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Fractional spin in the ganged O(3) tT motiel

Taejin Lee, Chekuri N. Rao, and K. S. Viswanathan
Department ofPhysics, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6

(Received 19 December 1988)

The soliton sector of the O(3) nonlinear o. model coupled to an Abelian gauge field with a topo-
logical mass is quantized semiclassically. We evaluate the spin of the soliton with unit topological
charge and find that it is 0/2m, independent of the topological mass parameter to all orders. Gaug-

ing the o model thus does not aff'ect the fractional spin of the soliton.

I. INTRODUCTION

The O(3) nonlinear o model or its equivalent, the CP'
model in 2+1 space-time dimensions, may have an im-
portant application in the phenomenon of high-T, super-
conductivity. Since the configuration space of the model,
a space of continuous maps from the two-dimensional
space S to the field manifold S, has a nontrivial homo-
topy mz(S )=Z, the model admits solitons' which are
classified by their homotopy classes. As discussed by
VVilczek and Zee and subsequently by others, the in-
triguing feature of the model is that the soliton acquires
fractional spin and exotic statistics through a topolog-
ical term called the Hopf invariant in the action. The
Hopf invariant can be represented in terms of an auxili-
ary gauge field by the famihar Chem-Simons term of the
Abelian gauge theory ' which has been widely dis-
cussed in connection with the fractional spin and exotic
statistics of charged particles (nonsoliton sector) in
(2+ 1)-dimensional theories. Dzyaloshinskii, Polyakov,
and Wiegmann' (see also Refs. 15 and 16) recently pro-
posed a possible mechanism for high-T, superconductivi-
ty: the solitons of the O(3) o model, being fermions with
half-integer spin when a specific value is chosen for the
coefficient of the Hopf invariant, bind electrons (holes)
and become charged bosons. Thus they may play the role
of the neutral ferrnions in the study of the Hubbard mod-
el by Anderson. '

In this paper we discuss the nonlinear o. model in
which the kinetic term for the gauge field is included in
the action, thus the gauge field becomes an independent
dynamical field. Such an inclusion is not unreasonable,
considering that the kinetic term for the gauge field' can
be generated in the effective action, even if it is not con-
tained in the classical action. Aside from its potential
relevance in high-T, superconductivity, this model is in-
teresting in its own right and deserves a detailed study.
Karabali and Murthy' have recently studied this model
and found that the inclusion of the kinetic term does not
affect the fractional spin of the soliton up to fifth order in
1/m, when m, the topological mass of the gauge field, is
suSciently large. They conjectured that the fractional
spin may be independent of m to all orders and further
speculated a phase transition in the fractional part of the
spin when 1/m becomes comparable to the size of the

soliton. In this paper we provide a definitive answer:
Thp fractional angular momentum is not modified by in-
clusion of the kinetic term for the gauge field, i.e., the in-
dependence on m persists to all orders [not just to
O(1/m ) as in Ref. 19] as long as mAO. Therefore, the
main features of the soliton, i.e., the fractional spin and
exotic statistics, remain unchanged and previous discus-
sions for the O(3) cr model in the context of high-T, su-
perconductivity may be also applicable to the gauged
model without modification.

II. THE MODEI.

where n = ( n ', n, n ), n.n = 1, and J„ is the topological
current given by

(2)

The coeScients in front of the Chem-Sirnons term, m,
and the interaction term, e, are dimensionful due to the
inclusion of kinetic term for the gauge fields; m has the
dimension of mass and e has the dimension of m '

If the kinetic term were absent, the gauge field can be
completely integrated out in the path integral to yield the
nonlocal Hopf invariant in the effective action

SH=of d x 3 J", 8=
Zm

'

where 3„is defined in terms of n through the equation

(3)

In order to quantize the model semiclassically we must
find the equations for the soliton. The equations, of
motion following from the action are

B„I"—me'" B„Aq+eJ =0,

The nonlinear o. model coupled to an Abelian gauge
field with a topological mass is described by the action

S=f d x(X +Kg),

B„n c)"n+e A „J",= 1

2
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n'= cosPsing(r), n = sin/sing(r),

n = cosg(r),
(7)

where (r, P) are the polar coordinates. With the bound-
ary conditions for g(r),

g(0) =0 and g( ~ ) =m. ,

the ansatz Eq. (7) corresponds to a soliton with Q =1. Et

is convenient to choose the Coulomb gauge for the static
solution 8; A '=0. Then A ' can be written as

To respect the spherical symmetry for n, we take

——8 n+ —n(n 8 n)+ e'" nXB&nB A =0 .1 2 1 2 e

f f 4~ P

We look for a static radially symmetric soliton solution.
Since the soliton is characterized by the same topological
charge

Q= f d x e'Jn (BnXB n)
8~

as in the usual nonlinear O(3) o model, we take the fol-
lowing ansatz for n:

A, in Eq. (14) is an arbitrary scale parameter of the soliton.
We now turn to the semiclassical quantization of the soli-
ton sector with Q = 1.

III. QUANTIZATION

We expand the field variables n and A„around the sol-
. iton solution and apply the canonical Hamiltonian
method. ' Since our primary concern is the induced
spin of the soliton, we consider a U(1) family of
configuration characterized by a single collective coordi-
nate a(t) corresponding to the zero mode of rotation:

n '= cos[P+a(t)] sing(r), n = sin[/+a(t)] sing(r),
(16)

n = cosg(r) .

We will, however, take into account the full degrees of
freedom for the gauge fields. We write A„= A „"+A ~,
where A„" is the gauge part of the classical soliton solu-
tion. Replacing the fields n and A„as above in the ac-
tion and dropping the superscript of q in A „, the action
can be rewritten as

S=fd x(X g+X +X;„,) —M, ,

A = A (r), y=y(r) .

For the ansatz Eqs. (7)—(10) we have

J = sing(r) g(r), J'=0,jp 1

4mr dr

e (cosg)'e''x, A a,4~r
K= f1 d2x= a2+pa, —

(17)

1 „1+f r
sin2g

' — (sing ) A 0
=0,

2r2 4mr

and the equations of motion are reduced to

a, (V'q —m A, ) =0,
V (Ao —my)=eJO,

(12a)

(12c)

where

1
K — d xsln g, p=

da, dgA=, gdt dr

The so1iton mass M, is given by

f d x(cosg)'y',

where a prime denotes derivation with respect to r.
Choosing the constant of integration to be zero, we can

write Ao in terms of Jo from Eqs. (12a) and (12b):

M, =— d x —(g') + sin2g
1,2 1

2 f r~

Ao=e f G(x —x')Jo(x')d x', (13a) + (cosg )'A 0'
4mr

where

(V —p )G(x —x')=5 (x—x') . (13b)

r 2 2

g(r) = cos
r +k (14)

which satisfies

The above equations (12a)—(12c) define the static solution
of the model. In passing we note that the soliton with
Q =1 of the usual nonlinear o model is described by the
ansatz in Eq. (7) with

H =E+e, Ai /3=~a, +p+y (21)

where

Equations of motion (12a)—(12c) have been used to sim-
plify Eq. (17).

The canonical Hamiltonian procedure starts by
defining momenta conjugate to A„and 0,'

(20)
5A I" Ba

We obtain a primary constraint +~=IIO=O, and momen-
ta conjugate to A' and cx as

1, 1g"+—g' — sin2g =0 .
2r

y(t)= f d x (cosg)'e"x; A.
4mr

(22)
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H= x II;A '+ cz—

=H. + fd'xm, ,

where

H = [p—p —y(t)]1

2K

(23)

and E; =F0. A I.egendre transformation yields the Ham-
iltonian

defined by the response of the system to variations in the
metric tensor g„. To identify the spin we need to ex-
press the energy-momentum tensor and the angular-
momentum operator in terms of canonical variables
defined in the previous section. Substituting Eq. (16) for
n and replacing A„by A„"+A&, we find the following
expression for M:

M= —f d x x" (V (p+B)E&— (akV (p)B
1

II+—e AJ +—'B
g 2 l 2 EJ 2 (24)

where

+p y(t)—p+ —fd' "(a„A )v'q, (29)

B=eja'AJ . s„=n„+ Pl

2
(30)

A secondary constraint yz is generated by requiring that
the primary constraint g& =0 be consistently imposed:

Pl0=[IIO H]pB=a II + B:g~ (25)

[y„y,]pii=0, [y„]pa= (26)

This is in contrast with the work of Karabali and
Murthy. ' They obtain an effective action by integrating
out the gauge fields and then make an expansion in
powers of (1/m). The resultant effective action involves
higher-time-derivative terms and an infinite sequence of
second-class constraints arises upon imposing the canoni-
cal quantization scheme. We note that the constraints y&
and yz are those of the Abelian gauge theory with the
Chem-Simons term' and we have, upon quantization,

[II„(x,t), A (x', t)]= —i'll„5(x —x'), [p(t), a(t)]= i . —

IV. FRACTIONAL SPIN

We next evaluate the angular momentum of the soliton
and identify the induced spin. The gauge-invariant
energy-momentum tensor is given by

T„.= r„'F.,+ ,'q„g„.—r"+ a,-n.a~—
Yjp BgIl'8 Il (27)

and the angular momentum is defined by

M=@- d x x'T J
ij (28)

In Eq. (27), T„, is the total energy-momentum tensor

where the Poisson brackets [ ]PB is defined by

ac aD aD ac
aa ap aa ap

5a 5c
gA~ 5II„

After some algebra we 6nd that these constraints are of
first class and that no more constraints are generated by
requiring consistency:

and p and y ( t) are defined in Eqs. (18) and (22). The
terms linear in electromagnetic field operators can„how-
ever, be shown to vanish: In establishing this result we
make use of the classical equations of motion [Eqs.
(12a)—(12c)], the Gauss-law constraint

8;H'+ 8 =0, (31)

and the fact that y=(p(r), a function of the radial vari-
able only. Thus the angular-momentum operator
separates into three terms: the electromagnetic contribu-
tion, the soliton canonical angular momentum p, and the
8 term. We find

M= —f d x(x E)B+P—p

+ fd x x "(ak A ()' )V q& . (32)

The last two terms in Eq. (32) can be simplified by us-
ing the equations of motion [Eqs. (12a)—(12c)] written in
the form

y=em d x'6 x—x' J r' (33)

In Eq. (34), I(" is the modified Bessel function. Using
Eqs. (33) and (34), we can rewrite Eq. (32) as

M= —f d x(x E)B+P

+ . d xd x'J p.
8

2m

X[1—m [x—x'(E, (m [x—x'()]J (r'),
(35)

where 8=e~/2m. Equation (35) expresses the angular
momenta of the electromagnetic field and the soliton an-

where J = ( I /4n r ) sing( r )g (r )'. The Green's function 6
is given by

d 2k ik.(x—x')

G(x —x') =
(2~) k (k +m )

[ln(m /x —x'/)+ED(m /x —x'f)] .1

27TP1

(34)
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gular momentum which consists of p (conjugate to a) and
the 8 term.

We discuss orally the eigenvalues of the angular momen-
tum of the soliton hector. De6ning

M„);„„=P+M«,
where

M«= d x d x'J (r)8

(36)

X[1—m lx —x'lK)(in lx —x'l)]J (r') . (37)

Now eigenvalues of p are integers, since p is (1/i )8/Ba
in the coordinate representation, whose eigenfunctions

I

Mr", = f d x d x'J (r)[m lx —xlK&(mix —x'l)]J (r')

are e '", n EZ. The fractional part of the angular
momentum has the property that M&, =0, for m =O.
This can be easily arrived at from Eqs. (32) and (12a)-
(12c). We now show a rather surprising result that, for
m@0,

M«= Q (m+0, Q=1) .
8

2~
(3&)

There are two distinct ways to show that M« is indepen-
dent of m, m &0 and both methods shed light into the na-
ture of the 8 term. For m &0, one can perform the angu-
lar integrations in Eq. (37) utilizing the fact that the topo-
logical current J (r) is a function of only the radial coor-
dinate. One Ands that

T

= —4m f r dr J (r)mrKi(mr) f r'dr'J (r')Io(mr') —f r dr J (r)inrI&(mr) f r'dr'J (r')Ko(mr' )
0 0 0

Now it is possible to show that Eq. (39) is a total derivative. Solving for Ao from Eqs. (12a) and (12b) in the form

Ao= z f r'dr'J (r')Ko(mr')Io(mr')+ f r'dr'J (r')Io(mr')Ko(mr')
2m r

and substituting it into Eq. (12c), we find that

(39)

r dr rg 'g—"+(g ') — sin2g
I

I ~~

I I I ~ ~ I
r

I

a) 1,2 g'
0 f 2r

r

f r dr J (r)mrK&(mr) f r'dr'J (r')Io(mr') —f r dr J (r)mrI, (mr) f r'dr'J (r')Ko(mr' )
27T 0 0 0

(41)

It is easy to see that the left-hand side (LHS) of Eq. (41) is
a total derivative and vanishes due to the boundary con-
ditions g(0) =0, g( ~ ) =m, and so does M&, =0. Hence
our conclusion that the spin of the soliton is (8/2m )Q to
all orders in rn (for in&0). The fractional part of the sol-
iton spin is thus unaffected by the inclusion of the gauge
field kinetic term. We have shown that the Q= 1 soliton
of the nonlinear O(3) rr model coupled to a U(1) gauge
field with the topological mass term in 2+1 dimensions
has a fractional spin whose value is strictly 0/2m. .

We can reach the same conclusion by another way.
Note that the model contains three dimensionful parame-
ters, namely f, m, and e, whose dimensions are, in mass
units, —1, 1, and —

—,', respectively. We may choose f to
set the scale unit and treat m =mf and e =ev'f as two
independent dimensionless parameters of the model.
Then the fractional spin can be written as

M«= d z d z'J (z)
8

x [1—
I
z —z'IKg( I

z —z'I )]J '(z'), (42)

where we define a dimensionless variable z by z=mx,
z = lzl and dimensionless quantities by

—2e8=
2m

J (z) =J (zm ')m = (sing )g',
4mz

1, 1
g + g S1Q2g

z 2Z2

e . 1
(sing ) g0 i

O
4mz z

(43)
A simple observation can be made: Eq. (43) contains only
e. This implies that g and J do not depend on m, so
2aM«/8= lim 2aM«/0. The evaluation of M« in
the limit in ~~ can be conveniently carried out by mak-
ing use of an alternative expression of M&, .

M«= fd'yd'y' J (y)
8

x [1—m ly y'IK&(m ly
—y'I )J '(y'—), (44)

where y is a dimensionless variable defined by y=xf
y=lyl and

J (z)=J (fy)f = (sing)g',2= 1

4'
g(z)=g(fy) .

We can draw the same conclusion with
]. /2

e "[1+0(X ')], x ))1 .

g(z) =g(zm ') .

The equation determining g(z) can be obtained from Eq.
(12c):
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V. CONCLUSIONS

We have discussed the (2+1)-dimensional O(3) o mod-
el coupled to an Abelian gauge field with a topological
mass and have evaluated the fractional part of the spin of
the soliton with unit topological charge. This model
without the gauge kinetic term has been discussed by
many authors. In the absence of the kinetic term this
model is equivalent to the O(3) cr model with the Hopf in-
variant which is the third homotopy of the map n from
the space-time S to the field manifold S . The Hopf in-
variant is also related to the topological quantity called
the linking number of the soliton trajectory. ' ' ' In
such a case the fractional spin of the soliton can be calcu-
lated in various ways and it is found to be 8/2m. If
the kinetic term for the gauge field is introduced in the
action, the gauge field becomes dynamical and Eq. (4) is
no longer valid. Karabali and Murthy' have studied the
model in a formal 1/I expansion and found no correc-
tion to the soliton spin up to order 1/m . However, the
procedure involves an infinite sequence of second-class
constraints and they were unable to determine the exact
dependence on 1/m. In this paper we have carried out a
semiclassical quantization of the model treating the non-
vanishing classical gauge fields in the soliton sector as
background gauge fields. The method results in only two
first-class constraints. We have shown that no correc-
tions arise to the spin of the soliton which remains at
8/2m for m&0. For m =0, we find the fractional part of
the spin vanishes.

%'e conclude this paper with a simple physical argu-
ment which also leads us to the main result of our work.

One may determine the spin and statistics as follows.
Consider a pair of solitons located at a great distance
apart. Rotating them adiabatically through m. , one may
find a phase factor e" acquired by the wave function (of
the pair of solitons) and, hence, the induced spin of the
soliton Mf„e"= exp(i2mMf, ). In evaluating the phase
factor for the adiabatic process described above, we may
be able to take a static limit where higher-derivative
terms in space and time can be suppressed. The kinetic
term for the gauge fields can be neglected in such a limit,
compared with the Chem-Simons term in the action Eq.
(1). Thus the kinetic term may not affect the phase fac-
tor, hence the spin of the solitori. It can be understood in
this context that the spin of the soliton in the gauged
model is also related to the topological quantity such as
the linking number of the O(3) o model with the Hopf in-
variant only. However, the evaluation of the Hopf in-
tegral corresponding to the aforementioned process has
never been performed in the literature due to a technical
diSculty: In Ref. 3 we can find an evaluation of the Hopf
integral corresponding to a sequence of processes, creat-
ing a soliton-antisoliton pair rotating the soliton through
2n. , then annihilation.
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