
PHYSICAL REVIEW 0 VOLUME 39, NUMBER 1

Spectra of the transitions Y(nS ) = Y(IS)m+~

1 JANUARY 1989

G. Belanger
Laboratoire de Physique Nucleaire, Uniuersite de Montreal, Case Post 61.28, Montreal, Quebec, Canada H3C 3J7

T. DeGrand and Peter Moxhay
Department ofPhysics, Uniuersi ty of Colorado, Campus Box 390, Boulder, Colorado 80309

(Received 19 August 1988)

The spectra of the transitions Y(nS)-~Y(mS)~ ~ are discussed, taking account of multipole-
expansion corrections as well as of final-state m ~ and Y~ interactions. The inclusion of a four-
quark resonance in the Y~ channel, as suggested by Voloshin, together with m+~ final-state in-
teractions, may explain the presence of two peaks in the Y(3S)~Y(1S)~ vr spectrum. Further
tests of this model are proposed.

I. INTRODUCTION

The spectra and widths of several ~+~ transitions in
the Y system have been measured with considerable accu-
racy, by both the ARGUS and CLEO Collaborations. '

These transitions, as well as the analogous decay
g'~gm+vr (Ref. S), are for the most part described well
using the multipole expansion in QCD in conjunction
with potential models, with the conversion of gluons into
pions being described using soft-pion theorems [PCAC
(partial conservation of axial-vector current), current
algebra].

One anomaly concerns the transition Y(3S)~Y(1S)m.+tr . In early data the spectrum for this tran-
sition appeared to be rather Aat, rather than strongly
peaked at high energies, as is predicted by the calcula-
tions based on soft-pion theorems. More recent CLEO
data' suggested that the spectrum may have an unusual
double-peaked shape. This is confirmed by very recent
CLEO data, with three times the statistics of the data of
Ref. 1, and the observed spectrum cannot be fitted using
any of the known models.

In this paper we consider various modifications of the
standard multipole-plus-current-algebra model which
preserve its essential features. From the observed spectra
we know that these modifications should have a larger
effect on the Y(3S)~Y(1S)sr+a decay than on the
Y(2S)~Y(lS)sr+~ decay. Two types of corrections
can be envisioned that do not completely destroy the
soft-pion framework: (1) corrections to the heavy-
quark —gluon vertex (multipole-expansion corrections)
and (2) final-state interactions.

We first discuss the multipole-expansion corrections,
and argue that the largest potential correction is from
higher terms in the expansion in kr, where r is the size of
the quarkonium state and k the magnitude of a gluon
three-momentum. This correction is largest for the decay
Y(3S)~Y(1S)tr m. but is insufficient to explain the ob-
served spectrum.

We turn next to final-state interactions, which may
occur between either the two pions or between the final Y
and one of the pions. Constraints from data on m+m

processes preclude any low-mass narrow resonance struc-

ture in the m+m final state. ' While the e6'ect of the
interaction is negligible for most of the observed

transitions, we find that it significantly alters the shape
of the Y(3S)~Y(1S)sr+a spectrum, although it cannot
by itself explain the double peak in the spectrum.

Finally we discuss the suggestion of Voloshin' that the
shape of the Y(3S)~Y(1S)sr+sr spectrum is due to the
presence of a narrow four-quark isovector state, coupled
to the Ym final state, whose mass lies between that of the
Y(2S) and that of the Y(3S). Such a state would greatly
enhance the low-energy part of the dipion spectrum in
the decay Y(3S)~Y(1S)m.+sr, without having much
effect on the Y(2S)~Y(1S)rr+m. spectrum. Moreover,
we show that inclusion of the m+~ interaction can give
a double-peaked shape, rather than a single peak at low

invariant mass. We suggest some further ways to
test this model.

The outline of this paper is as follows. In Sec. II we re-
view the soft-pion approach for calculating these decays,
emphasizing that within the framework the contribution
to the spectrum due to emission of the pions in a state
having a nonzero angular momentum is negligible. In
Sec. III we consider multipole-expansion corrections. In
Sec. IV we discuss the efI'ect of final-state interactions of
the pions. In Sec. V we explore the possibility of struc-
ture in the Ym. channel. Section VI contains our con-
clusions.

II. SOFT-PION CALCULATION
OF HADRONIC DECAYS

To obtain the hadronic amplitude for the decay of an
Y(nS) state, we follow the soft-pion method. " We pay
particular attention to the results of Voloshin and Za-
kharov and of Novikov and Shifman, ' according to
which the transition rates in question are amenable to
what is virtually a "first-principles" calculation in QCD.

To lowest order in the multipole expansion, the in-
teraction Hamiltonian is simply &,„,= —

—,'gr E'P, where
E' is the color-electric field (a = 1, . . . , 8 is a color in-
dex), P is an operator which changes a color-singlet state
into a color-octet state, and g =4~+, . Accordingly, the
process we are interested in first occurs at second order in
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perturbation theory; the intermediate state must have the
quark and antiquark in a color octet (together with a soft
gluon to make an overall color singlet).

It is pertinent to say something about the nature of
these intermediate states. We know that in the limit of
extremely heavy quark mass the interaction Hamiltonian
for a color-octet quark-antiquark pair is &s=+2a, l3r,
and so the intermediate states comprise a continuum of
Coulombic states (plus a soft gluon). We shall avoid con-
structing explicit models of these states in the case at
hand, where confinement must be taken into account, but
shall accept the arguments of Ref. 8 that these states
should lie in a narrow energy band near the b-Aavor
threshold, i.e., just below the Y(4S) at 10.50 GeV.

The amplitude for the transition Y(nS)~Y(mS)m+m
1S

~=, &mSI, , G„;I.S &&~+~ I~a,-E,'E;I0&

(i,j =1,2, 3 are three-vector indices), where Gs r is a
Careen's function formed from states in which the quark-
antiquark pair are in a color octet and in a P wave:

is, P & & fI, PI
s, p M —Msp

(2.2)

where M is the mass of the initial quarkonium state and
M8 p that of the intermediate color-octet state; we
neglect the kinetic energy due to recoil of the octet state,
as well as the energy of the emitted gluon. Only P-wave
octet states contribute since the interaction Hamiltonian
goes like r, . Equation (2.1) has been widely used; we shall
comment on its derivation in Sec. III. The hadronic ma-
trix element, in the absence of final-state interactions, has
been calculated ' in terms of the corresponding matrix
element of the QCD energy-momentum tensor, with the
result (see also Ref. 14)

2 2

&~'~ I~a, E, E;IO&,.„„,.„= +—0(a, ) q'~~„—
9

&a,p~
(pipi (2.3)

where the coupling a, and the glue fraction of the pion's momentum p are to be evaluated at the scale of the inverse
radius of the quarkonium system. (For the Y we expect' a, =0.4, p = —,'.) Here we define q=p, +pz and p=p, —p2,
where p, =(e„k, ), pz =(e2, kz) are the four-momenta of the pions; the corresponding three-momenta will be denoted by

q, p. The fact that the leading term in (2.3) goes like q, i.e., the existence of an "Adler zero, " is responsible for the typi-
cal strong peak in the observed spectra at large m. +~ invariant mass.

Novikov and Shifman worked out the dipion spectrum implied by (2.3), showing in particular that the D wave spec--
trum is small but calculable. We shall reproduce their result, fixing overall constant factors and improving the approxi-
mations made in the D wave formula. -We begin by splitting (2.3) into S- and D wave par-ts. In covariant notation, the
wave function of a D wave pion pair h-as the tensor structure p„p, —

—,'(q„q, —
q g„„),since in the rest frame of the pion

pair this goes over to p;p —
—,'p 6;, while for the S wave we will allow two tensor structures, g„q and q„,q

—
q g„,

since jn the rest frame both of these go over to 6, .
Splitting the amplitude into S- and D-wave parts, we get

&(~~)sl~a, E,'E;I0&,., „,„= 2 q'S,, + 'P
(q, q, +q'S,, )

27
(2.4)

,E;E;Io&,.„„.„= p;p, ,'(q;q, +q'&;,—) —1—
4m

(2.5)

The leading term in the S-wave amplitude (2.4), which
has no factor Q.„has its origin ' in the trace of the
gluonic part of the QCD energy-momentum tensor 0G„;
this term is enhanced due to the weH-known trace anom-
aly in QCD. The D wave amplitude r-eceives no contribu-
tion from the trace, and so is smaller by a factor of 0;,
than the S-wave amplitude. The 0 (a,. ) corrections to the
leading term in (2.3) were dropped since there are other
0 (a, ) corrections of the same form that are not calculat-
ed in the present approach, and following Novikov and
Shifman' we have dropped them altogether. The term of
the same order proportional to q;q +q 5;. (q„q, —q g„
in covariant notation) was kept since it has a difFerent
structure than the leading term and Inight' significantly
aAect the shape of the spectrum. In the second term of
the D-wave amplitude we have followed Novikov and

Shifman in inserting an ad hoc threshold factor to
guarantee that the D-wave amplitude vanishes at thresh-
old.

Using the double-dipole quarkonium matrix element'

I((m'S, ), iri, Gsrr In( S, ); ) =—5; 5„i,

r

4m Ie; 3o.,p
q + (q+3q )

81 4m.
(2.7)

vr(x, padre,
p —

—,'(q +3q2) 1—4m„

q

(2.8)

where I= (mSirG8r InS ), we obtain the S- and D-wave
amplitudes
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where e; is a polarization vector for the final quarkonium
state; the summation over final polarizations is done ac-
cording to pe;e' =5;. . The decay rates for two-pion
emission are obtained after squaring (2.7) and (2.8) and
doing the phase-space integrations. For the S wave we
obtain

K =M +M' —M„

K, =(3a,p /4~)I[(M M—' +M )/2M)

+2M

K(M +K )
13122M

X (M2 4m 2 )I/2(~~2 MI2)1/2 (2.9)

M and M' are the masses, respectively, of the initial and
final quarkonium states, and E'=(M M'——M )/
2M is the energy of the final quarkonium state in the

rest frame.
For the D wave we get

dI (cL,p ) iIi M
K

20736aM'
4 4X [—,'(ym» —y~;„)——,'a(y

+ —,'(a'+2b)(y', „—y';„) ab(y',—„—y';„)+b'(y, „—y;„)], (2.10)

where

/2)2 [ I (M2 4m 2 )1/2+ (F i2 Mi2)1 2/]2

and where

a=K+2m, b= —' Ia —
—,I[(K—2M ) —4M ~ ](1—4m„/M „)I .

The corresponding spectra for the transitions
Y(3S)~Y(1S)m+n are shown in Fig. 1. The spectrum
for D-wave pions does show a peak at lower energy than
for the S-wave pions but the rate for the D wave is much
too small (less than 0.01% of the total rate, using the
values of rx, and p mentioned above) to explain the peak
at low energy in the spectrum, even if the spectrum were
to be enhanced by the presence of a hypothetical D wave

resonance. '

The extreme smallness of the D-wave contribution is
due not only to the fact that the corresponding rate goes
like a„but also because the amplitude (2.8) vanishes in
the heavy-quarkonium limit; i.e., there is a kinematic
suppresion as well. The D-wave contributions from the
soft-pion amplitude will be ignored from now on in our
discussion. Moreover, in the case of S-wave pions the
0 (a, ) correction term in (2.4) has only a negligible effect
on the shape of the spectrum and will be omitted.

The experimentalists have searched for evidence that
the pions in the decay Y(3S)~Y(1S))r+m are being
produced with nonzero angular momentum, so far with
negative results. The extreme smallness of the D-wave
component in the soft-pion calculation makes it evident
that the presence of any appreciable component having
nonzero angular momentum would definitely indicate
that some nonmultipole process is present.

It is remarkable that it has been possible to fix the
overall constants in the formulas (2.9) and (2.10), so that
it is possible to make an estimate of the total rates, given
a model for the quarkonium matrix element I. In the ap-
proximation' in which the nonlocality of the Green's
function G& z is neglected, so that I =Go(mS~r tnS ),

I I I I

i

I I I I

j
I I I I

(

I ) I I

S—wave

0.2 0.4 0.6 0.8
M.. (Gev)

FIG. 1. Soft-pion predictions for vr+m emitted in an S wave
and in a D wave.

with Go a constant, one can use potential-model wave
functions to compute the remaining overlap integral. In
this approximation GO=1/[Ms p

—M(nS)]=2 GeV
using the estimate of the intermediate-state mass men-
tioned above. This approximation was studied in Ref. 14,
using the potential model of Ref. 17; from the observed
value of the Y(2S)~Y(1S)sr+a rate a value 60=4.4
GeV was extracted, probably indicating that some im-
portant effects have been omitted in this model, but also
showing the apparent overall correctness of the soft-pion
approach for this decay.
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III. MULTIPOLK-EXPANSION CORRECTIONS

Now we consider possible modifications of the quar-
konium part of the amplitude (2. 1). Novikov and Shif-
man' suggested that the multipole expansion may break
down near threshold. To get an idea of the magnitude of
the omitted corrections we shall review the derivation of
(2.1). This derivation is almost entirely analogous to the
case of electromagnetic transitions. ' However, some
special features arise in connection with the presence of
the soft-pion part of the amplitude, and we would like to
make clear all of the terms that have been omitted in the
standard formula (2.1).

Since we have decided to ignore 0 (cz, ) corrections to
the soft-pion amplitude (2.3), we shall similarly restrict
ourselves to first order in a„ in the quarkonium matrix
element. One begins with the Hamiltonian of a quark
and an antiquark in an external gluonic field:

&;„,=g A 0(r, )t', +g A o(r2)t 2+ O(U /c ),

&;„,=g cos( —,'k. r) 3 o(0)t'+ig sin( —,'k r) 3 o(0)P, (3.2)

where t '= t!+ t z and g' = t ', —t 2. The operator t ' an-
nihilates a color-singlet state, however, so since we are
working only to order a, -g, we discard the term pro-

(3.1)

where t', =
—,'A,

&
and tz = —

—,'A, z, with A,
&

and A, z being
Gell-Mann matrices. The nonleading terms in (4.1) are
O(U /c ) corrections, i.e., are suppressed by powers of
the quark mass. These lead to corrections to (2.1) of the
same order, and it is reasonable to neglect them since in
the Y system U/c —

—,', .
The remaining correction will come from the expan-

sion in kr where k=~k~ is the magnitude of a gluon
three-momentum and r is the radius of the quarkonium
system. (Recall that the multipole expansion is based on
the requirement kr (1.) As a numerical estimate, k will
have a maximum value, near threshold, of k
where 6 is the difference in mass between the initial and
final quarkonium states, and r can be estimated as the
average radius (r & of the Y states in a potential model.
(The kinematic regime where the dipole approximation
breaks down is for small dipion mass, since small dipion
mass is correlated with large three-momentum of one or
both pions. )

A typical potential model' gives (r & =2.3 GeV ' for
the Y(2S) and (r & =3.5 GeV ' for the Y(3S). Using the
masses M(1S)=9.46, M(2S) = 10.02, M (3S)= 10.355
GeV, this means that k,„(r & —l. 5 for the
Y(3S)~Y(1S)sr+sr decay, suggesting that this
multipole-expansion correction may be very important
for this decay and of less importance for the others.
Moreover the correction would be largest near threshold
where the three-momentum is greatest.

To derive the explicit form of the corresponding
correction, we assume the gluonic field has spatial depen-
dence Ao(r&)= Ao(0)e ', Ao(r2)= Ao(0)e ', where
k is the three-momentum of the emitted gluon. For equal
masses the coordinates are given in terms of the relative
coordinate r by r, = —r2= —,'r. Making these substitu-
tions, the Hamiltonian is

portional to t', which cannot contribute to this order.
Then

&;„,=ig sin( —,
' k.r ) A 0 (0)P

(2l +1)ij &(!kr)P&(k r/kr ) 30(0)g'
1=odd

3igj, ( —,'kr)
k rAO(0)P+

2kr
(3.3}

(3.4)

The resulting momentum dependence will mostly affect
the spectrum near threshold, where k is large.

Thus, although Ref. 10 claimed that the multipole ex-
pansion breaks down near threshold, we see that under
reasonable assumptions. about the intermediate-state
wave functions it is accurate to use the following form for
the quarkonium part of amplitude of the transition
Y(nS) ~Y(mS)~+~

octet

where we have taken account of the fact that the inter-
mediate state in (2.2) in fact contains a gluon, so that a
gluon energy must appear in the denominator. Our point
is that the multipole expansion itself does not present an
intractable problem; the difhculty is our relative ig-
norance of the intermediate-state spectrum and wave
functions.

The expansion (3.4) suggests that a reasonable scenario

where jI are spherical Bessel functions and P& are Legen-
dre polynomials, and we see that only P-,F-, . . . , wave
states contribute to the sum over intermediate states.

If we assume that only P waves contribute, i.e., we take
just the first term in the equation above, then the angular
integrations leave j,(2kr) in the remaining integrands.
Then ik; Ao(0}/2=E,' and we recover the interaction

&;„,= —
—,'gr E'P which was used to derive (2.1). Just as

in (2.1), the required hadronic amplitude is
(n+n ~n.a,E EJ'. ~0&, for which the soft-pion approach
supplies the expression (2.3}.

For the next term in (3.3), corresponding to F-wave oc-
tet states, each matrix element would include some terms
contributing additional powers of k;, so that we would re-
quire an amplitude such as (n+n ~B,E'BkE&'~!0&. Such a
term is impossible to obtain in the soft-pion approach
which only permits calculation of amplitudes quadratic
in the momenta. Thus, the necessity of using the soft-
pion approach restricts us to using the first, i.e., dipole,
term in (3.3). However, it is likely that the overlap of the
color-singlet S waves with the color-octet F (and higher)
waves is very small, due to the centrifugal barrier.

We conclude that, as far as the interaction Hamiltoni-
an is concerned, we are probably not omitting any
significant effect's if we restrict ourselves to the first term
in (3.3), i.e., the "double-dipole" approximation (2.1), but
with the radius r replaced by a Bessel function:
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IV. m+ w FINAL-STATE INTERACTIONS

Now we turn to the effect of the interaction of the
pions in the final state. Since we are neglecting the 0 (a, )

correction in (2.3) the amplitude is

&
~+~- ~~~, E'.E'~0&,2I

(4.1)

where the hadronic amplitude is modified as follows:

&
~+~- ~~~, E'.E'I0&

=F(q')&m+vr fera, E' E'/0. &„„p,,„. (4.2)

Here we shall assume that the form factor F(q ) is the
same as for the pion-pion scattering amplitude:

T(q') =F(q')t(q'), (4.3)

where t(q )=(Swf „) 'q is the current-algebra ampli-
tude' (f =0.094 GeV is the pion decay constant) and
T(q ) is the amplitude with final-state interactions taken
into account, to be determined using phase-shift data.
Here we are concerned only with the isoscalar, S-wave
channel; this is obvious since (4.1) comes from the ampli-

for the transition Y(3S)~Y(IS)rt+m. might be as fol-
lows. The overlap integrals of r between, say, the Y(3S)
and the intermediate states could turn out to be unex-
pectedly small, perhaps due to the zeros in the 3S wave
function. This would cause the total rate to be small, as
is observed, and the correction term in (3.4) might dom-
inate, perhaps enhancing the spectrum near threshold
(depending, e.g., on the sign of the overlap of r' between
the initial and intermediate states).

%'e have found, however, that the M dependence re-
sulting from (3.4) is almost certainly too weak to coun-
teract the effect of the Adler zero. The Bessel function
simply does not vary sufticiently rapidly over the ranges
of k and r relevant to the Y(3S)~Y(1S)vr+n decay. In
particular, we studied the effect of the various momen-
tum factors in the amplitude (3.5) in the approximation,
used in Sec. II to estimate the total rates, in which the
nonlocality of the Careen's function is neglected, and
found that the shape of the spectrum was modified by at
most a few percent ~ This is reasonable, since, using the
estimate for kr made above, we find that the second term
in the expansion in (3.4) amounts to a 5% correction for
the Y(3S)~Y(1S)sr+sr decay. In principle, one might
be able to contrive an explicit model for the intermediate
state wave functions that enhance the decay rate more
strongly near threshold than our simple model, but we
have been unable to do so. In the absence of a really con-
vincing model for the intermediate states, we shall ignore
the multipole-expansion corrections in the remainder of
this paper, but it should be borne in mind that these will
be most important at low M

g +k(m —
q )

(m —
q )[1—kg(q )]—g g(q )

(4.4)

where A. is the pion self-coupling, g „ is the coupling of
the pions to a fictitious "sigma" resonance of bare mass
m, and the function g(q ) is

g(q )=—1 — 1—2 2
2 1/2

4m„

g

X ln

(4.5)

Equation (4.3) was derived simply by writing down a
theory with a P pion-pion coupling and a crn~ coupling,
computing one-loop diagrams, and summing leading log-
arithms in the usual way. Since we know such a theory
to be unitary the resulting amplitude (4.3) will obviously
satisfy our unitarity requirements. This procedure can be
generalized by including an arbitrary number of reso-
nances; for example, by including a second resonance as
well as couplings to kaons' one can model the rise in the
phase shift at energies above —1 GeV. Our suggestion is
then to use the same postulated interactions to "tie to-
gether the pion lines" in the Feynman diagram corre-
sponding to the quarkonium decay, with the result (4.1).

We have obtained a fit (Fig. 2) to selected phase-shift
data ' ' using the values A, = —Q. 73, g =0.64 CieV,
m =0.71 GeV. Obtaining the form factor F (q )

through (4.2), we have, from (4.1),

16m'f
&~+~-~~~,E .E'~0&= r(q') . (4.6)

The spectra can be computed as before, and the results
are shown in Fig. 3. Shown are the exclusive CLEO
data. ' The final-state interactions have only a small
e(feet on the Y(2S)~Y( IS)n.+sr spectrum. The eff'ect
on the transition Y(3S)—+Y(1S)m+m is somewhat
larger, but certainly not large enough to give a peak at
low M„. The total rate for the decay Y(2S)
~Y(1S)m+nis increased .by a factor —2.6, corre-
sponding to a constant Go = 1.7 GeV ', in excellent

tude & a+a ~6„„~0&. The data on low-energy sr+sr in-

teractions rule out' the possibility of any new resonances
as the cause of the peculiar Y(3S)~Y(1S)7r+vr spec-
trum; nevertheless, the pions will scatter elastically off
each other and this may affect the shape of the ~+~
spectrum.

Data on the S-wave, isoscalar phase shift 5 essentially
fix T(q ), given an appropriate parametrization that
obeys general requirements such as unitarity and analyti-
city. %'e shall adopt the parametrization of Mennes-
sier, since it has a relatively simple analytic form. Since
we only need the phase shift at energies less than about 1

GeV, we shall use the three-parameter form, analogous to
"model A" in Ref. 19: namely,
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FIG. 2. Fit to S-wave, isoscalar, phase-shift data from Ref.
21 (diamonds) and Ref. 22 (squares). The curve is the phase
shift derived from our Eq. (4.4).
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FIG. 3. Spectra in the soft-pion model without (dashed
curve) and with (solid curve) final-state interaction of the pions:
(a) Y(2S)~Y(1S)m+m. , (b) Y(3S)~Y'(1S)m+m . The dot-
dashed line in (a) shows the efI'ect of a phenomenological thresh-
old factor (see text) with parameter C =2.2.

agreement with the estimate made in Sec. II. As might
be expected, though, the Y(3S)~Y(1S)m+n.. rate is in-
creased by an even larger factor -6, making even worse
the problem of the small observed total rate for this de-
cay.

We mention here that to fit the Y(2S)~Y(IS}rr+m
data in this model it is necessary to incorporate an addi-
tional correction factor 1 —Cm /q that mostly affects
the shape of the spectrum near threshold. Figure 3(a)
shows the effect of taking C=2.2. There are several
theoretical models for the values of parameter C (see the
discussion in Ref. 11), but none of them are really con-
vincing. Hence, in what follows we shall omit this phe-
nomenological factor and just look for qualitative agree-
ment with the observed spectra.

To avoid confusion, we mention that our model for the
interaction has been selected for its simplicity, in

order to see the magnitude of the effect on the
Y(3S)~Y(1$)sr+sr spectrum, and is by no means
meant to be definitive. In particular, the sigma resonance

. is just a means of parametrizing the amplitudes (4.1) and
(4.2), and is not being put forth as a new physical state.
The problem of determining the resonance content of the
J =0, I =0 channel is a subtle one, and has recently been
discussed in detail by Au, Morgan, and Pennington. In
principle, any model of pion physics which supplies an
amplitude T(q ) can be used in (4.5).

V. Ym FINAL-STATE INTERACTIONS

Next we turn to the other possibility for final-state in-
teraction: namely, the interaction between the Y and one
of the outgoing pions. This has been discussed by
Voloshin, ' who suggested that the shape of the
Y(3S}~Y( IS)n n spectrum is due to the existence of
one or more resonances in the Y~ channel. Let us as-
sume for simplicity that there is only one resonance and
give it a mass 3f„,. and a width I . We mention that, al-
though the m ~ pair is in an S wave, each pion may be
in either an S or a P wave. The squared amplitude has
the form

2

where e&, e2 are the pion energies. If the pions are emit-
ted individually in S waves, then f (e), E2) =(E)E2); if they
are emitted individually in P waves, then
f(e), e2)=(e& —m )(ez —m ) (Ref. 13). In distinction
from Voloshin's treatment, we have included the effect of
the m. +~ interaction, which is always present.

If the resonance mass is much greater than the mass of
either quarkonium state, then the matrix element is ap-
proximately constant and the decay spectrum reduces to
the shape given by the standard soft-pion result plus

final-state interactions. However, in the case
M —M„„&0 interesting structure can appear. If the real
part of either denominator can actually vanish, then the
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decay Y(3S)—+(n.+resonance) can occur; the signal for
this decay could be a monochromatic pion if the reso-
nance were sufBciently narrow and if the ~+a. final-state
interactions did not distort the dipion spectrum much.

The presumed nonobservation of monochromatic
pions restricts the resonance to be heavier than
M(3S)—M„„=10.21 GeV. [In any event, the resonance
could be produced by monochromatic pion emission from
the Y(4$) state; Voloshin estimates that the correspond-
ing branching ratio is 0.05%.] However, if the resonance
is only slightly above this threshold its effect will still be
seen as the structure in the Dalitz plot involving the vari-
able Mz . The effect of the resonance is seen only in-
directly in the distribution with respect to M „ that is
usually plotted. In addition, final-state m+m interac-
tions tend to smooth out the effects of a resonance in the
dipion mass spectrum.

We can generate a dipion spectrum that peaks at low
energy via this mechanism if we assume that the reso-
nance is light and narrow, i.e., with a width of tens of
MeV similar to that of the bb states below Aavor thresh-
old. As an example, in Fig. 4 we show the dipion spec-
trum in the case of S-wave pion emission, with the pa-
rameter choices M„,=10.213 GeV, I =10 MeV; if we
also include final-state effects we get a double-peaked
spectrum that qualitatively resembles the observed Y(3S)~Y(1$)m+nspectr. um. The Y(2S) ~Y(1$)m+m.
spectrum is not greatly modified by including the Ym res-
onance. We have not made an exhaustive search of pa-
rameters of a possible new resonance; this mass and
width are chosen strictly for purposes of illustration. The
low-energy peak occurs at slightly higher energy than in
the data. (There is no way we can model the sharp rise of
the data at low M„and maintain a vestige of the soft-
pion picture. )

The Y(3$)~Y(2S)rr+m spectrum does not differ'
much from the prediction of the standard model (Fig. 5).
The data on this transition are of rather low statistics,
due to the small phase space, but the most recent data
suggest that this transition may also have a peculiar spec-
trum. If this is so, then the standard picture is ruled out
for this decay, since the remaining corrections (e.g. , from
the multipole expansion) are guaranteed to be negligible
for this decay.

The resonance shows up much more sharply in the
spectrum with respect to the invariant mass of the Y and
one pion, which we plot in Fig. 6. As the resonance
broadens, or as M„, increases, its effect on both the di-
pion spectrum and on the Ym spectrum fade away. For
example, taking I =40 MeV produces an essentially Aat
spectrum in M&„and a M spectrum again peaked at
large dipion mass. Thus besides providing a second,
high-energy, peak, the ~+~ interaction restricts the
ranges of values of M„, and I in Voloshin's model that
can result in a low-energy peak. Unfortunately, the low-
energy peak in this model appears at slightly higher M„
than in the observed spectrum, so that a quantitative fit
to the data is not possible; this could be due neglected
corrections that are most important near threshold.

The possibility, of a resonance in the Ym channel is
easily testable by looking at the distribution of events in
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FIG. 5. Spectrum for Y{3S)~Y{2S)m.+m. , in the case of the
resonance, without {dashed curve) and with (solid curve) final-
state interactions; the dot-dashed line is the standard soft-pion
result.

FIG. 4. Spectra in the case of an Ym. resonance at
M„„=10.213 GeV and width 10 MeV, without {dashed curve)
and with (solid curve) final-state interactions: {a)
Y{2S)~Y{1S)m+ m, (b) Y{3S)~Y{IS)m+ m.
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FIG. 6. Distribution in Mz in the case of the Ym- resonance
at M„„=10.213 GeV. Solid line: I =10 MeV; dashed line:
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VI. DISCUSSION

We have explored various modifications of the stan-
dard gluon-multipole-plus-current-algebra picture for de-
cays of Y excited states. Pion final-state interactions

M~, especially for low M . This is shown in Fig. 6.
Equivalently one could look at the single-pion spec-
trum, ' that is, dI /de„. (If recoil is neglected then
M~ =Mr+m +2M~a„.) The case shown in Fig. 6 is
an extreme one; the model we used for the m+m interac-
tion forced us to take a very narrow width for the reso-
nance. The observation of a statistically significant peak-
ing at the upper and lower ends of the Mz spectrum
would be a test for the presence of an Ym resonance, in-
dependent of our particular model.

alone cannot be the source of the discrepancy between
theory and experiment. The only alternative, within the
standard framework, that can account for the observed
dipion spectrum in the Y(3S)~Y(1S)m+n.transition is
nontrivial behavior in the Ym channel due to the presence
of a four-quark, isovector state' with mass close to
M (3S)—m = 10.21 GeV. We have shown that a
second, high-energy peak appears when the m. +m. in-
teraction is taken into account. Besides explaining the
Y(3S)~Y(1S)n+m spectrum, the existence of such a
state would be of great intrinsic interest. It would be the
first unambiguous observation of a four-quark, qqqq state.
On the other hand, if no structure is observed in the Yn.
channel (i.e., if the corresponding distribution is found to
be consistent with phase space) then the multipole-soft-
pion picture will have to be abandoned for this decay.

It may in fact be the case that the multipole amplitude
is overwhelmed by some nonmultipole mechanism for the
decay Y(3S)~Y(lS)n+n. , as in the model of Lipkin
and Tuan. ' These authors propose, as an alternative to
Y decay by sequential gluon emission, the decay path
Y~BB~B*Be~BBvr~~Ymm. . They essentially ig-
nore all soft-pion results so their quarkonium amplitude
does not contain the Adler zero. Any such model,
though, will remain unsatisfying unless it gives a quanti-
tative explanation of why the multipole couplings are
dominated by some other mechanism only for the decay
Y(3S)~Y(1S)m.+rt
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