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We have found a novel spontaneous-chiral-symmetry-breaking solution to the ladder Schwinger-
Dyson equation for QED plus a chiral-invariant four-fermion interaction. The critical line is explic-
itly obtained in the plane of two coupling constants of gauge and four-fermion interactions. The ex-
istence of a dilaton pole has also been examined on the full critical line.

There has recently been renewed interest in the phase
structure of QED in the context of the possible existence
of a nontrivial ultraviolet fixed point which will describe
a sensible interacting gauge theory free of the fear of
Landau’s ghost.! Actually, based on the spontaneous-
chiral-symmetry-breaking (CSB) solution to the ladder
Schwinger-Dyson (SD) equation which was revealed by
Maskawa and Nakajima® and subsequently reexamined
by Fukuda and Kugo® for the coupling constant
a=e? /4 larger than a certain critical coupling constant
a,=m/3, Miransky and others*> proposed that this criti-
cal coupling constant should be regarded as precisely the
nontrivial ultraviolet fixed point mentioned above.

Furthermore the dynamics of this fixed-point theory
was found by one of the authors (K.Y.), Bando and Matu-
moto® to be able to resolve the long-standing notorious
problem of excessive flavor-changing neutral currents
(FCNC’s) in technicolor (TC) theories.” Actually, this
dynamical model (scale-invariant TC model) seems to be
the only TC that survives the FCNC’s syndrome. 8

Then the problem is whether or not these new features
of scale-invariant QED based on the ladder SD equation
persist beyond the ladder (quenched planar) approxima-
tion. Quite recently, Monte Carlo studies of lattice QED
(Ref. 9) have indeed signaled the existence of the non-
trivial ultraviolet fixed point, both in noncompact and
compact versions including dynamical fermion loops,
which strongly suggest that much of the above result may
not be a mere artifact of the ladder approximation.

Thus it is extremely interesting to analyze the dynami-
cal issues of the possible nontrivial ultraviolet fixed point
in QED and other asymptotically nonfree gauge theories,
which may provide us with a completely new basis for
building unified theories.

One such problem is the dilaton, a Nambu-Goldstone
boson associated with the spontaneous breakdown of the
expected scale invariance at the fixed point. Bardeen and
co-workers® unsuccessfully attempted to observe the dila-
ton pole in the JP=0""* channel of the fermion-
antifermion scattering amplitude within the framework
of the ladder SD equation for QED now including a
chiral-invariant four-fermion interaction. They actually
solved the SD equation only for a>a., which is not
enough to conclude the absence of the dilaton in this
model, however. If the dilaton exists in such a system,
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the scale-invariant TC model predicts a technidilaton®
whose phenomenological signatures would be outstand-
ing in TeV physics. 1°

In this paper we shall present a full set of spontaneous
CSB solutions 2(p?) to the ladder SD equation for QED
plus the chiral-invariant four-fermion interaction for
a=a, as well as a>a,, by which we discover the full
critical line in the whole two-dimensional parameter
space of the gauge and the four-fermion coupling con-
stants. This is indeed the line where the fixed point, if
any, exists. Then we look for the dilaton pole on this line
to identify the scale-invariant fixed point. We find no di-
laton pole on the full critical line.

Following Bardeen and co-workers,” we shall start
with the ladder SD equation for the dynamical fermion
mass 3(p?), which is written in Euclidean space in the
Landau gauge as
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where g =G A?/47% and A=a /4w, with G being the cou-
pling constant of the chiral-invariant four-fermion in-
teraction (G /2)[($)*—(Pys¥)?], and A and € are, re-
spectively, the ultraviolet and infrared cutoffs.

We solve Eq. (1) both analytically and numerically in
the whole parameter space (A,g). Analytical solutions
are obtained by the bifurcation technique:'! we convert?
(1) into a differential equation whose general solutions are
given by

Ax 12T o4 Bx 12790 (0<A<A,), 2
S(x)={x"YAC+DInx) (A=1,), (3)
Ex ~12%ip4 px 12700 (A>A,), 4)
where  o=1v1—A/A,, =1VA/A,—1, and
A,B, ..., F are the constants to be determined by the in-

frared and ultraviolet boundary conditions. A spontane-
ous CSB solution exists only when both boundary condi-
tions are satisfied, which determines a single line in the
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(A, g) plane for fixed A/e:
g=[(1+0)—=(L=0)A(/A)*1/[1—-(2/A%)*]
(O<A<A,), (5
g =1{1+4/[In(A%/eM)]} (A=A,), 6)
In(A?/€*)={nm+arctan[p/(g —++p*)1} /p
(A>Ar), D

which separates the spontaneously broken and unbroken
phases of the chiral symmetry.!? This is the generaliza-
tion of the Miransky’s scaling* in pure QED (g=0,
A>A.). While Eq. (7) is essentially the same as the result
of Bardeen and co-workers,> (5) and (6) are indeed novel
solutions which can exist only when the four-fermion
coupling is included (g=<0). The existence of such spon-
taneous CSB solutions for A <A, was overlooked in Ref.
5.

Then taking the limit A/e— « of Egs. (5)—(7), we find
the critical line

g=11+V1—A/r,)? for ASA,, (8)

as well as the previous result,® g < HA=A,). This is our
main result. In fact, the critical line is the ingredient
essential to the study of the phase structure: the fixed
point must lie on the critical line.'?

We also obtained numerical solutions for the full non-

linear gap equation (1), which is depicted in Fig. 1, in"

agreement with the analytical solutions. The point
(A,g)=(0,1) corresponds to the critical coupling of the
Nambu-Jona-Lasinio model and the point (;,0) to the
critical gauge coupling obtained earlier.?™*

We now look for the ultraviolet fixed point where the
dilaton pole is expected to exist on the critical line. Actu-
ally, for e=0, Eq. (1) is invariant under the scale transfor-
mation 2(p?)—kZ(p?/k?) if the change of the cutoff

FIG. 1. “Critical lines” for various values of cutoff. Results
for finite cutoff are obtained by numerically solving the ladder
SD equation (1) in its nonlinear form. In the infinite cutoff limit
these lines approach the full critical line, solid line (8), and
dashed line (for g < {).
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A—kA is simultaneously performed as would be trivial
in the A— o limit. In the case of €=0, the solution of
SD equation (1) takes the form

S(pH=e'u(t+t,), t=Inp, to=—InZ(0), 9)

where 2(0) plays the role of € in the above.!* The expres-
sion of the renormalized scalar denominator of the
fermion-antifermion scattering amplitude at zero momen-
tum is given in Ref. 5,

DR(0)=[1+GBX0)]Z2/G , (10)

where B2(0) is the scalar bubble function at zero momen-
tum defined by

BU0)=—i(2m)~* [ d* Tr{[f—=(p1)]"'T%(p,p)
X[F—2pH17Y), (11)

and Z;g is the renormalization constant of the scalar ver-
tex function 'Y (p,p):

p,p)=—e" "ut+14)/Zs (12)
Zg=—1e"" Oy 1) +3ul(t, +10)], ta=InA .
(13)
The exact expression for B2(0) may be obtained: !
BAO0)=(A, /ANAY/mH)[u"(tp+1o)+u'(ty+14)]
X[u"(tg+to)+3u'(ty+15)17", (14)
which yields!

1 6A g +3A
DOV = |1+ ——2 S ——
s 2m23(0)? g 1+[Z(A2)/AP
XS (A g;A[AZAD]?, (15)
S(A,g;A)= 1 A (16)

1+[S(A2) /AP (g +31)2

The solutions (2)—(4) (more explicitly Refs. 12 and 14) are
substituted into (15) and (16), resulting in the vanishing
S(A,g;A) and diverging [Z(A?)/AT* on the critical line
(A— o), both of which precisely cancel each other to
yield the finite scalar denominator:

D§<0)=;‘—2[1+6M1+3x/g)]>:<o>2¢o .
s

No dilaton pole exists in accord with the conclusion of
Bardeen and co-workers,> but now on the whole critical
line.

Bardeen and co-workers identified the point
(A,g)=(%,1) with an “ultraviolet fixed point,” but failed
to observe the dilaton pole there. Actually they solved
the SD equation only in the strong-coupling phase
(A>A,) and approached this point in a peculiar direc-
tion, g =1 and AlA., which is not a priori justified.
Correct direction should be identified to be consistent
with the renormalization-group flow'> [requiring the scal-
ing law of 2(p?) near the critical line, we obtain the up-
ward vertical direction as the renormalization-group
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flow]. Here we have solved the SD equation in the whole
region of the (A,g) plane, and found that the dilaton pole
does not exist not only on the particular point
(A, g)=(%,L) but also on the whole critical line, no
matter which direction we may take to approach the crit-
ical line. Our result of no dilaton pole agrees with the
general argument based on the vacuum energy. '

In conclusion we have found the full critical line of
QED plus four-fermion interaction in the quenched pla-
nar approximation. Although we found no scale-
invariant fixed point signaled by the dilaton pole, our
critical line is certainly the first step to reveal the non-
trivial phase structure of this system, i.e., renormaliza-
tion-group flow, fixed points, anomalous dimension, etc.

Note added. After submitting the original version of
our manuscript, we were informed that the same critical
line (8) was also obtained independently by T. Appelquist,
M. Soldate, T. Takeuchi, and L. C. R. Wijewardhana
[Yale University Report No. YCTP-P19-88, 1988 (unpub-
lished)]. The same conclusion of the dilaton pole as that
in our revised version has also been obtained by T.
Nonoyama, T. B. Suzuki, and K. Yamawaki [Nagoya
University Report No. DPNU-89-09, 1989 (unpub-
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lished)], C. N. Leung, S. T. Love, and W. A. Bardeen
[Purdue University/Fermilab Report No. PURD-TH-
89-01/FERMILAB-PUB-89/22-T (unpublished)], and by
V. P. Gusynin and V. A. Miransky (private communica-
tion). The importance of our critical line has recently
been emphasized by V. A. Miransky and K. Yamawaki
[Mod. Phys. Lett. A4, 129 (1989)], which demonstrated a
very large anomalous dimension (2> y,, > 1) on the criti-
cal line (O<A <A,).

We would like to express our sincere thanks to K-I.
Aoki for very fruitful discussions on the exact
renormalization-group analysis of the fixed point, which
stimulated us to reconsider the present subject. Many
thanks also go to T. Nonoyama, Y. Sugiyama, and T. B.
Suzuki for enlightening discussions. Numerical calcula-
tion was done as a part of joint research in Institute of
Plasma Physics, Nagoya University. K.-ILK. was sup-
ported in part by the Toyota Physical and Chemical
Research Institute. K.Y. was supported in part by the
Ishida Foundation and by the Grant-in-Aid of Ministry
of Education, Science and Culture (No. 62540202).
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s0=5 [ dy sy

2
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s0="12R9 s o) | X | o o X —i6 |,
20 € €
(i) For A=A,
—1/2
X X
S(x)=12(€) ?] ‘m?n .
(iii) For A> A,
‘/——————2 —1/2
S(x)= 1;;2 Cse) 5| sinfemE o],

where O=arctan(2p)=i arctanh(20).
I3K-1. Aoki, talk at the Annual Meeting of the Japan Physical
Society, Koriyama, 1988 (unpublished), criticized the concep-



39 BRIEF REPORTS 2433

tual flaw of the arguments of Ref. 5 concerning the fixed
point, based on the exact renormalization-group analysis [K.
G. Wilson and J. Kogut, Phys. Rep. 12C, 75 (1973); J. Pol-
chinski, Nucl. Phys. B231, 269 (1984)]. He actually obtained
nearby edge behavior of the critical line based not on the SD
equation but on the perturbation with respect to either the
gauge or the four-fermion coupling constant, and further
made a conjecture on the possible form of the full critical line
to which the gross structure of ours happened to be similar
except for an essential difference concerning the shape of the
line at A~A, due mainly to the difference of approximations,
perturbation versus ladder SD equation. (Aoki’s talk can be

found in a recent paper [Report No. RIFP-758, 1988 (unpub-
lished)], which however does not include the above perturba-
tion result, but does instead numerical analysis of the SD
equation newly performed after our work on the critical line.)

14Explicit solutions in this case take the same form as those
given in Ref. 12 except for the replacement x /e€?—x /Z(0)?
and =(€’)—3(0).

15K .-I. Kondo, H. Mino, T. Nonoyama, T. B. Suzuki, and K.
Yamawaki (in preparation).

16y, P. Gusynin and V. A. Miransky, Phys. Lett. B 198, 79
(1987).



