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Adiabatic holonomy and evolution of ferqdonic coherent state
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The adiabatic evolution of Pauli spin in a slowly varying external magnetic field is studied by us-

ing the fermionic coherent state defined by the Grassmann-variant unitary displacement from the
stable adiabatic vacuum. This rnanifests the interrelation between Berry's phase and Hannay's an-

gle in a peculiar manner. The gauge field strength giving rise to the geometrical phase is found to be
that of a monopole of a Grassmann charge. We quantize this charge based on the Bohr-
Sommerfeld-type rule for Grassmannian systems and then correctly obtain Berry's phase.

I. INTRODUCTION

An important modification in the quantum adiabatic
theorem' has been recently made by Berry by grasping
geometrically the space R that consists of a set of exter-
nal adiabatic parameters. He showed that, in certain
systems, the usual dynamical phase factor
exp[ i Io—dt E„(t)] in the energy eigenstate must be ac-
companied by an additional geometrical phase factor
exp[iy„(C)] called Berry's phase, where C is the closed
contour of an adiabatic excursion in R. Actually this
new phase has been observed in some laboratories. A
mathematical interpretation has been given by Simon,
who has shown that it is the holonomy in a Hermitian
line bundle.

An interesting point is that Berry s phase has its classi-
cal counterpart. Hannay has found that, in certain
integrable systems, the usual angle variable
8= Io dt t)H /t)I in the classical adiabatic theorem must

be shifted by an extra angle b,8( C) called Hannay's angle
after an adiabatic excursion along C. Csozzi and Thack-
er have shown that this angle can be understood as the
holonomy in a phase-space bundle.

This indicates that the adiabatic holonomy has a cer-
tain classical-quantum correspondence. Actually this has
been established based on the semiclassical approxima-
tion.

In this paper, we study Pauli spin in a slowly varying
external magnetic field playing a role of the adiabatic pa-
rameter. As stressed in Ref. 9, this system is a typical
and important example that develops the nontrivial adia-
batic holonomy. It has been studied only in the context
of Berry's phase in energy eigenstates and Hannay's an-
gle in the classical Grassmann spin model. Here we cal-
culate the geometrical phase factor relative to the fer-
mionic coherent state of the system. We find that Berry's
gauge field strength is that of the monopole of a
Grassmann charge. Such a charge is quantized based on
the recently proposed Bohr-Sommerfeld-type rule for
Grassmannian systems. '

We expect that our discussion gives some new insight
into the correspondence in the holonomy effect, since
coherent states have properties nearest to those of classi-

cal ones. "' (A similar motivation will be found in Refs.
13 and 14.) Although we present some new relations,
Berry's phase and Hannay's angle of the Pauli spin model
themselves have been previously obtained. There are,
therefore, no predictions of essentially new effects from
the practical viewpoint. However, from the physical
viewpoint, there is significance in recognizing the
classical-quantum correspondence in various theoretical
aspects. To the best of our knowledge, this is the first
consistent direct semiclassical approach to fermions. In
addition, our calculations may also have the meaning of a
fermionic counterpart of the traditional investigations'
on the evolution of coherent states, because they seem to
have been done mainly for bosonic systems.

This paper is organized as follows. In Sec. II we briefly
survey the Grassmarin spin model. Our main results are
proposed in Sec. III, where the adiabatic evolution of the
fermionic coherent state is calculated and the geometrical
phase and Hannay's angle are obtained. In Sec. IV the
Bohr-Sommerfeld-type rule is examined in order to quan-
tize the Grassmann charge appearing in Sec. III. Berry's
phase is found to be reproduced there. Section V con-
tains coiicluding remarks.

II. GRASSMANN SPIN
IN A SLOWLY VARYING MAGNETIC FIELD

We start our discussion with the standard classical
model of a Grassmano spin that becomes the Pauli spin
after quantization. The Lagrangian of such a spin in a
slowly varying uniform external magnetic field reads

I.= gg+ B—(t) (gx —g), ~

2 2

where the overdot denotes the time derivative. The com-
ponents g; (i = 1,2, 3 ) of the vector g' are Grassmannian:

g;g +g g;=0. The definition of canonical momenta II;
conjugate to g; leads to the constraints y, = II,.
+(i/2)g; =0, which are known to be second class in
Dirac's terminology. They are conveniently treated by
Dirac's generalized canonical theory extended to dynami-
cal systems includirig the Grassmann variables.

The Hamiltonian is
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H(t)=g II —L. = ——'B(t) ~ (g Xg)
2

(2)

which has the explicit time dependence due to 8. After
canonical quantization with the Dirac-brackets formal-
ism, the operators g; are shown to generate the ClifFord
algebra

As seen from Eq. (5), g2 =P; and g, =g3 . The second
term is negligible relative to the third one in the adiabatic
approximation. So the Lagrangian can be classically
written as

8—(t) y+ q3—q3
I

B2B3—iB(B

8'1/2(8, +8 )

QB', +8',
&ZB

B2B3+iB,B B2

8+2(8(+8', )

"t/8, +82
v'ZB

(5)

Then in normal coordinates

g;=(St); g

Eq. (1) takes the form

(6)

L = 0,'4+ 4,*—(S'S );,,0,—,'8 (t)(6*42——
W—t 4i) .

(7)
I

and therefore they can be represented irreducibly by the
Pauli matrices as g'=o/v'2. Since the intrinsic angular
momentum, the generator of rotation, is given
by S=fX II= —(i/2)g'X f, the quantum Hamiltonian is

8(t)=B(t) S=—,'B(t).o, (4)

which describes the Pauli spin in the magnetic field.
In their study of Hannay's angle of the classical system

mentioned above, Gozzi and Thacker decomposed the
variables in Eq. (1) into the normal modes in such a way
that the tensor dual to Bk, i.e., B;-=e;JkBk becomes diag-
onal: Bd =S BS=diag( iB,iB—, O), where 8 = ~B ~

and S
is the complex unitary matrix explicitly given by

B)B3+)B28 B]B3—iB2B B )

8 "t/2(B +8 ) 8}/2(B, +8 )

with g=—g2. It is interesting to see that the first term is
just the (0+1)-dimensional Dirac theory (the fermionic
oscillator) with a variable mass.

III. ADIABATIC EVOLUTION
OF FERMIONIC COHERENT STATE

We proceed to constructing the fermionic coherent
state in the quantized system. For this purpose, we
introduce the operators b, b, and c by

—(b+b ), g~= —(b bt), g—,=c=ct .

They satisfy the algebra

{b,b"
J
= {c,c]=1, {b,b] = {b,c]=0 .

b~ and b play roles of the creation and annihilation
operators of a fermionic oscillator, respectively. [In the
matrix notation, b =o + and b =o with o + =

—,
' (o,

+io 2), and the ClifFord number c is o.3.]
Since we shaH work in the Schrodinger picture, the

operators in Eq. (9) do not evolve in time. On the other
hand, the operators transformed by Eq. (6) have the time
dependence through B. We write them simply as

g, =gz=b (t), $2=b (t), and $3=c (t) =ct(t), respective--

ly. For later convenience, we give the explicit relation

b b (t)
bt =X bt(t) (11)
c ~ c(t)

where the unitary matrix X similar to S in Eq. (5) is

(8 ) i82 )(8+83—)
28+8)+82

(8, +i82)(8 83)—
28+8', +8',

QB, +82
&ZB

(8 ) iB~ )(8 83 )— —

28+8, +B~
(8 ) +i82 )(8+83)

28 )/ 8]+82
QB', +8,'

&ZB

B)—iB2

&ZB

B,+)B2
&ZB

B3
8

(12)

Therefore the transformed operators obviously satisfy the
algebra isomorphic to Eq. (10):

{b(t),b (t)J ={c(t),c(t)J =1,
{b(t),b(t) J ={b(t),c(t)j =0 .

This holds only for the equal-time anticommutation rela-
tions. In terms of these operators, the quantum Hamil-
tonian associated with Eq. (7) is expressed as

B(t)=B(t)[b (t)b(t) —
—,'] .

The second term in the brackets is nothing but the zero-
point oscillation energy.

Now we define the time-dependent coherent state by

b( )tip( )t)=g( )tip( )t) .

The eigenvalue g(t) is necessarily Grassmannian due to
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the nilpotency of b (t). This state is constructed from the
instantaneous vacuum lo), satisfying b(t)lo), =0 by the
unitary displacement operator in the following way:

g(t) =g(0)exp( i—Bt),
g*(t)g(t)=g*(0)g(0) .

(23a)

(23b)

l g(t) ) =D(g(t) ) lo), ,

D(g(t))=exp[b (t)g(t)+b(t)g*(t)] .

(16)

(17)

The unitarity of D is a simple result of the convention:
(b g) =g*b = b—g* [N. ote that our definition (15)—(17)
is slightly diff'erent from that in Ref. 17.]

We must state here the notion of the adiabatic evolu-
tion of the system. Let us first define the stable adiabatic
vacuum as

i—l+(t)) =&(t)l+(t)). 9
at

(24)

with the Hamiltonian (14). However we can easily con-
struct such a state lg(t)) by the U(1) gauge transforma
tion

Equation (23b) shows that the quadratic form g*g is a
- constant of motion.

The state
l g( t) ) itself cannot be a solution of the

Schrodinger equation

lo), =lo), ,—= lo) . (18)
l g(t) ) =e xp[iP(t)]lg(t)), (25)

This is equivalent to the requirement that the creation
and annihilation operators are not mixed with each other
through their time evolution. This is indeed the case,
since, from Eq. (12), we can find the following:

provided that the phase P obeys the auxiliary equation

dy(t)=(g(t)liaZatlg(t))dt —(g(t)lN(t)lg(t))dt .

(26}

i (8 i 82 828, )83—X=
8(8, +8 )

Y Y* 0

b(t) b(t) b(t)

at
bt(t) =S bt(t) =B(t).Vs b (t)
c(t) c(t) c(t)

X 0 —Y*

8=X tX=[B(t) VeX ]X= 0 X* —Y' (20a)

(20b)

The first term in the right-hand side is written in terms of
the gauge potential A as

& = A dB=(g(t)liValg(t)). dB .

3 is called Berry's connection one-form, which defines
the parallel transport of the coherent state along the con-
tour in R, the parameter 8-space. Imposing the initial
condition P(0) =0 [i.e., l g(0) ) = l g(0) ) ], we integrate Eq.
(26) as follows:

(8 i 83 i828 )8,—+(8283+ iB iB )82 —(8 i +82 )83Y—
82+2(82+82 )

(20c)

Next let us consider the unitary time-evolution operator
formally given by

p(t)= f ds[B(s) (g(s)liVe lg(s)) —H„(s)+—,'8(s)],

H, i(s)=8(s)g*(s)g(s) .

(28)

(29)

U(t, o)=T exp i f ds —A'(s)
0

(21)

The chronological symbol is required, since
[B(t),P(s)]%0 in general. However it can be discarded
in the adiabatic approximation. To see this simply, let us
employ the Hamiltonian (4), which giveh rise to
[H(t),8( s)]=(i/2)[B(t)XB(s)] o. For s =t+At, B(s)
=B(t)+b,tB(t), and therefore the right-hand side of the
commutation relation is second-order infinitesimal.

Therefore, using the evolution operator associated to
Eq. (14), we obtain the adiabatic evolution

(g(t) lb(0} I g(t) ) =(g(0)
l
U'(t, o)b (0)U(t, o) lg(0) )

=g(0)exp i f ds B—(s) (22a)
0

y(c)= f «8( )(tg(t)liV, lg(t))

= fcdB. A

=f f dSV, XA, (30)

where the surface S has C as its boundary BS=C. Using
Eqs. (16), (17), and (23), and the formula

Here H, i(s) is the classical Hamiltonian associated with
Eq. (8) with g=g.

We are now interested in the physical situation origi-
nally stated by Berry: the parameter B travels along a
closed contour C in R with the period T. Then the
geometrical part of the phase for such a process is

=g(0)exp( iBt), — (22b) 1
Vee =e VeG+ —,[ViiG, G]

where 8 in the last line is understood as the time-
averaged value of 8 (t). This expectation value behaves
just like the classical motion described by the Euler-
Lagrange equation for g in Eq. (8}. This is the reason
why the coherent state is said to have properties nearest
to the classical ones. Thus, for example, we have

+—[[V' G, G]G]+1
B

with 6=b /+be*, the gauge field strength is found to
be
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Vg X A =i (g(t) ~ Vti X V~ ~g(t) )

=if(0)g*(0)(0~

[Verb

t(t)] X [V b(t))
—[Vtib(t)]X [V~bt(t)]i0) .

(31)

Q =g(O)g*(0)

located at B=0.
Consequently, we obtain

Ig(T) & =exp[i@(T)]/g(0) ),
P( T)=y(C) Jdt [H—,i(t) —

—,'8(t) ],

(33)

(35)

y(C) =Q&(C), (36)
where the periodicity and initial conditions

~ g( T) )
= ~g(0))= ~g(0)) has been imposed. Q(C) stands for the
solid angle spanned by C seen from the origin in R.
These equations completely determine the adiabatic evo-
lution of the fermionic coherent state along the circuit C.

It is straightforward to get Hannay's angle. Let us
define the action variable (Ehrenfest's adiabatic invariant)
for this purpose. From Eq. (8) with g=g, the canonical
momentum II conjugate to g is II= i(*, a—nd therefore
the action variable is

I= dt tHt2' 0

=g*(0)((0),

(37a)

(37b)

where v. =2m /8 is the period of motion. (So the charge Q
is an adiabatic invariant. ) Now we find

e(T)+~e(C)
BI

= J dt8(t)+f1(C) .
0

(3&)

The first term in the second line is the ordinary angle
variable that is the integral of the instantaneous frequen-
cy dH, i/dI. While the second term is just equal to
Hannay's angle of the present model.

It is important to note that the first term among the bra
and ket vacua never vanishes. After some calculations
with Eqs. (13), (19), and (20), this can be further reduced
to

Ve X A=((0)g*(0) 8
(32)

This is just the fteld strength of a monopole of a
Grassmann charge

mation have been completely established.
The usual Bohr-Sommerfeld rule consists of equating

the adiabatic invariant such as Eq. (37a) with n+o,
where n runs over integers and o. is a constant including
the Maslov-Keller index. It is however clear that there
exist no such higher excitations for intrinsic dynamical
degrees of freedom like a spin. In this point, let us focus
our attention to the integrand in Eq. (37a). It satisfies an
identity

dt gII=dgII . (39)

The integral of the left-hand side gives Ehrenfest's. adia-
batic invariant. On the other hand, the integral of the
right-hand side is just the Berezin integration' over the
Grassmann number. Obviously the integration sup-
presses higher excitations, since it gives simply a definite
constant. We only know that this quantity is real.
Therefore it is quite reasonable to set it as a, where a is
a real constant associated to the normalization of the
Berezin integration. a is chosen as m in the present case.
Consequently, we define

i f d—gg'=+~ .

Then we have the exact result

g*(0)g(0)= —Q =+—,
' .

(40)

(41)

Accordingly the Hamiltonian (29) and the geometrical
phase (36) become

E+(t)=+ ,'B(t), —

y~(C) = + —,'Q(C),

(42)

(43)

respectively. y+(C) is just equal to Berry's phase in the
energy eigenstates.

Closing this section, we make a comment on the rule
mentioned above. Equating the integrals of both sides in
Eq. (39) is somewhat unclear mathematically, since the

, integral of the left-hand side is an even Grassmann num-
ber, while that of the right-hand side is an ordinary num-
ber. The present requirement of equating those two in-
tegrals with each other might be regarded as a substitu-
tion rule, which is analogous to that in the ordinary
Bohr-Sommerfeld rule: J=n+o. . In this respect, we
wish to stress again that Eq. (39) itself is entirely an iden-
tity. We also feel that the choice (40) is model indepen-
dent, although we have not known the general proof.
The consistency of the normalization (40) is ascertained
in the Pauli spin and supersymmetric Dirac particle mod-
els in Ref. 10.

IV. BOHR-SOMMKRFKLD QUANTIZATION
OF A GRASSMANN CHARGE

In this section, we wish to examine the Bohr-
Sommerfeld-type quantization of the geometrical phase
(i.e., the Grassmann charge) obtained in the previous sec-
tion. To perform the semiclassical analysis of the adia-
batic holonomy effect, such an old-fashioned quantum-
mechanical treatment may be still interesting, although
the exact quantization procedure and the %'KB approxi-

V. CONCLUDING REMARKS

We have studied the model of Pauli spin in a slowly
varying external magnetic field and its fermionic coherent
state in order to elucidate a certain classical-quantum
correspondence in the adiabatic holonomy effect. The
adiabatic evolution of the coherent state along the closed
contour in the adiabatic parameter space was shown to be
specified not only by the dynamical phase but also by the
geometrical phase. Hannay's angle was explicitly related
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to the latter one. Berry's gauge Geld strength was shown
to be that of a monopole of a Grassmann charge. Based
on the Bohr-Sommerfeld-type rule for Grassmannian sys-
tems, we proved that quantization of the charge repro-
duces Berry's phase in the energy eigenstates. Conse-
quently the semiclassical implication of the effect was
manifested without resort to the direct &KB expansion.

It has been pointed out that Berry's phase is closely re-
lated to anomalies in son.e kinds of gauge theories with
fermions. ' In this context, we expect that Geld-
theoretical extensions of the present approach may cast
light on the semiclassical or rather classical meaning of

anomalies in a peculiar manner.
Note added .Since submittal of this work, two papers

have been published. In these papers, the nonadiabatic
geometrical phases are discussed based on the bosonic
coherent states.
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