (C(s) 3C(s) +2)l/3

(2.26)

(2.27)

These two quantities are plotted versus v in Figs. 2 and 3
for the three cases of v. The hnes have the same repre-
sentational meanings as in Fig. 1. Notice that while the
dispersion and skewness stay high for V=(v), especially
in the physical region (thick solid lines), they decrease

I

C„" = (n")),&I(n )zz. When the leading particles are in-
cluded, the resultant multiplicity distribution will depend
on the energy. The calculation of parameter a and mo-
ments C,",r ~ 3, is done in the next section with an input
of C2 =1.32+0.01, which can be extracted from experi-
ments when we consider the energy dependence of the
dispersion of multiplicity distribution in pp collisions.
The moments are approximately scaling quantities hav-
ing the values C3 =2. 13+0.05, and a is found to have
the value of 0.23+0.01. We use them in our determina-
tion of Cz' and C3'. The dispersion and skewness
defined by

(2.24)

(2.25)

can be expressed in terms of C„"by
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FIG. 2. The normalized dispersion of shower particles in h 3
collisions as functions of v. The lines have the same meaning as
in Fig. 1.

significantly as v(b) and v(N ) increase. This phenome-
non is anticipated as a consequence of the lower fluctua-
tion in v for the latter two cases, as revealed in Fig. 1.
The similarity between the dashed and dash-dot curves in
Figs. 2 and 3 is the basis of our assertion that a measure-
ment of the multiplicity distribution for various fixed X

values is tantamount to measuring the multiplicity distri-
bution for various fixed impact parameter b. This estab-
lishes a significant bridge between experiment and theory.

Finally, to verify our predictions on the fluctuation in
multiplicities, we compare the calculated results with the
experimental data' of pXe collisions in Fig. 4 for the
case of v=7(Ns). We defer the comparison for the case
of v= ( v) until we discuss the A dependence of the mul-
tiplicity distribution. The agreement between our calcu-
lation and the data in Fig. 4 is evidently very good. To
exhibit the dependences on the target nucleus, the same
plot is made in Fig. 5 for proton on ' Au (solid line) and

Mg (dashed line). We see that D"/(n, )h„depends
only slightly on 3 compared with the dependence on
v(N ). At the peak where the value of D"/(n, )l, z for
V(Ng ) roughly agrees with that for (v) (see Fig. 2), they
are not too far off from the corresponding value for pp
(indicated by the dash-dot line in Fig. 5).

An important feature to notice is that Figs. 4 and 5
clearly reveal a strong dependence of D "/(n, )i,„on
v(Ng), and by virtue of Fig. 2 therefore also on v(b). It
means that the fluctuation of the multiplicity distribution
at various 6 values are not the same. The assumption of a
constant KNO scaling curve for all b is therefore unten-
able, contrary to the assumption made in other ap-
proaches to the problem. Our result indicates that C2(b)
decreases with decreasing b. The origin of this behavior
can be traced to (I3.11) where, if Q„(v') were to give a
C~(v') that is approximately constant for a fixed value of
v', it is Q ~ (b) which effects a fiuctuation in v' or v at
each fixed b. Because of (2.9) we have D2(v)/V-(v)
thus causing the normalized dispersion to decrease with
increasing v, or decreasing b. From (I3.17) and (2.17) it is
quite evident that Cz' at fixed b is strongly dependent on
the dispersion for v(b), i.e., on D2 (v(b))/v(b). That
dependence results in the decrease of C2' with decreasing
b.

~ p Xe 200 GeV

5 —i
/

/
l

4—

FIG. 3. The normalized skewness of shower particles in hA
collisions as functions of v. The lines have the same meaning as
in Fig. 1.

FIG. 4. The normalized dispersion of shower particles in pXe
collisions as a function of v(Xg). The data are from Ref. 12.
The line is the theoretical result in the paper.
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(3.3)

with the initial number of clusters at R:

k (R) —= & k &kNh(R)

one for the first inelastic hN collision in an h A collision.
P„" in (3.2) is given by (I4.12),

PhN(
& ~ & ) f dR 2g(R )Pk(R)(~) IPk(R)I

(3.4)

FIG. 5. The normalized dispersion of shower particles in
pAu (solid line) and pMg (dashed line) collisions as functions of
v(N~). The dot-dashed line indicate the normalized dispersion
of produced particles in hX collisions.

III. ENERGY DEPENDENCE
OF MULTIPLICITY DISTRIBUTIONS

where

I I=f dR g(R)( . . )
0

R 2
1 —e

—20(R) (3.5)
0

Fk'R'(w) is the Furry distribution with w =
& n &kN I

&k &kN and &k &kN= Ik ] is the average total number of
initial clusters in a pp collision. The distribution in (3.3)
is exactly the multiplicity distribution obtained in the
geometrical branching model (GBM) which describes
the KNO scaling of the multiplicity distribution in non-
single-difI'ractive pp collisions very well for E,.b(10
GeV. We shall show in this section that (3.3) also works
for the produced charged particles in inelastic pp col-
lisions.

For only produced particles in h A collisions, the mo-
ments of multiplicity distribution given in (A18)—(A20)
are almost independent of energy similar to the case of
hN. This is due to the particular property of Furry distri-
bution which is approximately KNO scaling after
smeared over impact parameter. Therefore we sha11 only
discuss the energy dependence of the multiplicity distri-
bution of shower particles. Since the similarity between
hN and h A interactions requires that our general forrnal-
ism in Ref. 1 should also give a good description for the
multiplicity distribution in hN collisions, we have to
check the results for hN before we go to the case of h A

collisions. But first of all it is necessary to summarize our
definition of charged leading, produced, and shower par-
ticles as stated scrappily in Ref. 1.

In an NN collision, we call the nucleons in the frag-
mentation region in the c.m. system as leading particles.
The average charged leading particles is then 1 due to the
processes such as p~~ p, m n and n~m n, m p. The
produced and shower particles exclude and include these
leading particles, respectively. We thus have, from
(I3.22) and (I5.1),

A. The case for hN collisions

&n, &kN=I+&~ &kN (3.6)

which is just the definition of average produced particles
&n &kN in (I5.4). For the consistency of our formalism,
we still keep the subscript (or superscript) s for total
charged particles in hN collisions to distinguish them
from the produced ones although s here has lost its origi-
nal meaning of shower particles in the case of hA col-
lisions. For the multiplicity distribution of total charged
particles in hN collisions we have, by (I3.9) and (I5.2),

P„' =P„",(&n &kN), (3.7)

where P„(& n &kN ) is given by (3.3). From (A22) —(A28)
or calculating directly by (3.7) we have

We can extract the result for hN collisions from the
formalism in Ref. 1 simply by setting the number v of hN
scatterings to 1 and assuming no fluctuation in v, i.e.,
& v"& =1. Thus we have, from (3.1),

&hN 1+2&n &hN+C2 &+ &hN (3.8)

(3 1)

where y =qp and & n &kN is the average number of pro-
duced charged particles in an hN collision. The scaling
form of multiplicity distribution for an hN collision,

&n, &kN=1+3&n &kN+3Cz &n &kN+C3 &n &kN .

(3.9)

Using (3.6) we obtain the dispersion and skewness in
terms of the total charged multiplicity & n, &kN ..

~hN hN) n hN & &hN)
(3.2)

D(s) ( & n & 1)(ChN 1)1/2

~(s) (&n &
—1)(CkN 3ChN+2)1/3

(3.10)

(3.11)

is only for the produced particles, which should be the With constant C2, (3.10) gives us the familiar Wrob-
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lewski' empirical form which has been widely used to fit
experimental data. ' The value of C2 thus extracted
from the comparison of (3.10) with experiments is

C2 =1.32+0.01 . (3.12)

Following the same procedure as in the NSD case of pp
collisions, we have, from (3.3),

Czh = Ih j+(w —1)/(n )hN,

C3N= th 3j+3[wth j
—C2 ]/(n )hN+2(w —1)/(n )hN.

(3.13)

(3.14)

With the value of C2 in (3.12) we have

a —= (w —1)/(n )„=0.23+0.01,
C'~ =2. 16+0.05 .

(3.15)

(3.16)

I I I I I I III

S /&0

I I I I I I I I
I

I

0.4

0.5

0.4
I I I I I I I II

IO
I I I I I I III

lO'

E,.„{Gev )

FIG. 6. The energy dependence of the normalized dispersion
and skewness of the total charged particles in inelastic pp col-
lisions. The data are from Ref. 6. The curves are the calculated
results in the paper. Notice the scale at left for dispersion is
different from that at right for skewness.

The error in (3.16) comes from that of Cz in (3.13) and a
slight energy dependence for E&,b ~50 GeV. Knowing
C2 and C3, we thus can calculate the energy depen-
dence of S"from (3.11). In Fig. 6 we show the normal-
ized dispersion and skewness as functions of the incident
energy E&,b. The curves are from (3.10) and (3.11) and
the experimental data points are from Refs. 6 and 14.
The good agreement between the two is evident. We can
see from (3.10) and (3.11) that the energy dependence of
the multiplicity distribution P'„ is mainly caused by the

S

presence of leading particles when the produced ones
have a scaling distribution. At higher energies more par-
ticles are produced, then the leading particles are less im-
portant and the multiplicity distribution would tend to
the scaling form. But for E&,b

~ 10 GeV, jet production
becomes important and it will increase the Auctuation or
the moments C„ to higher values as it does in the non-
singlet-difFractive events. ' Further investigation of this
e6'ect is beyond the scope of the subject here.

Although (3.10) and (3.11) have been proposed and
fitted' '" to experiments before, this is the first time

GBM is used to derive the scaling multiplicity distribu-
tion of produced particles in an inelastic pp collision.
The moments C„" calculated from GBM give the proper
normalizations to make S"and higher moments for the
total charged particles agree with experiments. Since all
the results in this subsection are included in the formal-
ism for pA interaction and the multiplicity distribution in

p A collisions in turn depends on that of pN, the success
here evidently verifies the foundation of our model and
ensures the reliability of our predictions for the energy
and A dependence of the multiplicity distribution in h A
collisions. Together with the results in Ref. 1, it demon-
strates how the particle production in hN and h A are
connected and it is the inherent ability of our formalism
which can manifest this connection.

We now define the KNO distribution for the inelastic
hN collisions as

(3.17)

where zing
=n, /( n, ) hN. By (3.2) and (3.7) we have then

1
'hN('hN) 1-1/(—&

ehN
zhN 1/(ns ~hN

1 —1/(n, )„
(3.18)

where ghN(z) is given by (3.2) and (3.3). From the above
equations we can immediately obtain (3.10) and (3.11) by
the definitions of D" and S",

(s)
00

/(ns ~hN d hN( hN 1) ehN(zhN)
0

(3.19)

(s) 00S "/(n, )hN= dzhN'(zhN' —1) f'hN(zhN') .
0

(3.20)

B. The case for h A collisions

For h A collisions, the corresponding equations for
dispersion and skewness of the multiplicity distributions
of shower particles are more complicated than (3.10) and
(3.11) for hX collisions. But the energy dependence
should also be caused by the leading particles, because
the multiplicity distribution of the produced particles is
almost independent of energy as in the case of hN. In
Figs. 7 arid 8 we show the normalized dispersion and
skewness of the multiplicity distribution in h A collisions
as functions of E&,b. They are calculated from
(A21) —(A28). For comparison we give the results for
pAu (solid line) and pC (dashed line) along with results
for pp (dot-dashed line). It is clear that the three curves
have'a similar energy dependence, since they are all in-
duced by the leading particles in the energy range
E~,„&10 GeV which we are considering here. For a
heavier nucleus the total average produced multiplicity
(n )h~ is larger. So the leading particles are compara-
tively less important and the therefore the multiplicity
distribution is less dependent on energy. We indeed find
in Figs. 7 and 8 that D "/(n, )h„and S/(n, )h„are
almost constant for pAu collision. We may conclude that
KNO scaling is approximately valid for h A collisions
especially for heavy nuclei. The experimental data which
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0.6

c 0.5
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~P

IP
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pAU

IV. A DEPENDENCE
OF MULTIPLICITY DISTRIBUTION

In this section we shall study the A dependence of mul-
tiplicity distribution. Since the energy dependence is
small especially for heavy nuclei, we shall only focus on
the predictions at a fixed energy. All the results of our
calculation in the following are for E&,b=100 GeV, and
all experimental data which we are comparing with are
also in the vicinity of this energy.

PP A. Moments

I I Il
IO

I I I I I IIII
lO'

E... (GeV)

I I I

FIG. 7. The prediction for the energy dependence of the nor-
malized dispersion of shower particles in pAu (solid line), pC
(dashed line), and pp (dot-dashed line) collisions.

we shall compare with our calculation in the next section
at E&,b =100 GeV and E& b =200 GeV do show no
difference from each other within the error bars. Unfor-
tunately, we do not have many data to further prove our
predictions.

Finally, we must emphasize that the leading particles
play an important role in the energy dependence of multi-
plicity distribution of shower particles (or total charged
particles in hN collisions). When we only consider the
produced particles, the multiplicity distributions both in
hX and h 3 cases are approximately KNO scaling, be-
cause Furry branching is the basic particle production
process in both cases and the Furry distribution is ap-
proximately KNO scaling after smeared over impact pa-
rameter. When energy goes beyond the range relevant
here jet production must be very important as has been
shown by the increase of the total inelastic cross section
of pA collisions. ' ' As in hadron-hardon collisions, ' its
e6'ect on multiplicity distribution in h 3 should be prom-
inent.

In Sec. I we have discussed the fluctuation in multipli-
city on a general ground that it is related to the fiuctua-
tion in the number of scatterings v. Among the three
cases which we considered, i.e., fixing the impact parame-
ter b, fixing the number X of gray particles, and uncon-
ditioned (averaging everything), the last one has the larg-
est fluctuation in v, particularly for heavy nuclei. Ac-
cording to our formalism, the average multiplicity is pro-
portional to v,' therefore, the Auctuation in multiplicity
for the unconditioned distribution is also the largest,
which is the case we are considering here. Since the aver-
age number of scatterings,

( ) —g hNy hA (4.1)

0,7

is a monotonic increasing function of the mass number A
of the target nucleus for a fixed projectile h, we plot the
normalized dispersion and skewness as functions of (v)
in Figs. 9 and 10 to show the A dependence of multiplici-
ty distribution. The curves are calculated from our for-
malism (A21) —(A28) for pA collisions. We believe that
the Wood-Saxon form of nuclear density is not relevant
any more for light nuclei. So we only calculated D" andS" down from a certain nucleus for which we consider
the results are still reliable. We take this nucleus to be C

i I i I [III 1 1 1 1 i i i il I I i

C5
0.5 —

q
' pp (E„b=100GeV)

~ pA (1oo)
o mA (100)
o pA (200)

pEm (200)

pAu
------- pC

1 1 » i I

IO
1 1 i 1 i I

lo'
I I I

E... (GeV)
FIG. 8. The prediction for the energy dependence of the nor-

malized skewness of shower particles in pAu (solid line), pC
(dashed line), and pp (dot-dashed line) collisions.

i

4

FIG. 9. The normalized dispersion of shower particles in h A

collisions as a function of (v) for various nuclei. The solid line
is calculated results with El,b

= 100 GeV. The dashed line is the
extrapolation of the solid line to the calculated point for pp col-
lisions. The data are from Ref. 6 (solid triangle), Ref. 8 (solid
circle and open square), Ref. 12 (open circle), and Ref. 18 (open
triangle).
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0.7 average produced multiplicity (I3.22) to both the experi-
mental data of pA and mA, we believe that the two
should not be very different.

0.6—

0.5—

II
I

I
I

I
I

I
I

I
I

I
I

I

~ pA
( l mA

o pA

(E l+h I OO GeV)—

(too)
(I oo)
(zoo)

0.4

FIG. 10. The normalized skewness of shower particles in h 3
collisions as a function of ( v) for various nuclei. The lines have
the same meaning as in Fig. 9. The data are from Ref. 6 {solid
triangle), Ref. 8 {solid circle and open square), and Ref. 12 {open
circle).

and show the results as solid lines. We use dashed lines
to connect the solid ones with the result for the pp case
obtained in the last section. The experimental data are
from Refs. 6, 8, 12, and 18. The A dependence of
D "/( n, )b„and S"I ( n, ) b „ is evident and our calcula-
tion agrees well with the data as shown in Figs. 9 and 10.
Theoretically, as shown in Figs. 2 and 3, both
D"/( n, ) bz and S~'l/( n, )bz would decrease with ( v)
or A for hypothetically large nuclei after the initial in-
crease at small (v) or A. But realistically, (v) =4. 11
for pU is the largest value we can get in experiments. So
we can only see the increasing part of D "/(n, )b„and
the beginning of the decrease of S"/(n, )b~. As this is
concerned, we would prefer more experimental data with
specified number of gray particles, as shown in Figs. 4
and S, to testify our formalism of multiplicity distribution
in h A collisions, since the experimentally achievable
range of v(Ng ) is always more than twice of ( v) .

The smooth extrapolation of our calculation for p A to
pp collisions shows how the multiplicity distributions in
two cases are related. As can be seen from (A21) —(A28)
and observed during our calculation, the normalized
dispersion D"/(n, )b„and skewness "S(/n) „bfor
each A depend on the values of C2, C3 and the param-
eter a =C2 —

I h I which are determined in the GBM of
pp collisions (see Sec. II). The good agreement between
the calculation and the data in Figs. 9 and 10 once again
is another support for our universal treatment to the par-
ticle production in pp and p A collisions, thus for the idea
that parton interaction underlies the physics for both pp,
pA, and AA collisions.

In Figs. 9 and 10 we also give the experimental data for
~A which does not show much difference from pA col-
lisions. Our calculation gives the same result if we as-
sume. that the multiplicity distributions for mN and NN
are the same. Until the multiplicity distribution for mN
collisions is investigated, we do not have any comments
on this problem. But recalling the good fitting of the

B. The KN(3 distribution

The KNO distribution of the shower particles in h A
collisions is defined as

(4.2)

—= g P„' (v), (4.3)
v=1

so that P„' (v) is defined to be the contribution from v
S

number of scatterings to the total multiplicity distribu-
tion. In (4.3),

v —1
II, (b)=~ (b), p (1—p)" (4.4)

and

cr = f d b rr (b)

[o,"~ T(b)] ~""T(b)
(4.5)

is the cross section for v number of scatterings. The total
inelastic cross section for an It A collision is then

o;"„"=g cr,= fd b(l —e '" ). (4.6)

We can see from (4.3) that P„' (v) is proportional to
S

o„/o;"„" which is the probability for v number of col-
lisions. The distribution Q„' (v') is given by

S

V

Q„' (v')= g ( )q (1—q) Q„&(v'), (4.7)
m=0

Q„(v')= g P„F„„(w),
no=0

(4.8)

where P„" is the multiplicity distribution of produced
particles in hN collisions [see (3.3)] and F„"(w) is the
Furry distribution with K'=a(k )b~ and a=0.63 (see
Sec. IV of Ref. 1).

From the above equations we can obtain the KNO dis-
tribution of shower particles in h A collisions. In the cal-
culation we have used q =0.5 and P o.

j~ /HI". n 0 8.
The results are shown in Figs. 11—14 as solid lines for
different target nuclei, together with the experimental
data from Refs. 8 and 19. With the moments (average

where zb'„' =n, /(n, )b„. 8'„ is the corresponding multi-
S

plicity distribution which can be formulated in terms of
multiple scattering probability [see (I3.13) and (I5.2)].
We only outline the formula for P'„here and refer

S

readers to Ref. 1 for detailed discussion. Let us rewrite it
as

v —1

V „=(a,'„") 'f-d'by y 11„.,(b)Q„' (v)
v=1 v'=0
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~ pMg

~Mg
E...=

I OO GeV

.Io'
CL

10
CL

IO

r I

0 I 2
n, /(n, )„,

FIG. 11. The KNO plot of multiplicity distribution of
shower particles in hMg collisions. The solid line is the calcu-
lated results for pMg at Er,b

= 100 GeV. The data are from Ref.
8. The dashed line indicates the KNO distribution for pp col-
lisions.

multiplicity, dispersion, and skewness) being so well
speci6ed by our model, it is not a surprise that the 6tting
of our calculated KNO distributions to the data for all
types of target nuclei is spectacular. In order to see the
A dependence of the KNO distribution &PAL„, we also give
the distribution /hz for pp collisions (as dashed lines in
Figs. 11—14) which is given by (3.2) and (3.3).

From Figs. 11—14, two properties, which are unique
for h A collisions, are observed.

(1) f&z is always broader than g&z as expected, due to
the multiple scatterings and the Auctuation in their num-

0
I

2
n s /(n s&h A

FIG. 13. Same as Fig. 11,except that it is for hAg collisions.

ber v. But what is interesting is that a "shoulder" is
building up for heavier nuclei as can be seen clearly in
Fig. 13 for Ag and Fig. 14 for Au target.

(2) The position of the peak zII'„™xof KNO distribution
is shifted to smaller values of zh'„' =n, /( n, ) h „. The
heavier the nucleus is, the large the shift or the smaller
the value of z&'~~

'" is.
To explain these properties, we plot in Fig. 15 the cal-

culated KNO distribution g'h„(zz'„')=(n, )h„P„' for pU
collisions (solid line), which is the heaviest target nu-
cleus possible in experiments, and the contributions
( n, ) I, ~ P„' ( v), v = 1, . . . , 5, from v number of scat terings

S

(dot-dashed line). We also show the probability rr /o,"„"
[see (4.5)] for v number of scatterings as a function of v in

V

= IOO GeV—

IO

CL IO'
CL

\

1

\

r
\

IO

I r I I

0 I 2
n, /(n, &„A

FIG. 12. Same as Fig. 11, except that it is for pEm collision
and the data are from Ref. 29.

\

\
\
\

I

IO

I

0 I 2
n, /(n, )„A

FIG. 14. Same as Fig. 11, except that it is for hAu collisions.
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„lO
CL

to each other. So are the corresponding contributions to
total KNO distribution as shown in Fig. 15 for pU col-
lisions. This is how the "shoulder" is building up for
heavier nuclei. In Fig. 16, the probability o, /o;„" is al-
ways the largest for each fixed nucleus. Thus the contri-
bution P„' (v= 1) to P'„ in (4.3) is always dominant

S S

among contributions from other values of v. This is very
clear as illustrated in Fig. 15. Therefore, the position of
the peak of pz„(zh'„') should be approximately deter-
mined by P„' (v= 1). From (4.3)—(4.8), we have

S

(Q 2

ps ( 1 ) (~ /~hA )phN
S S

( % ) /Win ) YhN(zhN ) /( Bs ) hN (4.9)

2
n, /(n, )„,

FIG. 15. The calculated KNO distribution for shower parti-
cles in pU collisions at E&,b=100 CzeV (solid line). The dot-
dashed lines are the contributions to the solid one from events
with v=1, 2, 3, 4, and 5 number of collisions. The dashed line
is the KNO distribution for pp collisions. n max —( & ) Z(s)max

s = 1 s hN AX (4.10)

which is just the product of the multiplicity distribution
for hX collisions and the probability for h to have only
one collisions with a target nucleon. Let the position of
the peak of the KNO distribution for hX g'hN(zhN')
= ( n, )hNP„' be zh(N) ".Then P„' (v= 1) has its maximum

value when

Fig. 16. We can see that for light nucleus (Mg in Fig. 16,
for example), the probability for v number of scatterings
decreases rapidly when v&2. So are the corresponding
contributions to KNO distribution. But when the nu-
cleus becomes heavier (Au in Fig. 16, for example), the
values of rr /cr,"„"for 2~ v~ 5 become more comparable

Z
max

&
max /( ii )

=(&~, &hN/&~, &hA)zhN~'" . (4.1 1)

The corresponding position of the peak of
( n, )h„P„' (v= 1), when plotted against zh'„' = n, /

S

& n, )„„,is then

Using (3.1) and (3.6) we have

0 Mg
( s )max /Z max
hN i 1+( )

(y+P)(( v) —1), (4.12)

0.4 —'t

0.5
b

'i

\

l
\
\

l

\
\
\

AU

0.2

FIG. 16. The normalized cross section o.,/o. ,"„ for the events
with v number of collisions as a function of v. The solid line is
for pAu, dot-dashed line for pEm, and dashed line for pMg col-
lision.

which is a linear function of (v). According to our
analysis, the position of the peak of g'h~ (zh„) satisfies

z (~)III» & III»
Zhg ~z

~
(4.13)

As a function of ( v ), the calculated zh(N) '"/zh'„' '" is plot-
ted in Fig. 17 (solid line), which measures how far the
peak of KNO distribution for h A collisions shifts from
that for hN collisions. Equation (4.12) is also shown as a
dot-dashed line in Fig. 17. By comparing the two curves
we can see that (4.13) is indeed true. The diff'erence be-
tween zhz

'" and z&" is due to the contributions from
( n, ) hNP„' ( v) for v ~ 2 to the total KNO distribution

S

g'h„(zh'„)), which makes zh'„' '" larger than z, '". For
heavier nuclei these contributions become more impor-
tant and the difFerence between zh~

'" and z, '" is even
larger. In high-energy nucleus-nucleus collisions, the
geometrical property of the nucleus becomes more dom-
inant in the problem of multiplicity distribution. Both
the shifting of the peak and the building-up of the "shoul-
der" in KNO multiplicity distribution will be prominent
and could not be missed by experimentalists at all.
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p
Z" '"/Z '"

hN I

2.0

s) mox
A

l.o

FIG. 17. The calculated zzz '"/zh& '" (solid line), which
measures the' shift of the peak of the KNO distribution, as a
function (v). The dashed line obtained from (4.12) measures
the shift for the contribution to the KNO curve from events
with only v=1 collision.

bution to smaller values of zz'„' =n, /( n, ) h „.A shoulder
in multiplicity distribution is building up for the large nu-
cleus due to the contributions from the events which have
more than one hN collision. With no free parameter to
adjust in our calculation, all of these results agree ex-
tremely well with the experimental data available. We
consider this as a strong support to our consistent treat-
ment to multiplicity distribution in hN and h A collisions
and our belief that Furry branching is an important and
fundamental process for particle production in soft in-
teractions.

The particle production in h 3 collisions we have stud-
ied in this and the last paper' may be called as the classi-
cal process, where no thermodynamic and hydrodynamic
effect is present. In this process, the description of multi-
ple collisions is proved still relevant. An extension of the
formalism to nucleus-nucleus collisions thus could be
served as a background upon which we could extract
some signals of quark-gluon plasma or even a thermalized
system if it had ever been formed. We shall discuss this
in another paper.
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V. CONCLUSIONS

We have considered the Auctuations in the number of
collisions v and multiplicity n, using the formula derived
in Ref. 1. We have shown that they are closely related.
An important result of this study is the demonstration
that the measurement of the Ns (number of gray parti-
cles) dependence can give a good description of the b
dependence. With that connection it is possible to con-
clude that the multiplicity distributions at various b do
not satisfy a universal Form. That is based on the theoret-
ical result (which agrees with the experimental data) that
the normalized dispersion of the charged multiplicity de-
creases with increasing N .

We then predicted the energy dependence of the multi-
plicity distribution. For produced particles, the distribu-
tion is almost energy independent, due to the scaling
property of Furry distribution after smeared over the im-
pact parameter in both hN and h A collisions. The multi-
plicity distribution for shower particles (or total charged
particles in hN case) has a noticeable energy dependence.
But for heavier nuclei in h A, this energy dependence is so
small that KNO scaling can be considered approximately
valid.

We also investigated the A dependence of the multipli-
city distribution of shower particles in h A collisions. We
found that the fluctuation ia multiplicity is larger than in
hN collisions, due to the large Auctuation in the number
of collisions v. The dominance of the contribution from
the events which have only one hN collision is found to
be responsible for the shifting of the peak of KNO distri-

I

r7(v )/( + )g~ I+av
n ( v') /( n )s&

=Cz +av'(2+ a+ a ) +a2v'( v' —1),

To calculate C„and C„" we need ¹ and (1+m)"
which are defined as

N"(v')= g ¹I'z (w ), (A 1)
N=k

(1+m)"(v')= g (m +1)"B (v', q),
m=0

where I'z given in (I3.3) and 8 (v', q) given in (I2.13)
are the Furry and binomial distributions, respectively.
By (I3.5), (I3.7), (2.11), and (2.16), we have

N/( n )hz =av',

(A2)

N /(n )sz=av'(a+a)+a v'(v' —1),
N /(n )h&=av'[(a+a)(2a+ )a+a (/n )z~]

+3a v'(v' —1)(a+a)
+a v'(v' —1)(v' —2),

(1+m )(v') = 1+qv',

(1+m) (v')=1+3qv'+q v'(v' —1),

(A4)

(A5)

(A6)

(A7)

(1+m ) (v')=1+7qv'+6q v'(v' —1)

+q v'(v' —1)(v' —2) . (A8)

Then for produced particles we can obtain, from (I3.9)
and (2.13),

(A9)

(A 10)

This work was supported in part by the U.S. Depart-
ment of Energy under Grant No. DE-FG06-85ER40224-
A001.

APPENDIX

n (v')/(n )z&=C3 +av'[3C2 +( a+a)( 3+2a +a) +a/(n )I&]+3a v'(v' —1)(1+a+a)+a v'(v' —1)(v' —2) .
(A 1 1)
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For shower particle we use (2.18) to calculate n,"(v'), and then get

n, (v') = 1+q v'+ n (v'),

n, (v')=(1+m ) (v')+2(n )z~d z( v')+ n (v'),

n, (v') =(1+m ) (v')+3(n )~&d»(v')+3(n )I&d&z(v')+n (v'),

with dz, (v'), dz, (v'), and d~z(v') given by

dz, (v') =1+(q+a+qa)v'+qav'(v' —1),
dz, (v')=1+v'(3q+a+3qa)+v'(v' —l)(q +3qa+2q a)+q av'(v' —1)(v' —2),
d&z(v') =Cz +v'[(2+a+a )a+qCz +(2+a+a )qa]+v'(v' —1)[a +(2+a+a )qa+2qa ]

+q a v'( v' —1)(v' —2) .

Because of (I3.11), (I3.12), (I3.13), and (2.16) with p=ap the average over v' and v yields

( n )„„(v) /( n )„=1 +P( v 1), —

(n ) h„(v )/(n )q~=Cz +P(v —1)(2+a+a —2P)+P (v(v —1))

( n )&z (v)/( n) I& =Cz +P(v 1)[3Cz—+(a +a)(3+a+2a —6P) —6P(1 —P)+a /( n)&&]

+3P (v(v —I)) (1+a+a —P)+P (v(v —1)(v—2))

and, with y=pq,

(n, )gg(V)=1+y(v —1)+(n )hg(V),

(n, )hz(V)=((1+m ) )(v)+2(n )h&(dz& )(v) +(n )hz(v),

(n, )z„(v)=((1+m) )(v) +3(n )h~(d» )(v) +3(n)1~(d~z)(v)+(n )z~(v),

where

((1+m) )(v)=1+y(3 —2y)(v —1)+y (v(v —I))
((1+m ) )(v)=1+(7—12y+6y )y(v —1)+(6—3y)y (v(v —1)) +y (v(v —1)(v—2) )

(dz, ) (v) = 1+(v —1)(y+P+ qP 2yP)+ yP( —v) (v —1) )

(d» )(v) =1+(v—1 )[P+3y( 1+a—2P) —2y (1+2a—3P)]

+(v(v —1)) y[3P+y(1+2a —3P)]+Py (v(v —1)(v—2))

(d~z )(v)=Cz +(v —1)[yCz +(2+a+a)P(1+q —2y) —2P (1+2q —3y)]

+ (v(v —1) ) P[y(2+a+a )]+P(1+2q —3y)+yP (v(v —1)(v—2) )

(A12)

(A13)

(A14)

(A15)

(A16)

(A17)

(A18)

(A19)

(A20)

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

In the above equations ( ) denotes the averages of the types (2.1), (2.3), or (2.4) according to what v is.
From (A18)—(A28) we can immediately calculate the moments C„=(n")I,& /(n )hz, C„"=(n,")h„/(n, )1,&, and

their dependences on v.
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