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With the object of defining a physically measurable quark-gluon-plasma frequency, two SU(3)
gauge-invariant amplitudes, the photon propagator, and the S matrix for quark-quark scattering are

studied. It is shown through explicit calculation that, at the two-loop level (o., ) in a general gauge,

no subset of diagrams exists in these amplitudes, out of the entire set of Feynman diagrams avail-

able, with the property of yielding a gauge-invariant sum while probing the inherent non-Abelian

nature of the theory. This implies that formulations of non-Abelian linear response theory based

solely on gauge-dependent two-point functions or the electric field propagators are incomplete and

unphysical. It also suggests that the Schwinger-Dyson equation for a properly defined, gauge-

invariant, quark-gluon-plasma frequency contains an infinite number of proper skeleton graphs.

I. INTRODUCTION

Recently, there has been much interest in calculating
the collective modes of a quark-gluon plasma. ' . These
authors have approached the problem by applying linear
response theory 'to the electric field propagator, a for-
malism eff'ective for the QED case, in which one first per-
turbatively calculates the response of the system to a
pulsed external electric field, and then converts this per-
turbative result into a pole-producing denominator using
a nonperturbative, Schwinger-Dyson-type sum. (See Ref.
5 though, for a different approach, using the effective ac-
tion and the background-field method. ) The generaliza-
tion of this technique to the QCD case is however ambi-
guous, first because the electric field is not gauge invari-
ant in SU(3) and it is therefore unclear what a pole in
such a propagator physically means. In an analogous and
familiar case, the poles appearing in the free gluon propa-
gator in the transverse (or "physical" ) gauges (for which
the axial gauge is a particular limit) have no particular
physical meaning. They are clearly an artifact of the
gauge choice and in fact lead to an added complication
when using these gauges. One must similarly suspect as-
cribing physical meaning to poles appearing in the elec-
tric field propagator of QCD. Second, even with the first
point not withstanding, it is by no means clear whether
the method of obtaining such a pole, that is, by a resum-
mation of terms arising from the iterative expansion of a
finite set of proper skeleton graphs (which of course one
can formally always do), is itself a gauge-invariant pro-
cedure. Feynman graphs in general have complicated
gauge dependences which are then canceled by delicate
interplays with other graphs when calculating a physical
quantity. The above use of linear response theory is thus
suspicious both in what and in how one is calculating
when considering the case of QCD.

In order to circumvent the first objection, consider the
photon propagator. It has the desirable property of not
only being SU(3) gauge invariant, but is also a physical,
external probe of the plasma. One imagines scattering

photons off of the plasma and observing their products.
These photons need not be on mass shell, as they can be
thought of either being generated by electron-electron
scattering (Q ~ 0), or by electron-positron annihilation
(Q ~0). Using the optical theorem, the photon propa-
gator can be related to these events by cutting the fer-
mion lines in a fashion appropriate to the particular pro-
cess one is considering. Whether such experiments are or
are not realizable in the laboratory because of the
difhculties of sustaining and confining such a plasma is ir-
relevant, for they can nevertheless be meaningfully
theoretically discussed. In such experiments, one expects
the photon propagator to acquire a dependence on the
collective modes of the system (were this not the case,
one might seriously wonder about the meaning of discuss-
ing such modes if they are not available to external obser-
vation), albeit, perhaps in only a perturbatively small and
smoothly dependent fashion (i.e., the modes would not in
general appear as resonances). We therefore expect the
collective modes of the system to appear in the photon
propagator in a manner suggested by Figs. 1(a) and 1(b),
where the blobs indicate some plasma-frequency depen-
dence appearing in the gluon denominator in a fashion as
yet to be determined.

The purpose of this paper is to show, through explicit
calculation, that there is no one-to-one correlation be-
tween such a plasma frequency dependence in the photon
propagator and an iterative expansion of a finite set of
proper skeleton graphs explicitly containing the non-
Abelian nature of the theory. It will be shown that the
SU(3) gauge invariance of the photon propagator is
achieved to order a, in perturbative QCD by a summa-
tion over all graphs contributing at that order, no subset
of which, containing the non-Abelian vertices of the
theory, can be isolated and found to be invariant amongst
itself. It is conjectured this behavior persists to all or-
ders. The alternatives would then be that to calculate an
observable collective mode (in the photon propagator) ei-
ther one must sum all the graphs at any particular order
or, a new scheme, dissecting and reorganizing Feynrnan
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level, the gauge invariance of the scattering amplitude is
more readily obtained. This can be seen by working in a
general covariant gauge for the gluon propagator at zero
temperature,

FIG. 1. The fashion in which an external photon propagator
is expected to depend on the collective modes of the quark-
gluon plasma.

graphs in some new fashion, must be invented. (See, for
example, the works of Cornwall and co-workers ' and
Nadkarni in which one such scheme, the "gauge-
invariant propagator method, " is proposed. )

Section II discusses how we can simplify the analysis of
the photon propagator by showing that for our purposes
we need only study the S matrix of quark-quark scatter-
ing (with on-shell quarks) at zero temperature. It con-
cludes by demonstrating the patterns of cancellations
that exist between the graphs at the one-loop level which
ensure the gauge independence of the renormalized S ma-
trix. Section III extends these simple results to the two-
loop level, where it is shown that gauge independence
inextricably involves all the graphs appearing at that lev-
el. Section IV presents the conclusions of the work.

II. THE SMATRIX

Although the photon propagator is the amplitude of
physical interest, it is not the simplest amplitude we can
study for our purposes. Consider the S matrix for
quark-quark scattering. One observes that by placing the
internal quark lines on shell, this, S-matrix element is
contained within the phase space of the photon propaga-
tor. It also has the attractive feature that, on a graphical

G,"„(q)= i—, g ~"—(1—g)
q +&6 q

and considering the lowest-order QCD graphs for scatter-
ing and for the photon propagator, shown in Figs. 2 and

3, respectively. Whereas Fig. 2 is in itself gauge invari-
ant, one needs all three graphs of Fig. 3 to preserve this
property in the photon propagator. We can thus simplify
our analysis somewhat, by first studying the graphs ap-
pearing ~n the S matrix for quark-quark scattering.

A further simplification can be made by observing that,
whereas we are interested in QCD at finite temperature,
our analysis must first apply at zero temperature. This
can be easily seen by using the real-time formalism' for
the gluon and quark propagators in which the tempera-
ture dependence of these Green's functions is explicitly
separated from the zero-temperature piece. Hence a
minimal requirement for our analysis to work at finite

temperature is that it must first work at zero tempera-
ture. We have thus now restricted the problem of finding

a graphical representation for the physical poles appear-

ing in Fig. 1 at finite temperature, to first finding a similar

such representation for the poles appearing in the S ma-

trix at zero temperature.
Let us now examine quark-quark scattering at the

one-loop level. The relevant graphs are shown in Figs. 4
and 5. Working again in a general covariant gauge [Eq.
(1)], we wish to trace the graphical interplays present at
this order that result in the elimination of all of the
(1—g) dependence. The results of these graphs at
O(1 —g) for the case of massless fermions are"

(1 0»'"—[&V»r"~V»][~V )r'~(n )]

2k"k +q g" 1 „k"k +g" (q k)—
k (q —k) q k4 [Fig. 4(a)]

1 dkkk g k

g
2 k4 [Fig. 4(b)]

+2+ f d "k """+q g" — ' f d "k g" q

k (q —k) q k4 [Figs. 4(c)+4(d)]

—X fd"k, q g
k (q —k) [Figs. 4(e)+4(f)]

+ 1 1 fdnkg
N q2 k

[Figs. 5(a)+5(b)]

N2 —1

2N f 4g"
k (p4 —k)

[Fig. 5(c)]
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FIG. 2. The lowest-order QCD graph for quark-quark
scattering.

(c)

(e)

where %=3 for SU(3) and n is (4+@) in dimensional reg-
ularization. These integrals add to yield a total depen-
dence at O(1 —g) of

(1—g)5' [u (pz )y"u (p, )][u (p4)y "u (p3 )]

1x fd"kg +2f d"k
k4 k2(p I )2

Since we have massless fermions (p4=0), we can make
the replacement

fd "k — f d "k
k k (p4 —k)

so our result becomes

(1—g)5' [u(p2)t'"u(pi)][u(p4)t "u(p )]3

1 „g"X + N f d "k——
z . (2)

N k2(p4 —k )

However, we still need to renormalize our initial and out-
going states to obtain the S matrix according to the
prescription

n

S= 6conn

Z )n

%'e thus must subtract the two graphs in Fig. 6. Their
contributions exactly cancel our result in Eq. (2), yielding
altogether a gauge-invariant result.

The point of this simple exercise has been to observe
the patterns of cancellations existing between the graphs
present in the S matrix at the one-loop level, with the
eventual hope of finding some subset of graphs that could

FIG. 4. Some of the one-loop scattering graphs entering the
S matrix for quark-quark scattering.

be iterated in a Schwinger-Dyson-type fashion to yield a
gauge-invanant result. The results at this point for such
a program are already discouraging. It would appear
that all the graphs, as a body, must be retained before
achieving a physical result. We notice however that the q
dependent integrals are contained and canceled within a
smaller set of graphs: Figs. 4(a), 4(c), 4(d), and 4(e). (It is
in fact only these graphs that have nonzero value when
evaluating the integrals using dimensional regularization.
They have been explicitly kept here in order to mimic as
much as possible the more complicated case of the pho-
ton propagator in which, for example, the quark self-
energy graphs are then not zero. ) We might wonder if
the interplay between this smaller subset of graphs does
not reflect some pattern apparent at higher orders, which
is only masked at this level because of the simplicity of
the graphs involved. Unfortunately this is not the case,
as the next section, examining the graphs at the two-loop
level, will show.

One last remark however, must first be made. The
graphs shown in Figs. 4 and 5 are not the full set of
graphs contributing at this order. Two last graphs
remain, namely, the fermion loop and the ghost loop
corrections to the gluon propagator, Fig. 7. These graphs
do not have any explicit, (1 —g), gauge dependence. The
ghost loop though is clearly gauge dependent, as one
could have just as well chosen a gauge without ghosts.
On the other hand, the fermion loop graph is gauge in-
variant and can be iterated to yield a gauge-invariant
pole. This last point indicates why linear-response theory
works in QED, where one at the lowest level is efFectively

(a)

(c)

(c)
FIG. 3. The lowest-order QCD corrections to the photon

propagator. Wavy lines are photons, curly lines are gluons.
FIG. 5. The remaining one-loop scattering graphs with expli-

cit (1—g) gauge dependence.
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FIG. 6. The wave-function renormalizations which must be
included in the S matrix at the one-loop level.

concerned with exactly only such fermion loop graphs.
In the case of QCD, one could again formally add these
graphs to apparently obtain a physical pole; however, this
would now be an incorrect result. At each level in per-
turbation theory there are competing graphs, some much
larger than the fermion loop graph [such as the gluon
loop graph, Fig. 4(a)], which one would then be ignoring.
This would be erroneous, as the physics is clearly dom-
inated by the non-Abelian character of the theory, which
thus must be included to obtain a physical result.

III. TWO-I OOP GRAPHS

We will now examine the gauge dependence of the
two-loop graphs appearing in the S matrix for quark-
quark scattering at zero temperature. For simplicity we
will ignore in this section all integrals that do not depend
on q. That is, all integrals that either have no external
momenta, as in Fig. 4(b), or are quark wave-function re-
normalizations, as in Fig. 5(c), will be dropped.
Specifically, we will trace how the O(1 —g), q-dependent

Fi+. 7. Two graphs with no explicit ( 1 —gi dependence.

Dashed lines are ghosts.

integrals embedded in the iterated two-gluon-loop graph,
Fig. 8(a) (which is highly amenable to a Schwinger-
Dyson-type sum) is canceled by other graphs.

As a guide, we observe that the topological structure of
the two-gluon-loop graph inherently decouples the two-
loop momenta, k and I, while coupling each independent-
ly to q. Since the renormalized S matrix is gauge in-
dependent for all dimensions n ~4 when regularized us-
ing dimensional regularization, ' the gauge independence
of graph 8(a) can only be eliminated by graphs containing
the same generic, decoupled integrals. Also, by similar
reasoning, only those graphs proportional to N in SU(N)
need be considered.

We start our investigation with the graphs in which the
decoupling of the loop momenta occurs naturally, due to
topology, Figs. 8 and 9. In each of these sets of graphs
there are large interplays by which most, but not all, of
the gauge dependence is canceled. To see this last fact,
the explicit expressions for each of the graphs in the two
figures will be listed. The O(1 —g) dependence of the
graphs in Fig. 8 is

(1 g)iN —5' [u( p)2y"u(p, )][u(p4)y~u(p3)]q

X d "k d "I„2k~k +q'g ~. „ lOI.I~+4q'g"
k (k —q) I (q —1)

—~"d "k
4 ~

0 "I& „k~k +q'g~ „5l t~+2q'g ~

k (k —q) I (q —1)

„k2q k"k'+q g"' f „I g f „ I I

k (k —q) I (q —I ) I (q —I ) (p4 —I )

„k k"k "+q g" f „51'lr+2q2g ~

k (k —q) I (q —I)

fggk2q k k +q g f gal g 2fggl I I

k (k —q) I (q —I ) I (q —I ) (p2+I )

f&„kq k"k +q g" f&„I g ~
&„I I I~

k (k —q) I (q I ) —I (q —I ) (p4 —I )

[Fig. 8(a)]

[Fig. 8(b)]

[Fig. 8(c)]

+ fakq ", +q g fd I, g, 2fa I, —
k (k —q) I (q —I ) I (q —I) (p2+I )

2f ~„k 2k"k +q g" f~„I I l~

k (k —q) I (q —I)
k"k +q g" f „ I"I~

k (k —q) I (q —I)

[Fig. 8(d)]

[Figs. 8(e)+8(f)]

[Figs. 8( g ) +8(h ) ]

This can be added and reduced into scalar integrals to yield, as a final result for Fig. 8,
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(c) (b)

(g) (h)
FIG. 8. All the N -dependent, topologically decoupling

graphs that exist at the two-loop level in the S matrix which do
not contain any four-point vertices.

FIG. 9. All the N -dependent, topologically decoupling
graphs that exist at the two-loop level in the 5 matrix which do
contain four-point vertices.

(1 g)iN —5' [u(p2)y"u(p, )][u(p4)y~u(pz)]q

X +g~~—fd "k3 n

kz(q —k )

2
q dnk

k4(k —q )' I'(q —I )
(3)

gain, it is emphasized that this is the result for these graphs only when restricting to the particular form that both in-
tegrals depend on q. There are other terms present in which this is not the case and that have been ignored. In the case
of the S matrix these additional terms can be set to zero (as is normally done in dimensional regularization), however, as
discussed in Sec. II, the corresponding terms in the photon propagator are not zero and must be retained. For example,
graph 8(b) also contains terms in which the d I integration contains only a p4 dependence. Had the results of merely
tracing the terms where both integrals depended on q not been sufficiently convincing, we would then need to return to
these ignored terms and trace how their gauge dependence is subsequently canceled. For example, the contributions of
these terms must communicate to the gauge-dependent pieces of Fig. 10(a), which in turn coinmunicates to the gauge-
dependent pieces of Figs. 10(b) and 10(c), and so on. We will see, however, that the results from merely isolating the q-
dependent integrals are unambiguous, and so we will continue dropping all other terms.

The O(1 —g) dependence of the graphs in Fig. 9 is

[Fig.9(a) j

[Fig.9(b)]

9 [k "k~+ ,' g"~(q2+ k )j—
X —[ u( pz )yu(p&)][ u(p4) ~yu(p3)

~]fd k d I
k (k —q) I (q —I)

9 "~( +k )+ [u (pz )y"u (p, )][u (p4 )y~u (p 3 )]—f d "k d "I
k (k — ) I (q I)—

u(pz)y (P4 E)y u(P3)[q—(k "g"I' k~g~ )+k"(k&—q k~q&)]-
+ [u (p~ )y"u (p, )]—fd "k d "I

k (k —q) I (q I) (p4 —I)—
9 „„g~~(q +k )+ [u(p2)y"u (p, )][u (P4)y~u (p3 )]—f d "k d "I

k (k —q) I (q I)—
u(p2)y (gf2+l)y~u(p, )[q (k g"~—k~g"")+k"(k~q~ —k q )]—u (p4 )y"u (p3 ) — d "k d "I

4 k (k —q) I (q —I) (p2+I)
[Fig.9(c)]

u(P4)y (gf~ E)y u(P3—)q (k g" —k g )

' ' 4 k4(k —
q )'I'(q —I )'(p4 —I )'

3 u(p~)y"(P2+J')y~u(p) )q (k g~~ k~g~ )—
+[u(p4)y"u(p3)] —f d "k d "I

k~(k —q)z/2(q —I) (p~+/)
[Fig.9(d)]
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(a) (b)

I
a~

(c)

FIG. 10. Graphs not being considered but whose gauge
dependence does communicate with the graphs in Fig. 8.

Again converting into scalar integrals, these terms add to
yield

(1—g)iN 5' [u(p2)y"u(p, )][u(p4)y~u(p3)]q

X —g"~—1 d "k5 „1
4, k'(q —k )'

dependence? Recall that Figs. 8 and 9 only represent the
graphs that are proportional to N and which by their to-
pology alone, result in decoupled, q-dependent integrals.
But this is not the only means of producing such terms.
Consider the graphs in Fig. 11. These highly complicat-
ed, topologically interweaved graphs, contain terms in
the desired form. The numerator contractions conspire
to yield terms in which the middle gluon propagators, la-
beled (k —l) in the figure, are e6'ectively pinched. This
occurs because any integral with at least one k and one I
variable in the numerator can be found to contain pieces
in the desired, decoupled form. For example the integral

k l~

k (k —q) (k —I) I (q —I)
d kd l

can be shown to contain the expression

qq xp
p

X Jd "I
l (q —I)

(4)

I

k-g

as the total O(1 —g) gauge-dependent expression for the
graphs in Fig. 9.

Comparing Eqs. (3) and (4), we see that the sum of all
the graphs in Figs. 8 and 9 still does not yield a gauge-
invariant expression. Where is the remaining gauge

At this point our analysis may end. Having initially
wished to trace the manner in which the gauge depen-
dence of merely the iterated, two-gluon loop, propagator
correction graph, Fig. 8(a), is canceled in the S matrix,
we find that we have been compelled to discuss not only
the entire set of graphs in Figs. 8 and 9, but also the mon-
strously complicated graphs of Fig. 11. These latter
graphs inextricably link us with the entire plethora of
remaining graphs entering the S matrix at this order, a
link we had hoped to avoid. Thus, any program that lim-
its these graphs to an isolated subset with the eventual
purpose of extracting a physical result is doomed to
failure.

(b) (c)
IV. CONCLUSIONS

(e)

k-

FIG. 11. The X -dependent, nontopologically decoupling
graphs with the required q -dependent integrals, that exist at
the two-loop level in the S matrix.

The collective modes of a quark-gluon plasma, if they
exist, must be susceptible to observation by an external,
physical probe. The photon propagator is one such
probe. It has been shown that in the photon propagator,
no subset of the graphs that appear at the first, second, or
third order in e, can be isolated to form a gauge-
invariant result. It is conjectured this behavior persists
to all orders, i.e., that the gauge dependence of merely
one non-Abelian graph ties us to the entire body of non-
Abelian graphs entering the photon propagator at that
order. A collective mode of the plasma could then only
appear in this amplitude as a resummation of an iterative
expansion of an infinite number of proper skeleton
graphs.

The conclusions of this analysis have serious implica-
tions for the present results being reported by Kajantie
and his co-workers using linear response theory. ' When
applied to QCD, their approach asserts that the plasma
frequency can be calculated solely by considering the
lowest-order, gluon propagator corrections [indicated in

Figs. 4(a), 4(b), and (7)] as calculated in the temporal axial
gauge. However, as the Landau gauge is a particular lim-

it in the set of all covariant gauges, so is the temporal axi-
al gauge a particular limit of another set of gauges, name-

ly, the general class of all transverse gauges:
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6,"b (q) = 6,b

q +lE
g" — +(I—g)q "c +q c~ q"q c

qc (qc)

where c" is some constant vector with c WO. All such
gauges are ghostless. The temporal axial gauge is the
particular limit that c" is purely timelike and that g=0.
One could now repeat the analysis of Secs. II and III,
now tracing the cancellation of all terms proportional to
(I —r)), but that would be unnecessary. It is clear that
the results of this approach, which explicitly depend on
the (I —g) term, will not appear in any way in the photon
propagator. The results are incomplete and unphysical.

Although only orie matrix element has been con-
sidered, it is believed that the results of this paper apply
to any other gauge-invariant amplitude one might con-
struct to probe the plasma. The photon propagator is

perhaps the simplest of all such physical probes. If this is

the case, then it is hard to imagine how in a more compli-
cated amplitude the Feynman graphs entering that ampli-
tude should nevertheless conspire to yield simpler results.
It is thus conjectured that the Schwinger-Dyson equation
for any collective mode must receive contributions from
an infinite number of proper skeleton graphs.
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