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The variational Gaussian approximation is generalized to the time-dependent approach capable
of giving time-dependent Green’s functions. This covariant Gaussian approximation is represented,
in full analogy with the classical approximation, as an initial truncation of the Dyson-Schwinger

equations followed by functional differentiation of the effective action.

Intuitively simple

Schrodinger and Heisenberg pictures of the approximation are also discussed.

I. INTRODUCTION

Perturbation theory remains to this day the main
analytical tool in investigating continuum quantum field
theory (QFT). Its wide application is due to the fact that
it is the simplest expansion scheme for calculating
Green’s functions and to its triumphs in the case of QED.

It is clear however that perturbation theory is unable
to uncover the whole rich structure of QFT. The sim-
plest example of its failure to predict qualitatively correct
results is the spontaneously broken scalar theory. While
the phenomenon of spontaneous symmetry breakdown is
easily discovered in the classical approximation, it can
never be seen in ordinary ‘“naive” perturbation theory.
To accommodate this phenomenon the framework of per-
turbation theory must be changed, for example, via the
introduction of ‘“phenomenological” quantities corre-
sponding to condensates of local operators in the manner
of Shifman, Vainshtein, and Zakharov.? Those quanti-
ties themselves cannot be calculated in perturbation
theory and must be supplied by some other, nonperturba-
tive method.

The simplest method that was employed to supply this
nonperturbative information is the classical approxima-
tion. With its help in scalar theory one can calculate the
lowest condensate (® ). However it is clear that the clas-
sical approximation must be inadequate in many cases.
Apart from the fact that it completely ignores quantum
corrections in some cases it is @ priori clear that it must
be useless altogether. For example, in Yang-Mills theory,
where it is believed that the local condensate (Fe*Fe )
plays a crucial role at low energles, the classical approx1—
mation cannot help. The reason is that in this approxi-
mation the following relation between the expectation

values holds:
< Faqua#

D =(F™)(F,) . (1.1)

However, F°*¥ carries Lorentz and color indices and if ei-
ther of these symmetries is not broken it cannot acquire a
nonzero vacuum expectation value.

Thus it is desirable to have some method which on one
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hand must go beyond both perturbation theory and the
classical approximation in the points where those fail and
on the other hand be sufficiently simple so analytical cal-
culations could be performed in its framework.

The Gaussian approximation is a natural candidate for
such a method. The essence of the method is that, by
minimizing the expectation value of the Hamiltonian on
the set of Gaussian states,

V[D(x)]=N exp{ — L[ P(x)—¢(x)]

XG(x —y)[@(y)—¢(»)]} (1.2)

one finds such a state with minimum energy. This state is
then used to approximate the vacuum of the system.
This approximation is widely used in nonrelativistic
many-body theory, where it was very successful in the
Bardeen-Cooper-Schrieffer (BCS) theory of superconduc-
tivity.> In quantum mechanics it is in excellent agree-
ment with numerical results for ground-state and first-
excited-state energies for a wide range of potentials.*
This method is sometimes called the Hartree approxima-
tion and under this name it has a rather long history of
applications also in relativistic bosonic QFT (Ref. 5).

Recently interest in this approximation has been re-
vived.b 14 The method was applied to renormalizable
scalar theories.>”!! Several attempts were also recently
made to apply it to pure Yang-Mills theory.!?~ 14

The method is, however, somewhat inconvenient in ap-
plication to relativistically invariant QFT since it is not
explicitly covariant. In fact it is represented in Hamil-
tonian formalism. While this is of less importance when
scalars are considered, a covariant formulation becomes
essential in application to theories containing fields in
nontrivial representations of the Lorentz group (for ex-
ample, vectors).

Another related feature of this approach is that its ap-
plication as a time-independent variational method pro-
vides only the possibility of calculating the effective po-
tential rather than effective action. Thus one can obtain
only Green’s functions at zero momenta. In renormaliz-
able theory this is a serious drawback, since it is impossi-
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ble to impose one of the necessary normalization condi-
tions: finiteness of the residue of the propagator. As a
result the renormalization becomes partly guesswork and,
for example, several different versions of the renormaliza-
tion of ¢* theory exist.®% 1

In this work we discuss the time-dependent generaliza-
tion of the Gaussian (Hartree) variational method.” We
show_that it can be formulated Lorentz covariantly in
terms of truncation of the Dyson-Schwinger equations
(DSE’s). It permits one to calculate effective action and
Green’s functions at nonzero momentum in an explicitly
covariant way and sets a convenient framework for dis-
cussion of renormalization.

In Sec. II we present a simple intuitive picture of the
time-dependent  Gaussian  approximation in the
Schrdodinger picture. In Sec. III we formulate the same
approximation in terms of truncation of Dyson-
Schwinger equations (DSE’s). In Sec. IV the Heisenberg
picture representation of the approximation is discussed.
For the sake of simplicity the discussion in these sections
is confined to quantum mechanics. Section V contains
the generalization of the method to QFT. In Sec. VI we
discuss our results and indicate how this approach can be
incorporated in a more general approximation scheme.
The Appendix contains a short discussion of the depen-
dence of the approximation on the basis in the Hilbert
space.

II. SCHRODINGER PICTURE

Our aim in this section is to obtain the approximate
effective action of a quantum theory in the Gaussian ap-
proximation.

The effective action of a quantum system is the Legen-
dre transform of a functional W[J] (Ref. 16) defined by

exp(iW[J])=(0_{0,), . (2.1)

It is worthwhile to discuss the meaning of this definition.
One starts with the asymptotic state [0_) that is a vacu-
um of the system’s Hamiltonian H (@,ﬁ) which is in-
dependent of J. Then a time-dependent external source
J(¢) is adiabatically turned on and the initial state propa-
gates under the Hamiltonian H; =H —J(¢)®. Gradually
the source is turned off and the system again is governed
by H. Under these conditions after a sufficiently long
(infinite) time the system falls back into a vacuum of
H —the state |0, ). This state however can differ from
|0_) by a phase, which is equal to W[J].

In this section we present an approach in which W[J]
is calculated by direct approximation of quantum evolu-
tion of the initial state rather than by expansion in some
parameter. We start with the classical approximation as
the simplest example of an approximation of this kind.

A. Classical approximation

For the sake of definiteness we shall discuss the quan-

tum system governed by the Hamiltonian of the form
H=112+V(®). (2.2)

A ground state of Hamiltonian H in the classical ap-
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proximation is taken to be a coherent state!”!8
|0— )= |¢o,77'o>
1/4
= ‘% exp ——;i(cl>—¢0)2+i7ro(<1>~¢o) ,

(2.3)

where o is an arbitrary real parameter. The distinguish-
ing property of these states is their minimal indetermina-
cy

ADANI=1% . (2.4)

When the source is turned on this state evolves into
¥,(®). The state ¥,(P) is also approximated by the op-
timal coherent state

1/4

[d(2),m(t)) = [% exp ——‘2'1[<p—¢(t)]2

+im()[P—@(t)]+iAd(2) |,

(2.5)

where ¢(¢) and 7(¢) are time dependent. For this state
(®)=9¢, (2.6)
(== 2.7)

We look for this optimal coherent state along the lines of
Ref. 18.

The initial state propagates according to the
Schrddinger equation
d
—W=H,¥ . (2.8)
Yt d

The coherent state |¢(z),m(¢)) cannot satisfy this equa-
tion. The set of coherent states is a three-parameter sub-
set of the infinite-dimensional Hilbert space. The best
one can do is to adjust these three parameters: the phase
and the expectation values of ® and II. We choose a
coherent state which is closest to satisfying the following
three conditions, which would have been exact if it were
a solution of Eq. (2.8):

(Y, l¢(),m(1))=1, 2.9)
(p(), ()| ®|p(2),7(1)) = (¥, |D|¥,) , (2.10)
(p(0),m(O| A |p(2), (1)) =(w,|11|¥,) . (2.11)

Equation (2.9) means that we want the overlap between
the exact solution I\I/, ) and the optimal coherent state to
be maximal. Equations (2.10) and (2.11) state that the ex-
pectation values of operators ® and fI in the approximate
solution are the same as in the exact solution (Fig. 1).

The differential form of Eqgs. (2.9)-(2.11) is

<¢(r),w(z> % l(ﬁ(t),n(t))

=—i{¢(t),m()|H;|p(1),m()) , (2.12)
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FIG. 1. Solution of the Schrodinger equation y(¢) is approxi-
mated at all times by a coherent state |¢(),m(¢)). The width of
the Gaussian is kept constant; the coordinates of the center are
optimized.

| (¢(:),w(r) 34 ¢(t),17'(t)>+c.c.
=—i{ (1), m(D|[D,H,]l$(2),m(2)) , (2.13)
<¢(t),7r(t) L ¢(t),7T(t)>+c.c.
=—i{¢(), m(O)|[ L, H, 1l ¢(2),m(£)) . (2.14)

These are the equations giving the evolution of the op-
timal coherent state in the classical approximation.

Using the explicit form of |¢(¢),7(t)) we obtain
differential equations for A4 (t), ¢(2), and m(¢):

A=md— (¢, 7 OH|SO,m())+I(1),  (2.15)
¢=m, (2.16)
=L (), 7 DIVIGO,m (D)) +T(8) . (@2.17)

dé
Thus

A= [" atlmg—E((e),m)+J(0$(1)], (2.18)
where
E($(2),m(t))=d(t),m(t)| H|P(t),7(2)) (2.19)

and ¢(t) and 7(t) obey Egs. (2.16) and (2.17). If J =0 the
static solution of Egs. (2.16) and (2.17) gives |¢q, )
which is the approximate vacuum in classical approxima-
tion. It is equivalent to the variational principle

3 _

36 (¢,w|H|p,7)=0, (2.20)
Gl -0 -

aﬁ(¢,ﬂlH|¢,7T>—O ; (2.21)

that is, minimization of the expectation value of Hamil-
tonian on the set of coherent states.
By definition [Eq. (2.1)]

W[J]=A(x) . (2.22)

Differentiating W [J] with respect to J(¢) and using Eqgs.
(2.16) and (2.17) we obtain
J

(I(1),G(1);8(0), (1) B 2| ¢(1),(2); G(2), 1 (1)) = (¥, |D2|¥,) ,
(I(2),G(1); (1), ()| L 2| (1), m(1); G (), I(2)) =W, |11 2|¥,) ,
(I(2),G(2);¢(2), (1) | DI+ 1B |p(1), m(2); G (1), 1(2)) =¥, | B+ 1D | ¥, ) .
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5 _ , 84 8¢(t) _
570 W] ¢(t)+fdt—-——8¢(t,) s . 2

The effective action is defined as a Legendre transform of
W[J]. We therefore obtain for the effective action in
classical approximation:

S[p(0]= [dt 162 —($(),mDV|$(0),m()) . (2.24)

We remark that S[¢(z)] is equal to the classical action
if the Hamiltonian H is normal ordered with respect to
the same parameter w that enters the definition of the
coherent state equations (2.3) and (2.5). In this case Eqgs.
(2.16) and (2.17) are the classical Hamilton equations.
For details see Refs. 17-19.

Proper Green’s functions (PGF’s) are obtained from
the effective action Eq. (2.24) by functional differentiation
with respect to ¢(z) at ¢(¢2)=¢,. These are the usual
tree-level Green’s functions.

* B. Gaussian approximation

The classical approximation is of course inadequate for
description of quantum effects. The deficiency of this ap-
proximation is that it does not allow for states without
minimal quantum indeterminacy and time-dependent
width. The easiest way to improve on it is to consider a
wider set of Gaussian states:!°

|$,7,G,I)
1 1/4
= [—G; exp{ — [P —¢(1)]
X[GUe)+il(1)][®—¢(1)]
+im()[P—d()]+id(D)}. (2.25)
In these states
(B)=¢, (2.26)
(M)=nm, (2.27)
’(q>2)—¢2=%<; , (2.28)
(*) —7?*=LG ~'+IGI) . (2.29)

We shall follow now the approximation procedure
analogous to the classical one. The ground state is ap-
proximated by a Gaussian

W0(¢)=|¢0,7TO;G(),10) . (2.30)

Under the influence of time-dependent source J(¢) this
state evolves into a state ¥,(®) which is approximated by
another Gaussian |¢(z),7(¢);G(¢),I(¢)). In addition to
the optimization requirements, Egs. (2.9)-(2.11), we op-
timize now also the expectation values of quadratic
operators:

(2.31)
(2.32)
(2.33)
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Physically this adjusts the width of a Gaussian to the ex-
act solution, in addition to its phase and position; see Fig.
2.

The infinitesimal form of the full set of optimization
conditions is

<%>+c.c.=—i(H) : (2.34)
4 (8)=—i((&,H]) 2.35)
%(ﬁ)?—-i([ﬁ,ﬂ]) : (2.36)
462 =—i(18%HY) , (2.37)
%<ﬁ2>+—f<[ﬁ2,m> , (2.38)
L (oN+18)=—i((8A+0,H]) . @39

We have six equations for five parameters: ¢, 7, G, I, A.

However, one of the equations (2.34)—(2.39) is trivially

satisfied. This can be seen in the following way. The

Gaussian state [Eq. (2.25)] is annihilated by the operator
1/2 172

@ d—jeix?

a= —ix/2
¢ 2 cosy

’

2w cosy

(2.40)
where
we  X=G 71+l .

Consequeritly the quadratic operator @ ta trivially
satisfies the equation

%(a*m:—i([a*a,ﬂ]), (2.41)
which is a linear combination of Eqgs. (2.34)-(2.39).

Using the explicit form of a Gaussian equation, (2.25),
the optimization conditions lead to

A=¢r+1IG—(H) , (2.42)
p=m, (2.43)
._ 9

= a¢(V)+J, (2.44)
G=2IG , (2.45)
P m—2_y2_,4. 0

i=c I 4aG(V>. (2.46)

Equations (2.42)-(2.46) are equivalent to two second-

FIG. 2. Solution of the Schrédinger equation ¥(¢) is approxi-
mated at all times by a Gaussian state. Width of the Gaussian
as well as the coordinates of its center are optimized.
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order equations
$+%<V>=J, (2.47)
'G.—%%i—ZG“—FSG—a%(V)=O. (2.48)

Equation (2.47) will be called in the following the shift
equation, while Eq. (2.48) will be called the gap equation.
The generating functional of connected Green’s func-

tions, W[J], is equal to 4(t =) for ¢ and G that solve
Egs. (2.47) and (2.48). The initial conditions must be tak-
en in accordance with definition (2.1), that is, for t = — o
we should start from the approximate vacuum. This ap-
proximate vacuum is determined by minimizing the ener-
gy expectation value on the set of Gaussians.* It is easy
to see that the minimization equations coincide with the
static version of Egs. (2.47) and (2.48) for zero external
current J:

d

36 (H)=0,
Thus ¢(— = ) and G(— =) are determined by solving Eq.
(2.49), and G(— o )=¢(— 0 )=0. As in the classical ap-
proximation A(o)— f J¢ is an approximate effective ac-
tion. It can be conveniently expressed as a functional of
¢(t) and G(1).

S.sl6(1),G(1)]

3 _
3G (H)=0. (2.49)

= 1., 1G> 1 ..
[ dt AT ar-aira (V$)) | .

(2.50)

The Euler-Lagrange equations for this action coincide
with Egs. (2.47) and (2.48).

In the next section we shall reformulate the time-
dependent Gaussian approximation in the language of
Dyson-Schwinger equations (DSE’s) which will be useful
in application to relativistic QFT.

III. DYSON-SCHWINGER APPROACH
TO GAUSSIAN APPROXIMATION

-The time-dependent Gaussian approximation present-
ed above can be applied to QFT as well as to quantum
mechanics. The quantities of primary interest in QFT are
Green’s functions.

Proper Green’s functions (PGF’s) are defined as func-
tional derivatives of the effective action S[¢(#)]:

n - 8"S[¢]
Pt )= gy bty

Any quantum theory can be defined in terms of PGF’s
only. In this formulation the dynamics is given by a
(infinite) set of intertwining integro-differential Dyson-
Schwinger equations!®?° (DSE’s), which replace the
Schrédinger equation for the wave function.

For example, for the anharmonic oscillator

(3.1

H=%ﬁ2+%mzﬁ\>2+%(f)4, 3.2)

the first two DSE’s are
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-DI(E) + 59%0) + %4;(:)@ +

Here lines represent propagators, full circles represent
PGF’s, and
D '=(—=32—m?)8(t —1') . (3.5)
There is a close connection between the DSE formula-
tion and the Heisenberg picture of quantum dynamics.
Indeed Eq. (3.3) is obtained by taking the expectation
value of the operator Heisenberg equation for operator
&(1) in a vacuum:

F<¢>+m2<¢)+

Since PGF’s defined by Eq. (3.1) are simply connected
with expectation values of products of fields, e.g.,

G(t,[—iTX1,m)]G(m,t,)
=(T®(1)®D(1,)) —(1,)¢(2,)

Adn=su (3.6)

(3.7
|

¢("t’)a%¢(t)+m2¢(t’)¢(t)+%q&(t’)(fl\)3)—D"1(1,1)G(l,t’)
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i\
'—ﬁ @ = J({)»
T2(t,0) = DH(L,E) - %[i&(:) + O + i«:)O- @+ { 8]5«-:’).

r

G(ty,1)G(ty,m)G(t5,n)[iT(L,m,n)]

=(T®(1,)®(1,)®(13))

—[{T®(2,)®(1,))¢(¢;)+perm. ]

— (1 )p(2,)9(25) (3.8)

Eq. (3.3) is just the diagrammatic representation of Eq.
(3.6). Here G(tl,tz) denotes the connected propagator
and ¢(z)={(®(¢)). We use here matrix notation, i.e., in-
tegration is implied over the time variable appearing
twice except for G(z,¢) which will denote the equal-time
propagator:

Multiplying the Heisenberg equation by &(z’), per-
forming time ordering, and taking its vacuum expecta-
tion value (VEV), we obtain

+—37“7{3G(r,t')G(r,t)+3G(z’,1)G(t,m )G (t,n)iT3(1,m,n)]$(2)

Equation (3.4) is its proper part. Higher DSE’s can be
obtained by successive miultiplications of the Heisenberg
equations by field operators.

We shall now represent the time-dependent Gaussian
approximation directly in terms of PGF’s and show that
the optimization conditions (2.35)-(2.39) are equivalent
to a certain truncation of the first two DSE’s.

In the Gaussian approximation S[¢] is given by Eq.
(2.50) where G is a functional of ¢(¢) found from the gap
equation (2.48). In order to recast the effective action as
well as the gap equation (2.48) into a form more suitable
for QFT we introduce the auxiliary quantity, which will
be called the truncated propagator

_ _9’5[¢,G]
36(1)dg(1")

Note that the derivatives in Eq. (3.10) are partial func-
tional derivatives (G is not differentiated) in contrast with
Eq. (3.1) and thus the propagator is not equal to the full -
Gaussian two-point Green’s function (GF).

Differentiating the explicit form of S[¢,G ], Eq. (2.50),
we obtain

iG,'=T2 (3.10

+G(t',1)G(t,m)G(t,n)G(t,k)[iT3(m,n,p)I[iT3(k,p,1)]
+G(t',1)G(t,m)G(t,n)G(t, k) [iT*I,m,n,k)]} =8(t—1’).
(3.9
[
r2=— |at+ 2 ¢ ) '
= ryY V) [8(z—1t') . (3.11)

Using Eq. (2.48) and the property of Gaussian states

aZ
—;7<V(<I>)) 4——~(V ),
this is transformed into
1 1 (3, G)?
F2: 1224 2
ol a;+ 2G —0;G+ >
+2G“3] 8(t—t') . (3.12)

Thus the truncated propagator is a Green’s function of
the differential equation

(9,G)?
— 3G+

32— v
! 2

26

G
+2G 73 ] } G (1,t")=i8(t —t') .  (3.13)
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This Green’s function is

G (1,t)= [O(t—t')exp

i[lds 67|
t
o' —nexp [~i [1ds 6 7o) ||

x—‘/—G(‘—;G(Q . (3.14)

In particular

G (1)
B

With this information at hand we rewrite the shift and
gap equations in terms of ¢(¢) and G (¢,¢'):

G,(t,t)= (3.15)

a%¢+—$<V(¢, GO =T,

r%rz —a%——

(3.16)

2
O (W0, G(t,t)) |82 —1') . (3.17)
o4
This is a set of equations for ¢(¢) and G,,(¢,¢’) since I'Z is
connected with G, via Eq. (3.10).

The effective action is

S[(1), G (t,0)]1= [dt 13,81 — (V) — 137G (1,1"), _,

——;;[ln(Gt,(t,t’)],:,, . (3.18)

The vacuum energy is equal to — S for the translationally
invariant configuration ¢(¢)=¢, G (t,t")=G (¢t —t'). It
can be conveniently expressed as

=1 [dk kZGtr(k)—*—éfdk InG, (k)+{V) . (3.19)
When written in this form Egs. (3.16) and (3.17) look very
suggestive. ‘

As an illustration we consider the anharmonic oscilla-

tor equation (3.2). In this case Egs. (3.16) and (3.17) can
be represented diagrammatically as

-D1(r) + %&(z) + ’5\¢(t) O =J, (3.0

I (60) = D™34-1) - g[w) +O‘ 8(t-1)

with lines representing G (¢,t").

We immediately observe that they are the same as Eqgs.
(3.3) and (3.4) with terms containing three- and higher-
point GF’s omitted. Because of the factorization proper-
ty of Gaussian states,'®

(®m)=gr+ L=

(3.21)

¢n~2<¢2>

n(n—l)(n— n—3

+
8

¢n—4<(’1\)2)2+ cee

(3.22)
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this feature does not depend on specific form of potential
V(®). Thus we arrive at the conclusion that the optimi-
zation conditions (2.35)~(2.39) are equivalent to the trun-
cation of the first two DSE’s in which three- and higher-
point PGF’s are omitted.

It is interesting to remark that the same framework
can also accommodate the classical approximation. In
this case (for a normal-ordered Hamiltonian) the optimi-
zation conditions (2.13) and (2.14) are equivalent to the
truncation of the first DS equation with terms containing
two- and higher-point PGF’s omitted.

Truncated DSE’s [Egs. (3.20) and (3.21)] enable us to
express in principle the truncated propagator G,.(t,t') as
a functional of ¢(z). This expression should be inserted
into the Gaussian effective action Eq. (3.18) and the
Gaussian GF’s are obtained from it by functional
differentiation. Actually, in order to calculate GF’s we
do not need the explicit expression for S[¢(#)]. Indeed
the left-hand side (LHS) of the shift equation is precisely
the first functional derivative of S[¢(z)]. Thus PGF’s in
Gaussian approximation are obtained by successive
differentiation of the LHS of the shift equation.

IV. THE APPROXIMATION
IN THE HEISENBERG PICTURE

In this section we describe the representation of this
approximation in the Heisenberg picture of quantum
mechanics. In this picture dynamics is given by the time
dependence of the Heisenberg operators ®(¢) and Il(¢)
which satisfy the Heisenberg equations

b=—i[®,H], 4.1)
Mn=—i[I,H]. (4.2)

Let us choose in the Hilbert space a harmonic oscillator
basis Tgenerated by the (time-independent) creation opera-
tor a

In)“ T)"|0)

4.3)
a|0>=0 .

We approximate ®(¢) and II(¢) by operators linear in a
and a' with time-dependent coefficients

<I>1m(t)=¢(t)+—1:[v*(t)a+v(t)aT] , (4.4)

w(t)+-f[u*(t)a—u(z>a*] )

Here ¢(t) and 7 (t) are real and v (¢) and u (¢) complex
functions. In order for @y (t) and Il () to satisfy
canonical commutation relations at all times, the follow-
ing relation between the coefficients must hold:

Luv*+vu*)=1.

I, (8)= (4.5)

(4.6)

Equations (4.4)—(4.6) are equivalent to the statement
that the time evolution is approximated by a
Bogoliubov-Valatin transformation:



2338

D(1)=UPO)U !,
(:)=UNO)U !,
U=exp[iQ(a,a")],

4.7

where Q is a general time-dependent Hermitian operator
quadraticinae and a .

To obtain equations for coefficients u, v, ¢, and T we
proceed by substituting Egs. (4.4) and (4.5) into the
Heisenberg operator equations (4.1) and (4.2) and retain-
ing in their RHS only terms linear in @ and a' in the
normal-ordered expression. As an example consider an
anharmonic oscillator Eq. (3.2). In this case the approxi-
mate equations of motion for ¢, 7, u, and v are

d;=7r s (4.8)

fr=—m2¢—%¢3~—%¢v*v R 4.9)

u=i mzv-i—icﬁzv—|--}iv"‘v2 , (4.10)
2 4

v=iu . (4.11)

Let us discuss now the connection of this procedure
with the time-dependent Gaussian approximation in the
Schrodinger picture. The correspondence between the
two representations is given by

()]0 P(t)) ={p(0)|O(8)|4(0)) , (4.12)

where O is an [(2))
=U()|(0)).

The unitary operator U [Eq. (4.7)] transforms a Gauss-
ian state into another Gaussian state. For a Gaussian
state, Eq. (2.25), expectation values of the linear and
quadratic operators are given by Egs. (2.26)-(2.29). On
the other hand taking |1,) to be an eigenstate of the
operator a and calculating the same expectation values
for the linearized operators @y, (¢), I, (z) Egs. (4.4) and
(4.5) we arrive at the following relations between u, v, and
G,I:

arbitrary operator and

w*=@Gg ,
(4.13)
u*u=G '+IGI .

One can easily verify that with these relations Egs.
(4.8)—(4.11) are equivalent to Egs. (2.43)-(2.46) for the
anharmonic oscillator. Moreover the two approaches are
generally equivalent because of the following. Satisfying
the Heisenberg equations up to terms linear in @ and a ' is
equivalent to equating to zero their expectation values in
|0) state and their matrix elements between |0) and |1).
However, taking the matrix element of an operator be-
tween |0) and |1) is equivalent to the multiplication of
an operator by ® or II and taking its expectation value in
|0). Therefore the linearized Heisenberg equations are
completely equivalent to Eqgs. (2.35)-(2.38).

To pass to the DSE representation let us introduce an
auxiliary function which we shall call the truncated prop-
agator
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G(1,t")= (0| T®), ()P, (2')]0)
=10t =t w(th*(t")+ 6 —t)(t'w*()],
(4.14)

where @}, is defined by Eq. (4.4). It can be easily seen
that because of the constraint (4.6) and equation of
motion (4.11) G, can be rewritten in the form of Eq.
(3.14). We shall replace now the first-order Egs.
(4.8)-(4.11) by two second-order equations for ¢(¢) and
GY"(t,t'). To this end we have to obtain the linearized
second-order equation for ®y,(¢). For the Hamiltonian
Eq. (3.2) we find

$+—‘-/1—-2—(i)'a +i*ah)

A A
—_ 2 43 N
=Tmigm gty

V2 4

[m2v+—)2‘—¢2v+—k—v2v* la +H.c. ] .

(4.15)

We sandwich Eq. (4.15) between two [0) states, then mul-
tiply Eq. (4.15) by &y, (¢'), take the time-ordered product
and again sandwich it between |0) states. The resulting
equations coincide with the truncated DSE’s (3.20) and
(3.21). ,

V. GENERALIZATION TO FIELD THEORY

The method can be easily extended to QFT. One
should replace t];l\e operators ®(¢) and fic) by an infinite
set of operators ®(x,¢) and fi(x,7). The Gaussian state in
the field basis is described by the wave functional

Y[D(x)]=N exp(—LH{[P(x)—¢(x)]Qx,y) [ DP(y)—¢(y)]
—im(x)[P(x)—¢(x)]+id(x)}),

(5.1)
where N is a normalization factor and Q(x,y) is a com-
plex function.

The Schrodinger and Heisenberg picture approach can
be transferred verbatim to QFT; however, in relativistic
QFT the DSE approach has a decisive advantage. Since
PGF’s are Lorentz covariant objects it is preferable to
represent the method by a set of covariant equations. It
seems proper to call the generalization of the Gaussian
approximation based on truncated covariant DSE’s the
covariant Gaussian approximation (CGA).

We shall expose the general procedure with the help of
an example of the simplest field theory: self-interacting

scalar field

L=%(a#¢)2——%m2®2—%d>4.

The first two DSE’s are the same as given in Egs. (3.3)
and (3.4) (the dimensionality is not important) where now

Dl (x,p)=—(3,3,+tm*)8*x —y) . (5.3)

(5.2)

The truncated shift and gap equations are analogously
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given by Egs. (3.20) and (3.21). It is not an easy task to
solve the gap equation for G (x,y) as function of an arbi-
trary ¢(x). However to calculate the n-point GF only G,
and its finite-order derivatives evaluated in a vacuum
[that is, for ¢(x)=¢] are required.

The truncated propagator in a vacuum is easily found
by solving the gap equation for constant ¢. (In transla-
tionally invariant field theory (@) must be position in-
dependent.) The derivatives of G,, are found by the
differentiation of the LHS of the gap equation.

We remark that since the J appears in the RHS of the
shift equation the Gaussian GF can be formally
represented as

5"l
8¢, -8,y ’
an expression familiar from the functional integral ap-
proach to QFT.

We shall sketch now the calculation of a two-point
]

r"=— (5.4)

L RHON Ye .
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PGF. The gap equation in the translationally invariant
case [¢(x)=¢, G, (x,y)=G,(x —y)] becomes very sim-
ple. In Fourier space it reads

A A d*k
FZ =52 2__ N4 AN bl rn . .
L) =k?—m?—Z-¢?— [ Gyt Otk (5.5)
The solution obviously is of the form?!
r’(k)y=k*—M?. (5.6)

Thus the problem of solving a complicated equation for
G, [#(x)] is reduced to a simple algebraic equation for
M?. Since in this paper we are interested only in present-
ing the general procedure rather than in calculational de-
tails we shall not solve explicitly this algebraic equation.
This calculation is performed in detail in the companion
paper.??

The two-point PGF is given by the functional deriva-
tive of the LHS of Eq. (3.20):

(5.7)
where lines denote the truncated propagator G,, and empty circles denote the functional derivative of il
6 T 141 (5.8)
>0 =~ -
The diagrammatic rules of differentiation are very simple. Since
3G(x,y) 3G " Nu,v) _ i a4 (u,v)
Er YV = |Gly)=G(x,u) |~ |Gy, 5.9)
26(2) G(x,u) 30z) (v,p) (x,u) 30(2) (v,y) (

we can represent it diagrammatically as shown on Fig. 3. This auxiliary function is found by differentiating the gap
equation (3.21) according to these rules:

o = 5.10)

By the repeated use of Eq. (5.9) one obtains a geometric series which can be summed:
2
= - LY Wi = 22

>()— M[l + [ 2])O+ [ 2] mi- ] M) (5.11)

where
4
I(p)=— [ 2K L (5.12)

Qm)* (k2—M?>)[(k+p)*—M?] =

Inserting this into Eq. (5.7) we obtain the diagrammatic representation as well as the analytic expression for the full
Gaussian inverse propagator:

. e iA2 2 2)
iG-1k) = iG"1 + —2ﬁ[O+ [—Lz-m ] =k - Mg - 228
|

The value of ¢ should be found by solution of the

(translationally invariant) shift equation (3.21) (Ref. 22).
Thus the propagator has a simple diagrammatic repre-

sentation in the CGA. It is shown in Ref. 22 that the

(5.13)

same is true for any GF.

To conclude this section we summarize the algorithm
for calculation of GF’s in the covariant Gaussian approx-
imation: (1) Draw first two DSE’s with terms containing
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FIG. 3. Diagrammatic differentiation rules for Green’s func-
tions.

three- and higher-point PGF’s omitted; (2) solve those
equations for G, and ¢ in the translationally invariant
case (when they become algebraic equations); (3)
differentiate the LHS of the shift equation in order to ob-
tain I'"; (4) differentiate the LHS of the gap equation; (5)
find functional derivatives of G,, by summing geometric
series; (6) insert the derivatives of G, found in (5) into T"".

VI. DISCUSSION

In this work we have presented the time-dependent
generalization of the Gaussian approximation. It was
shown that in the Schrodinger picture it has a simple in-
tuitive meaning. It approximates a vacuum of Hamil-
tonian H evolving in time under the influence of external
source J by Gaussian wave packet at all times. In the
Heisenberg picture we showed that the approximation is
the time-dependent generalization of the Bogoliubov-
Valatin method.> The evolution operator is approximat-
ed by the exponent of time-dependent form quadratic in
canonical creation and annihilation operators.

In the framework of the DSE formulation of quantum
theory, more convenient in QFT, the approximation was
shown to be equivalent to initial truncation of first two
DSE’s with subsequent differentiation of the effective ac-
tion in order to find the PGF. The effective action in this
approximation is a nonlocal functional of the expectation
value of the field ¢(¢). The exact effective action of the

quantum theory is also a nonlocal functional and thus,

this is a distinct advance over the classical approxima-
tion.

It is also possible to consider the CGA from the func-
tional integral formulation point of view. In this frame-
work there exists an expression for the effective action as
a functional of ¢ and G (Ref. 23). The Gaussian effective
action of Eq. (3.18) is the approximation to this Cornwall,
Jackiw, Tomboulis effective action in which only the
nonoverlapping diagrams are retained.

It is not an easy task to find the effective action explic-
itly for any value of ¢(¢) since this involves solution of a
partial differential equation with an arbitrary function as
a coefficient. However, it turns out that in order to cal-
culate the PGF there is no need in the explicit form of
effective action. Hence only a simple algebraic equation
must be solved. We presented an example of a calcula-
tion of this sort. It involves the summation of the infinite
sum of perturbation-theory-like graphs. We have seen
that to calculate I'? in the ¢* theory those graphs can be
easily summed. This is due to the fact that they contain
only nonoverlapping diagrams. This turns out to be the
general feature of the approximation. It is shown in the
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companion paper?? by applying the algorithm formulated
at the end of Sec. IV that any PGF is given by the sum of
all nonoverlapping diagrams drawn in accord with Feyn-
mann rules. '

We should like to stress that although the CGA has a
simple diagrammatic representation, it is essentially a
nonperturbative method. There are two nonperturbative
aspects in it. First, it performs a partial summation of an
infinite number of diagrams. The second and less trivial
aspect is that the diagrams are not exactly those of naive
perturbation theory: the propagator running in them is
not the bare propagator of the quadratic part of the ini-
tial Lagrangian, but G, which is a solution of the gap
equation. Thus here the essential nonperturbative step
precedes the diagrammatic calculation.

It is interesting to note that in some sense the CGA is a
natural extension of the classical approximation. The
classical approximation corresponds to the simplest pos-
sible truncation of the DSE—only the first DSE is con-
sidered and in it all terms containing two- and higher-
point functions are omitted. The CGA considers first
two DSE’s leaving out I'” for n >2. This is suggestive of
the possibility of generalizing the approach. As the next
step one could try to consider first three DSE’s with ¢,
G,, and T}, as unknowns. This would correspond to a
variational principle on the states with different factoriza-
tion properties than Gaussians. For those states {®")
can be expressed via three independent quantities: (@),
(®?), and {(®*). Such calculation can be considered as
the first post-Gaussian correction and it can give the eval-
uation of the precision of the Gaussian approximation. It
seems, however, that this step is far from being simple
and it would necessitate solution of a genuine integral
equation.

Note added. After this work was completed we became
aware of the following paper: R. Jackiw and A. Kerman,
Phys. Lett. 71A, 158 (1979). It is shown there that the
effective action of a quantum theory can be represented
[for slowly varying J (¢)] as

Seelo(]= [dt(id,—H) ,

where the expectation value on the RHS is taken in the
normalized time-dependent states for which (®)=¢(¢)
and all other parameters are chosen so as to extremize
the RHS for a given ¢(z).

One can show that the Gaussiaz effective action equa-
tion (2.50) is an approximation to this expression where
the extremization is performed not on the whole Hilbert
space but on the states that have a form of a Gaussian
wave packet, Eq. (2.25).

We are grateful to Professor R. Jackiw for bringing
this reference to our attention.
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APPENDIX: THE DEPENDENCE OF THE
APPROXIMATION ON THE CHOICE OF BASIS

We should like to comment here on the dependence of
the Gaussian approximation on the basis in Hilbert space
in which one is working. It is clear that such a depen-
dence exists. The Gaussian approximation searches for
the approximate vacuum among the states connected by
a most general Bogoliubov-Valatin transformation, which
is linear in terms of ® and II. Suppose one chooses to
work in a different basis:

'=USU T '=f(d,II), (A1)

MI'=UNu '=g(o,M), (A2)

where the functions f and g are not linear. The states
that are Gaussian wave packets in the basis @, IT will not
be Gaussians in the basis ®',II'. As a consequence
Gaussian approximations in those two bases are certainly
not equivalent. In the framework of the DSE approach
this means that one obtains different truncated DSE. As
an example an anharmonic-oscillator Hamiltonian in
different bases:

J
D) + mag() + 2=H22%5) ¢ A= 220) O = JO.

(G- (1) = |02, - m2 - 2= 120%( o 2= O ]5("")'
|

The equations explicitly depend upon the parameter of
the transformation a. Here two comments are in order.
First one can enlarge the set of trial states for a variation-
al calculation by considering a as an additional variation-
al parameter and minimizing energy also with respect to
it. For the Hamiltonian of the anharmonic oscillator this
transformation cannot improve the vacuum state. The
reason is that if the dependence on the canonical momen-
tum in the Hamiltonian is just of the form 12, addition of
phase to the trial ground state can only increase its ener-
gy. However, for other Hamiltonians the situation is
different. For example, interaction of a particle with a
magnetic field is linear in II. The same is true for QFT of
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The transformation changing this Hamiltonian into the
Hamiltonian of Eq. (3.2) is

H=1m+ %(H<I>2+<D2H)+—;—m2d>2+ . (A3

'=UPU =, (A4)

I'=Unu-'=l+ad?, (AS)
where

U=-exp(ia®’) . (A6)

This is a simple transformation which changes only the
phase of a wave function in the ® representation. It is,
however, nonlinear. We shall now obtain the truncated
DSE in this basis. The Heisenberg operator equations are

d=I+ad?, (A7)

= —a(Il,®} —m2<1>——3"7q>3 .
It should be noted that now the relation between IT and
® is not linear. This means that in going to the second-
order equations, Eq. (A7) is not completely untouched
but only its linearized version is preserved. Performing
again the steps that lead to the DSE we obtain

(A8)

(A9)

(A10)

gauge fields interacting with scalars. In these cases trans-
formations of this kind have a chance to improve the
Gaussian variational calculation. Similar transforma-
tions were recently considered in the context of variation-
al calculations in Yang-Mills theory.?* Second, this
stresses the fact that the CGA is defined in Sec. III is
equivalent to time-dependent Gaussian approximation
only in a certain basis. In the case of a field theory, the
Gaussian variational approach in a different basis which
does not coincide with the CGA may lead, for instance,
to noncovariant equations for the condensates. This
must be kept in mind when one tries to improve on the
CGA by transformations of the type of Eq. (A6).
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