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In principle, a path-integral representation for a quantum field theory uniquely determines all of
the Green's functions of the theory. One possible way to calculate the Green's functions is to derive
from the path-integral representation an infinite set of coupled partial di6'erential equations for the
Green s functions known as the Schwinger-Dyson equations. One might think that all nonperturba-
tive information about the Green s functions is contained in the Schwinger-Dyson equations. How-
ever, we show that while the Schwinger-Dyson equations do determine the weak-coupling perturba-
tion expansions of the Green s functions, the solution to the Schwinger-Dyson equations is not
unique and therefore the nonperturbative content of the Green's functions remains undetermined.
In particular, one cannot use the Schwinger-Dyson equations to compute high-temperature or
strong-coupling expansions.

I. INTRODUCTION

Recently there has been renewed interest in the
Schwinger-Dyson equations for quantum 6eld theory as a
vehicle to regulate all field theories uniformly using sto-
chastic quantization. ' A new regulation scheme proposed
by Bern et al. ' involves smearing the stochastic noise
term that drives the Langevin equation so that the source
is no longer local. At large 6ctitious times the averaging
over the noise is equivalent to averaging over the usual
Euclidean action in a path integral. One can derive from
the regulated Langevin equations a set of regulated
Schwinger-Dyson equations where the regulation consists
of sr@earing an external current which is coupled to the
field theory in the usual fashion. Bern et al. show that
this regulation scheme regulates all theories including
gauge theories and gravity to all orders in weak-coupling
perturbation theory. They also argue that this scheme
does not lead to a regulated path integral and thus al-
though all the Green's functions are regulated, the
ground-state energy density is not regulated (is still
infinite).

Several years ago we attempted to devise a continuum
regulation scheme for quantum field theory in the
strong-coupling approximation. These attempts were
only partially successful because the only continuum re-
gulator that we were able to find that preserved Ward
identities obeyed by the ground-state energy density in-
volved step functions in momentum space and these were
very dificult to use to obtain analytic results at high or-
der. The new regulation scheme of Bern et al. is not as-
sociated with a path integral and does not regulate the
ground-state energy density. One might hope, therefore,
that regulated Schwinger-Dyson equations would be a
good context in which to derive nonperturbative strong-
coupling expansions. However, as our study here will
show, deriving strong-coupling expansions starting from

a path integral is easy, but the Schwinger-Dyson equa-
tions do not uniquely determine the strong-coupling
series. Extra boundary conditions must be imposed to
supplement the Schwinger-Dyson equations in the
strong-coupling regime. It is impractical (if not impossi-
ble) to impose these conditions.

To present our arguments we consider in this paper the
extremely simple case of a A.P" field theory in zero-
dimensional space-time. Such a field theory is called ul-
tralocal because there is no kinetic energy term in the
field equations. (The ultralocal approximation is the
starting point for deriving strong-coupling or high-
temperature expansions. )

We will show in Sec. II that merely assuming that a
weak-coupling expansion exists is su%cient for the
Schwinger-Dyson equations to determine this expansion
uniquely without our having to impose any supplementa-
ry conditions. However, if we wish to determine the
strong-coupling expansion from the Schwinger-Dyson
equations it is necessary to have additional information
such as the value of the two-point Green's function. To
leading order in the strong-coupling expansion we can
obtain t;his information from boundary conditions on the
generating functional Z(J). However, if we wish to ob-
tain higher orders in the kinetic-energy expansion it be-
comes extremely di%gult to continue the calculation.

Having examined weak-coupling expansions of the
Schwinger-Dyson equations (which are unique) and
strong-coupling expansions (which are not unique) we ex-
amine in Sec. III the possibility of solving the
Schwinger-Dyson equations by truncation. When these
equations are truncated by simply ignoring the coupling
to all Green's functions having more than N legs, the re-
sulting finite set of equations has a unique solution. We
study the behavior of the solution to the truncated
Schwinger-Dyson equations in the limit as X~ao for
both signs of the mass. We find the surprising result that
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as X—+ ~ the truncated solution approaches that solu-
tion to the Schwinger-Dyson equations having a weak-
coupling expansion for that sign of the mass. This shows
that truncation schemes are tied to weak-coupling expan-
sions. Moreover, for m =0, the purely strong-coupling
case, the truncated Schwingcr-Dyson equations do not
converge at all.

Finally, in Sec. IV we summarize briefly the work of
Bern et al. on stochastic regulation and explain why re-
gulated Schwinger-Dyson equations cannot be used in
isolation to generate regulated strong-coupling expan-
sions.

Note that Z(J) satisfies the functional differential equa.
tion

[( —I-j+m ')5/5J(x )+&5'/5J(x)']Z (J)=J(x)Z(J).
(2.2)

To verify (2.2) we substitute (2.1) into (2.2) and use the
identity

fDP (5/5$)exp —fd"x[—,'(BP) + 2m P

II. WEAK-COUPLING AND STRONG-COUPLING
EXPANSIONS C)F THE PATH INTEGRAL

+—,'AP —JP] =0 . (2.3)

A quantum field theory is defined by giving its vacuum
functional Z(J) as a path integral in Euclidean space.
For a XP field theory Z( J) is given by

Z(J)= fDgexp —f d "x[—,'(BP) +-,'-m P

(2.1)

( CI+ m—)P(x )+XP (x)=J(x), (2.4)

by taking its vacuum expectation value.
The path-integral representation for Z(J) has both a

strong- and a weak-coupling expansion. To obtain the
weak-coupling expansion we rewrite Z (J) as

We can also obtain (2.2) directly from the field equation
iri the Heisenberg picture,

Z(J)=exp Ifd"—x 5,"/5J (x) fDgexp —f d "x[2(BP) + ,'m P
——JP]

=exp Af—d "x, 5~/5J (x) exp ,' f d "x d—"yJ(x)G(x —y)J(y) (2.5)

where G '(x —y)=( — +m )5(x —y). Expanding the first exponential in (2.5) in powers of A, generates the weak-
coupling perturbation series.

To obtain the strong-coupling perturbation series one writes instead

Z(J)=exp —,'e f d "x d" y[ 5/5J( x)] Go'(x —y)[5/5J(y)] Zo(J), (2.6)

where Go '(x —y) = —U5(x —y) and
I

Zo(J)= fDgexp —f d "x( ,'m P +—,'AP JP)——
(2.7)

=exp g lnF(j;)/F(0)

The parameter e counts powers of the kinetic energy p
and this is equivalent to counting powers of I, ' if we
further expand Zo(J) in a strong-coupling expansion.
Zo( J) satisfies the functional differential equation

T

=exp 5(0)f d"x ln[F(J(x))/F(0)]

where

F(Y)=f dx exp[ —a "(—,'m x +—,'Ax" —xy)] .

(2.9)

[m 5/5J(x)+A5 /5J(x) ]Zo(J)=J(x)ZO(J) . (2.8)

A formal expression for Zo can be obtained by evaluat-
ing the path integral on the lattice and then taking the
cont;inuum limit. One discretizes x by setting

x=(n„i+n j+n, k)a,
where a is the lattice spacing. Symbolically we replace
J(x) by j,. to denote this discretization. The path integral
JDQ becomes the product of ordinary integrals:
mii fdx, Normalizing Zo(J) so that Zo(0) =1 we have

m a "dF/Dy+A, a "d F/dy =yF . (2.12)

In this paper we are concerned with the weak-coupling
and strong-coupling expansions of the integral for F(y) in

(2.10)

One can verify that the formal expression for Zo in (2.9)
exactly satisfies the functional differential equation

[m 5/5J(x)+A5 /5J(x) ]Zo(J)=J(x)ZO(J) (2.11)

because F(y) obeys the ordinary difFerential equation
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(2.10) and to what extent these expansions can be
recovered from the differential equation (2.12). Equation
(2.12) is the functional equation which generates and is
equivalent to the Schwinger-Dyson equations in zero-
dimensional space-time.

In zero dimensions (n =0) we will call H(y) the nor-
malized generating functional

H, (y) has the asymptotic behavior in (2.15) correspond-
ing to co& in (2.16). H &(y) has a weak-coupling expansion
for m )0. Using 0, one has the correspondence

x=d/dy .

Thus

(x ) =H", (y =0) &0 . (2.18)

F(0) A second and third solution are linear combinations of

dx exp [—( —,
'

A,x + —,
' m x —xy ) ] .F(0)

(2.13)

H(y) obeys the differential equation

A,H"'+M 0'=yH . (2.14)

The differentiations are with respect to a constant exter-
nal source y. The differential equation for 0 is third or-
der and requires three boundary conditions.

Clearly, one boundary condition is that H (0)= 1 in or-
der that probability be conserved for the vacuum per-
sistence functional in the absence of sources. A second
condition is that H'(0)=0 so that parity is conserved.
Possible choices for the third boundary condition are to
achieve the following. (i) Specify H"(0). This amounts
to specifying the two-point function. (ii) Specify H(y) for
large y. This involves specifying how the vacuum persists
in the presence of strong external sources. (iii) Assume
that H has a weak-coupling expansion. The problem of
how to specify the third boundary condition makes it
difficult to obtain a strong-coupling expansion for 0 from
the differential equation.

From (2.14) we can see that there are three possible
types of asymptotic behavior of H(y) for large argument:

3(y)=N23 f dx exp( —,m x —~Ax —ixy),
2, 3

(2.19)

(x ) = H2'(y—=0) &0 . (2.20)

H2 leads to different moments of x than H& for the same
value of the parameters m and k. 82 has a weak-
coupling expansion when n &0.

If one has a particular integral representation of the
solution one can as easily make weak- or strong-coupling
expansions of the integral. Consider H&(y). The Green's
functions of the theory with no kinetic energy are ob-
tained by expanding H as a Taylor series in y:

H, (y)=N, f dx exp( —
—,'m~x~ —

—,'A,x~+xy)

where Cz 3 are complex contours. %'e will focus on H2
here for which Cz is the real axis. For H& one has the
correspondence

x ~ i d/—dy .

Thus,

H(y) -exp(-,'y'"cot '"),
where co is one of the three roots of co = 1:

(2.15) = g Gz„y "/(2n)!,

where Gz„, the 2n-point Green's function, is

(2.21)

cg&=1, coal=exp(i2m/3), co =3pe(xi4m/3) . (2.16)

There are three possible integral representations for the
solution H(y) that correspond to these three possible
types of asymptotic behavior and these representations
have quite difFerent properties.

The usual Euclidean path-integral representation is

H, (y)=N, f dx exp[ —( —,'m x + —,'A,x —xy)] .

(2.17)
l

G,„=N,f dx x~"exp( —
—,
'mzx' ,'M )—, —GO=I,

(2.22)

where

N, ' = f dx exp( —
—,'m x —

—,'A,x ) .

The weak-coupling expansion of the Gz„ is obtained by
using the Gaussian measure

(2.23)
00 oo

G2„=N, f dx x "exp( —
—,'m x ) g ( ——,'px p/p! —N&(2/m )" ~ g ( —p/m pl (2p+n+ ~ )/p!

p=0 p=0

where X, must also be expanded as series in powers of A,.
The strong-coupling expansion, on the other hand, is obtained by using the quartic term for the measure and expand-

ing the Gaussian term:

G =N f dx x "exp( ——'A,"x ) g( ——'m x Y/p!=N, —'(4/A, )"+' g( —m /A. ' Yl ++—+— p- )

(2.24)
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where here N& must also be expanded as a series in
powers of A,

Thus, the 2n-point Green's functions for this theory
(which contain disconnected as well as connected parts),

( 2k}

( )
—G~„,

can be expanded as a power series in A, /m or as a power
series in m /X' T.he first series (weak coupling) is an
asymptotic series, whereas the second series (strong cou-
pling) is a convergent series.

Now let us consider how to det;ermine these same series
directly from the Schwinger-Dyson equations. The
Schwinger-Dyson equations are derived from (2.14).
They are an infinite set of coupled equations for the
Green's functions 62„.
A, G„+m 6„~=(n—3)6„„, 60=1, 6, =0, (2.25)

where
'n

H, (y)=N, f dx exp( —
—,'m x ——4'A,x +xy), (2.31)

X, = f dx exp( —
—,'m x —

—,'A,x") . (2.32)

What happens in the case of the strong-coupling ex-
pansion? First we must solve the theory with m =0. In
this limit the diff'erential equation (2.14) becomes

AH'"(y) =yH . (2.33)

As we noted before this is a third-order diA'erential equa-
tion which requires three boundary conditions. One
choice for the third boundary condition is to require that
the solution have one of the three possible types of
asymptotic behavior:

H(y)-exp( —,'y ~
coA,

'~
) .

When m =0 the integral representations in (2.17) and
(2.19) become

6„= H(y)
d

y=0

If we assume that there exists a weak-coupling expansion
(formal power series in A, ) for 6„ then one quickly obtains
a unique answer for this series. In the differentia equa-
tion (2.14) we set X=O:

m H'(y)=yH(y) .

From the boundary condition H(0) = 1. We immediately
obtain, at X=O,

H, (y)=X, f dx exp( —
—,'A,x +xy)

= gy "Gz„/(2n)!,

Hz(y)=N, f dx exp( ,'Ax——+ixy)

= g ( —1)"y'"6,„/(2n)!,

where
n/2

4 I (n/2+1 /4)
I (1/4)

(2.34)

(2.35)

H(y) =exp
2&i

(2.27)

Note that this function already satisfies the boundary
condition H'(0) =0.

Equivalently we derive this result using the
Schwinger-Dyson equations. Setting A, =O in (2.24), we
obtain using H(0)=60=1,6, =0,

Thus, H& and H2 are, quite distinguishable from their
large-y behavior.

What happens if we try to solve the Schwinger-Dyson
equations (2.24) when m =0? Since the initial conditions
H(0) =1, H'(0) =0 do not determine the value for the
two-point function G2 it must re~ain arbitrary: G2=cx.
The infinite system of coupled Schwinger-Dyson equa-
tions in the massless limit reads

(2n )!2 "m
G2„= t, G2n+ r

=0 . (2.28) A, G„=(n —3)6„ (2.36)

Thus, we recover the result

oo G 2

H(y)= g y~" ", =exp
„=0 (2n)! 2m '

Ha»ng «mputed H(y) at A, =O we can iterate the
Schwinger-Dyson equations to obtain a unique result to
all orders in powers of A, . Formally, we can write the re-
sult of this iteration as

Iterating this equation gives

I (n+ —,')
(j4„=(4/A, )"

4

I (n+ —,')
64 +p =a(4/&)

4

(2.37)

H(y) =exp[ —
A, (d/dy ) ]exp

2m
L

Then writing

2

exp =Xf dx exp( —
—,'m x +yx)

2m

(2.29)

(2.30)

We do not know a simple way to determine a directly.
One possible approach is to reconstruct the generating
function H(y) from (2.37). For arbitrary a we can
sum the series if we make a particular assumption about
the generating functional. For the correspondence
x ~d/dy we have

we recover the unique result
H (y)= g Gz„(a)y "/(2n)! .

n=0
(2.38)
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We can rewrite this series putting a new parameter
P=(4/A, )' 'I ( —')/&( —')

H (y ) =—,
'

( I +a /P )H, (y ) +—,
'

( 1 —a /P )H2 (y ), (2.39)

where H, (y) and H2(y) are given in (2.34) and (2,35). We
now see that imposing the large-y behavior of either H

&

or H2 determines a to be either P or —P. Unfortunately,
at the next order in perturbation theory we have exactly
the same problem all over again. We must assume again
an unknown value of the two-point function valid to next
order in m /A, and sum the series. This is not very prac-
tical in general.

It is quite clear that in higher-dimensional space-time
there is a kinetic energy term and the problem of deter-
mining the third boundary condition gets more dificult.
For the case of the Langevin regulated Schwinger-Dyson
equations, there is no formal path-integral solution and
we do not know how to solve the problem of satisfying
the third boundary condition.

III. CONVERGENCE OF TRUNCATION SCHEMES

As an alternative to solving the Schwinger-Dyson
equations by making weak-coupling or strong-coup1ing
expansions we can use truncation methods. Here we
decouple the first X Green's functions from the rest and
so1ve the closed system of equations that results. One of

the best-known truncation schemes, the Hartree-Fock (or
large-1V) approximation consists of solving the equations
for the coupled one- and two-point functions. In zero di-
mensions truncating the equations at the Xth Green's
function gives a set of N coupled algebraic equations
which we solve explicitly. Therefore, we can study the
limit X~ 00 in detail ~

The Schwinger-Dyson equations in (2.24) can be
rewritten for the even Green's functions (the odd ones are
zero) as

AG~„+2 +m G2„=(2n —1 )G2„

with the boundary condition 60 = 1 .
Setting Gz„=Q„gives

m Q, +AQ2=1

(3.1)

(3.2)

m Q„+AQ„+i—(2n —1)Q„—i=0, (3.3)

MQ =I, (3.4)

If we restrict ourselves to finite truncations of Q so that Q
is replaced by Q( ] then M is the XX % matrix:

We can think of Q as a column vector so that this set of
equations is equivalent to the matrix equation

0
0

0

0
771

5 PPl
2

0 —7

0
0
0

0
0
0

m
—(2X —3)

0
0

0
Pl

—(2N —1) m

(3.5)

1
0
0

I(N] (3.6)

and I(] ] is the column vector with 1 in the first entry all
other entries zero:

The first few determinants are

DM(']=I DM( ]=m, DM( ]=m +5k, ,

DM~'1= DM~ ~=m + 3X DM~ ~=m +Skm

(3.8)

0

Now that we have truncated the recursion relation
(3.3) to a finite-dimensional matrix equation we can cal-
culate all the Green's functions up to QN by using
Cramer's rule. Thus to obtain the two-point function Q,
we first construct the matrix MP], in which we replace
the first column of M(N] by the column vector I( ] Then.
from Cramer's rule, the Xth truncation approximation to
Qi is

Q P] —detM(N] /detM[ N] DM(N] /DM(N] (3 7)

Note that the ratio of determinants can be reexpanded in
terms of an infinite Taylor series in A, /m whose leading
term is 1 /m . This gives the exact weak-coupling expan-
sion out to order N.

Recall that the integral representation for H i (y ) in
(2.17) has a weak-coupling expansion for m )0. From
H, (y) we obtain the correspondence

x d/dy

Thus

x') =H" (y =0))0 .
( I )
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Recall, also, that H2(y) in (2.19) has a weak-coupling
expansion for I & 0. For H2 we have the correspon-
dence

x~ —i d/dy .

Thus

(x') = —H2'(y =0))0 .

Apparent1y, our truncation of the Schwinger-Dyson
equations has the property that in leading order

comes worse until finally as 1,/m ~ (x) it does not con-
verge at all. The ratio in (3.7) merely oscillates between
positive and negative values. Thus, the truncation
scheme does not give accurate results in the strong-
coupling regime and in the strong-coupling limit there is
no. answer at all. Furthermore, the truncation scheme
converges to that particular path-integral solution of the
Schwinger-Dyson equations that has a weak-coupling ex-
pansion for the particular choice of sign for m . This
shows that truncation schemes are indirectly tied to
weak-coupling expansions.

f dx x exp( —
—,)A,x —

—,'m x )

f" dx exp( —
—,'~x —

—,'m x )
(3.9)

and for m (0 we need to compare Q, with —(x ),
where

H" (y =0)=1/m

Thus for m &0 it must be approximating the Green's
functions of H&, and for m & 0 it must be approximating
the Green's functions of H2. Hence, for m )0 we must
compare Q, with

IV. STOCHASTIC REGULARIZATION

In this section we summarize the work of Bern et ah. as
it pertains to A,P field theory and show that it is unlikely
that we can reconstruct the field theory in the strong-
coupling regime from the regulated Schwinger-Dyson
equations. The starting point for the continuum regula-
tion scheme is the regulation of the Langevin equations
involved in stochastic quantization. Introducing the
Langevin fictitious time ~ we have

(I)(x,r) = —5S(x,r)/5$+ f dy R,~(U)i](y, r), (4.1)

z~ f dxx exp( —
—,')(.x + —,'m x )

f" dx exp( —
—,'~x + —,'m x )

where the noise term g satisfies3.10
(rl(x, r)rl(y, r') ) =25(r—~')5"(x —y) . (4.2)

It is very easy to obtain the two-point function 62 =Q,
at order X in the truncation scheme because the deter-
minants DM[ ] and DMI ] both satisfy the same recur-
sion relation

Dg [N] m2Dg [N —1]+(2~ 1)QDg [N —2] (3.1 1)

with diff'erent initial conditions [see (3.8)].
Numerically we find that for A, /m" ( 1 the convergence

of the truncation scheme to the exact answer is quite rap-
id. For larger values of A, /m the convergence rate be-

In (4.1) R is a regulator. For example, in heat-kernel re-
gulation we take

R„~( )=[exp( /A )]„ (4.3)

where is the Laplacian.
It has been shown that the fixed-~ correlation func-

tions obtained by averaging over the noise approach the
field-theoretic Green's functions as r~ ()o. If F[P] is any
functional of the field (I) then we have the ~ evolution
equation

(4.4)

(4.5)

(F[6])„=. f dx —66 y6$+ f dy R ~6/66(y) 6F /66(x)}„.
At long times ~ an equilibrium state is reached and choosing F=exp[ IdxJ(x)P(x) ], and Z[j]= ( exp[ fdx J(x)P(x)] )
we obtain the regulated functional differential equation

0=f dx J(x) —5S/5$+ f dy R„J(y) Z[J],
where P(x) =5/5J(x) in 5S/5()[). Equation (4.5) is equivalent to an infinite set of regulated Schwinger-Dyson equations.

Let us look at the one-dimensional version of these equations (quantum mechanics). The regulated functional equa-
tion for the anharmonic oscillator is

fdt J(t)[( d /dt +m )5Z/—5J+A5 Z/5J ]=f f dt dt'J(t)R„.J(t')Z[J] . (4.6)

This equation is equivalent to an infinite set of coupled ordinary differential equations for the Green's functions. The
first of these is

( d'/dt2+m )W2( —
2, ti)+( d'/dt', +m') W, (t„t,)+—AW4(ti, ti, ti, t2)+AW4(t2 tg t2 ti )
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Note that instead of having a delta function 5(t
&

t—
z ) on

the right-hand side of (4.7) as in the conventional
Schwinger-Dyson equation, the square of the regulator
function appears. From (4.7) it is clear that when A, =O
one has a unique starting point for the weak-coupling ex-
pansion

W2(p )=R ~(p /A )/(p +m ), (4.8)

where R is the Fourier transform of R. Evidently, (4.8)
replaces (p +m )

' as the regulated propagator in the
weak-coupling expansion.

Unfortunately, in the strong-coupling regime we have
several problems. We not only have the problem of speci-
fying 8'2 as we had in the unregulated case, but now, be-
cause this is not the ultralocal approximation where the
X-point functions are all delta functions, we also have to
know how each leg is regulated. In the strong-coupling
limit the first Schwinger-Dyson equation relates
W~(t„t, , t~, t~) to R (t„tz), the second Schwinger-

Dyson equation relates W6(t, , t, , t„t2 r3 r4) to
W4( r} r2 t3 t4 ) and W2( t„t2 ), and so on. There is no
equation for W 4( t„t 2, t 3, t4 ). We only obtain informa-
tion about W4 when three of the legs are tied together;
from (4.7) we have, for large A, ,

W~(t, , t, , t„tq)=A, 'R (t„t2) . (4.9)

We thank the U. S. Department of Energy for partial
financial support.

This is not sufhcient information to allow us to recon-
struct the theory in the strong-coupling domain from the
regulated Schwinger-Dyson equations. Thus, we believe
that the regulated Schwinger-Dyson equations found by
Bern et al. , although quite adequate in reconstructing a
regulated theory in the weak-coupling domain are not
sufhcient to reconstruct the theory in the strong-coupling
domain.
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