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Approach to general covariance in string space of BRST string field theory
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We show that Becchi-Rouet-Stora-Tyutin (BRST) quantized string field theory can be made in-
,Po &,Po lvariant under string-dependent general coordinate transformations x' '=x' '[x(o)], where

p=0, 1, . . . , D —1 and 0( o.
l
~ m. This invariance is achieved by introducing a string-space metric

tensor g„„[x(cr)]and following the usual steps of general relativity, with the following

di6'erences: A constraint, which we term "tangent contravariance, "must be imposed on the coordi-
nate transformations and metric tensor. This restriction emerges from requiring that 8 x" trans-
forms in string space as a contravariant vector. Further stringent constraints on the metric tensor,
including Ricci flatness, arise from demanding nilpotence of the BRST charge.

Einstein's principle of general covariance requires that
the action of any theory should be invariant under the
group of general coordinate transformations of the un-
derlying space-time manifold. The underlying manifold
of string field theory is the space of all strings ("loop
space" or "string space"), and it appears that the existing
Becchi-Rouet-Stora-Tyutin (BRST) formulations of string
field theory' do not respect this principle. The associ-
ated limitation of string field theory to a Hat background
is widely recognized, and a number of proposals have
been advanced to overcome this problem. ' The sug-
gestions in this paper have something in common with
some of these proposals, but with the following
dift'erences. First, we will be concerned with implement-
ing general coordinate invariance in string space, rather
than on a background D-dimensional space-time. ' '
Second, our focus is on gauging string-dependent coordi-
nate transformations, instead of the more restricted set of
string-dependent reparametrizations. These objec-
tives will entail introducing a metric string-field tensorg„[x (o )] for string space. Finally, the string space
metric tensor g„, [x (tr)] is regarded here as an ob-
ject distinct from the quantized string field 4[x (cr )] (as
opposed to the Kahler geometric approach in Ref. 11),
and our framework throughout is BRST quantization.

We begin our discussion with the free bosonic open-
string field theory' whose action is

S = fDx (o )DP(o )@ [x,g]Q@[x,g], (1)

where P is the bosonized ghost. The term "string space"
denotes the space of open strings x"(o ). The flat back-
ground metric g„enters this action in two ways: impli-
citly, via the string space measure

Dx" o.

and explicitly, via expressions such as

fdo rl"' — +rl„„"r)x "r) x'5 5

and treat the pair (po ) as a generalized index in string
space. The string x"(o ) as a whole will be denoted by
uppercase X, i.e. x" EX. A general coordinate transfor-
mation in string space is then denoted by

x'" =x'" [X] .

Next we introduce the metric tensor g„[X](com-
PCT [~ VO p

mas, in our notation, are used to separate index pairs in
tensors and do not denote di5'erentiation) which trans-
forms under (5) as

5x'
p gplT3, '1CT4 [

5x

5x'

in the BRST charge Q. Neither of these terms are gen-
erally covariant, even under ordinary coordinate trans-
formations of the background D-dimensional space. A
simple remedy is to replace g„by the more general
metric tensor g„,(x), but this is a fairly modest irn-
plementation of general covariance, since the arena of
string dynamics is the infinite-dimensional string space,
rather than the finite-dimensional background space.
Moreover, the metric tensor of the background space is
only one mode of the closed string field, and it seems un-
natural to single it out for special attention in the action.
This logic suggests that one should consider metrics
defined over strings, rather than points, and try to imple-
ment covariance in the full infinite-dimensional string
space.

It is useful to introduce the notation for a point on the
string

(4)
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where the following summation convention over repeated
generalized indices is understood:

V„8'" =g I der V„W" (7)
0

In order to indicate that integration over the continu-
ous index is suppressed, the following overbar notation
will be used:

V„W"—:Q V 8'"
po

P

The expressions V„and 8'" are of course meant to
denote covariant and contravariant vectors, respectively,
in string space, with the obvious transformation laws ~~, 5x ~go' I

Bx =Bx' '5(~, —cr ) . (16)

and for which ihe appropriate boundary conditions at
g =O, m are preserved. These will be referred to as
tangent-contravariant (TC) general coordinate transfor-
mations. It is rather trivial to verify from (15) that the
inverse of a TC transformation, and product of any two
TC transformations, are also TC transformations; i.e., the
set of TC transformations is a subgroup of the group of
all coordinate transformations (5}.

Some examples of TC transformations are in order. It
is not hard to see that any coordinate transformation
which commutes with arbitrary reparametrizations is a
TC transformation, and in fact satisfies the stronger con-
dition

and the inverse of the metric tensor is defined by

(10)

The connection I„',covariant derivatives D„, and

the Riemann tensor R " are all given by the usual

formulas of general relativity, with the replacement

Now in string theory the functional derivative of a
string field 5@/5x" is a covariant vector, transforming
as in Eq. (9), so the expression

To show this, let Xf denote the reparametrized string,
and let f (o )= ca +@(o ) be an infinitesimal reparametriza-
tion. The condition that the coordinate transformation
commutes with arbitrary reparametrizations is that

(17)

Taylor expanding both sides of (17), and noting that e(o )
is arbitrary, gives condition (16). Therefore, any transfor-
mation of the form

x'" [X]=F"[R[X],xi' ],
where R [X] is any reparametrization-invariant function-
al of X, and Fi'(R, x) is an arbitrary function, is an exam-
ple of a TC transformation.

A restriction on the set of all possible coordinate trans-
formations, such as Eq. (15}, also restricts the set of
metrics which can be transformed locally to an inertial
frame. Those metrics which can be so transformed will
be called "TC metrics. " The transformation of the form
(S), which takes an arbitrary metric to an inertial frame in
the neighborhood of string X0 is

p~, , va,

5x ' 5x
(12)

+-,'e„'."[Xo]r,'.'„.[Xo](x —xo)' '(x —xo) '
is invariant under general coordinate transformations (5).
But the superstring action also contains the term [cf. (3)] +O((x —xo)'), (19)

x "(o )
where

(13
g„„[X]=e„' [X]7),be~ [X] . (20)

and this term does not transform, under arbitrary coordi-
nate transformations, like a contravariant vector. There-
fore expressions such as

are not invariant under arbitrary transformations (S).
The simplest solution to this problem is to restrict the
class of general coordinate transformations to those for
which Bx" does transform like a contravariant vector,
i.e.,

The condition that (19) is a TC transformation, according
to the definition of Eq. (15), is then

~ao.
axo '+a e '(x —xo)

=Bxo 'e„'+B(x —xo) 'e„'Po'2 P F2

This in turn gives us two equations [one from O(1) and
from O(x —xo) in Eq. (21)]. These are

(15)
Bxo 'e„'[Xo]=Bxo (22)
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(with x satisfying appropriate boundary conditions), and Lcov 1 do ~ e kino e& 1 abe" 2D
n 4 ar 'I bV p~&+ VO 2x

D Bx '=Ox 'I „' [X ]+5'8 5(cr, —o ) ao 2g
Po') ao. VO2x

=e, '[Xo]B e„'[Xo] . (23)
+Ic5„0 . (27)

e„" [X]=Ab [X]e„[X] (24)

is also acceptable as the vielbein of a TC metric.
We now propose the following kinetic term for the

open-string action, which is invariant under TC general
coordinate transform1ation:

S„„= Dx o. D o det' g4 x, Nx, , 25

where

Q= g & «'—'" —5o}

I Pl:C mC n m+n'

So the condition that a metric is a TC metric is that there
exists a corresponding vielbein satisfying Eq. (23). Qf
course, any other vielbein related to e„' by a localpo'2

Lorentz transformation

The infinite constant ~ is defined to normal-order L, o" in
an inertial frame and D„ is the string space covariant
derivative. For a fiat metric (g&, [X]=2}&5(o,
—crz) }Eq. (27) reduces to the usual expression.

From the definition of I.„"' it is clear that S„„is in-
variant under TC transformations, and also under local
Lorentz transformations of the vielbeins Eq. (24}. How-
ever, S„,only makes sense as a string action in curved
string space if the crucial property of nilpotence Q =0 is
also preserved in the critical dimension D =26. This
amounts to showing that; the Virasoro algebra is
preserved in curved metrics. But in fact, the Virasoro
algebra is not preserved in arbitrary metrics and therefore
the Q =0 condition places additional restrictions on the
background space of string theory. (This was already
noted, in the context of nonlinear cr models, in Ref. 14.)
It is simplest to derive this restriction by considering the
commutator [L„""[X],L""[X]]in the neighborhood of a
particular string Xz, and using string-space Riemann
normal coordinates where

g„=21„5(o,—o 2)

3 po'i, clo3, vo2po4 [Xp,1

X (x —xp ) '(x —xp )

(26) We then find, for the commutator,

[L"",L„"')=(m n)L "+„+ —(m —m)5 +„o
—

—,
' J' d O, d O 2 [ [COS( m O, ) COS( n Cr 2) —COS( m O 2 ) COS( n Cr, ) ](e" ' rl' eb

' )(e ' ri'"ed '
)

po'7 po7 1 po7 1 po7X[Rpa ao ~o Dpo +R~o po „a Dao + , (D„o Rpa ao —~o )+ 2(Dao R,o po po )]

+2[cos(mo, ) sin(noz) —in(som) 2sc(oon, )](e, 'ri' eb ')(e 'e, ')
ac 5 po7XBx R „p ) +spin-connection terms,

po7x
(29)

where the spin-connection terms arise from derivatives
acting on vielbeins, e.g.,

ao bo ao 4 ho.D,o, ( ao, nab e po, ) =~„.,,c., ao, nab p.,

I

ish. This is accomplished if

and

(31)

ao her 4+ ao& Qab~po3 cl7 Po. (30)

The right-hand side of (30) is nonzero in general, despite
the antisymmetry of ~, because there is no integration
over the o. index.

It is crucial that the curvature and spin-connection
terms, which spoil the Virasoro algebra, be made to van-

(32)

Equation (31) is an extremely stringent condition on
string space metrics. The only metrics which satisfy this
condition are those which can be transformed, under a
TC transformation, into the form

g„„[X]=G„„(x(cr, ) }5(o,—cr2) . (33)
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This result is obtained by first noting that (31) implies a
"diagonality" condition on the spin connection
co„'

&
cc 5(0 z

—o 3). Then consider vielbeins of the form

e„'[X]=E„'(x(cr, ) )5(o, oz—)+E'(x (o, ) )h„' [X],

R„=O, (34)

where 8„ is the Ricci tensor formed from the D-
dimensional metric G (x).

Given a metric of the form (33), it is still necessary to
show that there exist corresponding (loop-dependent)
vielbeins e„satisfying Eq. (23). Equation (33) impliesPo'2

that the vielbeins must have the foi.m

e, '[X]=5(0., cr~)E;(x—(cr, ))A '[X] . (35)

Substituting into Eq. (23), we have

ax~ I'~'=a Zb+Ab (a A' )Z'
P ~ a y ao O. do. (36)

where I „ is the afBne connection formed from the D-
dimensional metric 6„.Then, using

where the loop-dependent part of the vielbein h„' is
PcT2

infinitesimal. The restrictions on h [X] imposed by di-
agonality of the spin connection are sufhcient to show
that the loop dependence of h„, must have the form

of an in6nitesimal coordinate transformation plus a local
Lorentz transformation of the vielbein. The loop depen-
dence of the metric can therefore be removed by a YC
transformation. For such metrics, Eq. (32) becomes just
the usual vacuum Einstein equation

tion. However, this limitation on metrics does not col-
lapse general covariance in string space down to general
covariance in D-dimensional space. There is still the free-
dom to transform to an inertial frame at any arbitrary
string, regardless of the occurrence of self-intersections.
As a result of this freedom [which allows us, in particu-
lar, to write the metric in the form (28)], the only condi-
tion on the curvature tensor is Eq. (32), which in a suit-
able frame is just the Ricci fiatness condition (34).

It appears, then, that our formalism is not equivalent to
that of summing over world sheets in a curved back-
ground space-time. In o.-model calculations, the Ricci
Aatness condition is only the ope-loop requirement, while
in our approach this is the full condition on the curva-
ture. It may be that a theory invariant under general
coordinate transformations in string space is incompati-
ble with any simple picture of world sheets embedded in a
background .0-dimensional space time. In any case, the
introduction of background curvature in the usual non-
linear o. model, and in TC-covariant string field theory,
appear to be inequivalent.

The extension of general covariance to interacting
string field theory is dependent on the details of how
the interactions are introduced; we will briefiy indicate
what seems required for the Witten theory. In Witten's
theory the e product and integration involve the overlap
of half-strings. For these operations to be general coordi-
nate invariant, it is necessary that the disti. nction between
left and right half-strings be invariant. Let us denote
X =( Y~, ZH ) in the sense that

y" O~o &—

d E„(x(o))=Bx" E,=Bx" (I „'+,+co„,E;),
(37)

pm/2 pm/2 2pm /2
(40)

where m„, is the D-dimensional spin-connection formed
from E„', we find

A', [X]rj,i,5 A d [X]= Bx" co„,~(x(o )) .—(38)

The string dependence of A'
& [X] enters via the fac-

tor of Bx& in (38}. It is always possible to find a solution
A[X] of (38); the only constraint which the solution must
satisfy is

and write

@[x]=~'[YH ZH]

DX = DFHDZ~,

f~'= fDYHC'[YH YH]

4 e % [YH; ZH ]= fD 8'8 C [YH, WH ]% [~H, ZH ]

(41)

a.[A [x]q.,A' „[x]]=a.~,„=o (39)

which follows directly from Eq. (38), using the antisym-
metry properties of co„,d. Note that the vielbein (35) is
string dependent, even if the metric (33) is not, and that
the TC transformation to an inertial frame [Eq. (19)] is, in
general, a string-dependent transformation.

From one point of view, namely, that of creating a vast
extension of the possible background spaces of string
theory, Eq. (33} is a disappointment. We have set up a
formalism which allows for nontrivial string dependence
of the metric, only to find that the nilpotence condition
limits us to metrics ~hose string dependence can be
transformed away by a suitable coordinate transforma-

(reference to ghost degrees of freedom is suppressed; the
half-string integration measure can be de6ned more pre-
cisely by discretizing the o. variable into X points and
taking the N~~ limit, cf. Refs. 15 and 16). Then the
TC transformations must be further restricted to satisfy

f" [YH]

yP(n —a )[Z ]
L

(42)

x iP.A/2 yP.m/2(x P A/2}'(43)

where f" is some functional of half-strings and, for con-
sistency,
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Consequently

=0 for 0 1(2) 2
' 2(&)

ao
e Pc72

acr&
[Za] ~12+—

e a m /2 (& pm /2
)pm'/2

which implies, for the vielbeins and metric, that
r

OCT )e„. [YH] ~1,2+—

(44)

The Witten theory is then made invariant, under
tangent-contr avariant transforrnations, by replacing
half-string integration measui es D Y& by
DYH det' [g[YH]] in the definition of the s product
and f, and using the covariantized BRST operator
defined in Eqs. (26) and (27) above.

In summary, a fairly straightforward approach to gen-
eral covariance in string field theory, via the introduction
of a string space metric tensor, leads to a new way of in-
troducing Ricci Bat background curvature, independent
of condensation of any particular mode of the quantized
string field.

po ) vu2

0 otherwise,

gp, „[Ya], o, , &
2

g„..,...[ZH] i, 2&
2

pn/2)gp~/2, v~/z(x )~ o t, 2

0 otherwise .
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