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We construct a consistent Dirac constraint quantization of a parametrized massless scalar field

propagating on a two-dimensional cylindrical Minkowskian background. The constraints are taken
in the form of "diffeomorphism Hamiltonians" whose Poisson-brackets algebra is homomorphic to
the Lie algebra of spacetime diffeomorphisms. The fundamental canonical variables are represented
by operators. acting on an embedding-dependent Pock space 0 which is based on the Heisenberg
modes that are geometrically specified with respect to the Killing vector structure of the back-
ground. In the Heisenberg picture, the constraints become the Heisenberg embedding momenta
and their Abelian Poisson algebra is homomorphically mapped into the operator commutator alge-
bra without any anomaly. The algebra of normal-ordered Heisenberg evolution generators (which
propagate the field operators) develops a covariantly defined anomaly. This anomaly is an exact
two-form on the space of embeddings Emb(X, M) and can thus be written as a functional curl of an
anomaly potential on Emb(X, M). By subtracting this potential from the normal-ordered Heisen-

berg generators (which amounts to their embedding-dependent reordering) we arrive at a commut-

ing set of operators which we identify with the Schrodinger embedding momenta. By smearing the
Heisenberg and the Schrodinger embedding momenta by spacetime vector fields we obtain a pair of
anomaly-free operator representations of L DiAM. The diffeomorphism Hamiltonians annihilate
the physical states and the smeared reordered Heisenberg evolution generators propagate the fields.
We present the operator transformation from the Schrodinger to the Heisenberg picture. The two
operator representations of L DiffM, by diffeomorphism Hamiltonians and by smeared Heisenberg
evolution generators, guarantee that the Dirac constraint quantization is consistent, covariant, and
leads to foliation-independent dynamics both in the Heisenberg and in the Schrodinger pictures.
The appropriate factor ordering of the Hamiltonian Aux operator and of the constraints is rewritten
in terms of the fundamental Schrodinger variables with help of a normal-ordering kernel which is
reconstructed from the intrinsic metric and the extrinsic curvature on a given embedding. All
operators are defined and dynamics takes place on a single function space which is then restricted
by the constraints to the space of physical states with a Hilbert-space structure.

I. INTRODUCTION

Our aim is to show that there exists a consistent Dirac
constraint quantization of parametrized 6eld systems. By
this we mean that classical constraints can be turned into
operators arid imposed as restrictions on physical states
in such a way that (l) they do not beget other constraints
by commutators, (2) the quantum evolution remains folia-
tion independent, and (3) the quantum theory respects
the spacetime covariance of parametrized field theories.

In a classical theory, the constraints can be written in
two equivalent forms: in the Dirac form, ' in which they
are projected perpendicular and parallel to the embed-
dings and in which their Poisson brackets "close" accord-
ing to the Dirac "algebra, " or in the form of
"diffeomorphism Hamiltonians, " whose Poisson algebra
is homomorphic to the Lie algebra L Diff' of spacetime
diffeomorphisms. The closure of either one of these Pois-
son algebras ensures the foliation independence of the
classical dynamical evolution, but the spacetime covari-
ance of the canonical theory is best expressed when using
the second form of the constraints.

Our three objectives formally reduce to the task of
finding a factor ordering of the diffeomorphism Hamil-
tonians which makes their operator commutator algebra
homomorphic to I. DifFM without any anomaly. We
shall illustrate the procedure on a parametrized system
whose classical features we have studied in a previous pa-
per: a massless scalar field propagating on a two-
dimensional cylindrical Minkowskian background. The
generalization to more complicated parametrized systems
will be given elsewhere.

Our starting point is the Heisenberg picture of the
parametrized classical dynamics introduced in I. We
represent the fundamental Heisenberg canonical variables
by operators acting on an embedding-dependent Fock
space H. The construction of the Pock space is based on
the geometrically privileged modes related to the Killing
vectors of the Minkowskian background. In the Heisen-
berg picture the constraints are identical with the funda-
mental embedding momenta and their quantum algebra is
therefore automatically homomorphic to the classical
Poisson-brackets algebra. Our task of representing
I.DiQM by the algebra of difteomorphism Hamiltonian
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operators is thus built into the quantum theory from the
very beginning (Sec. II A).

In the Heisenberg picture, the physical states are
embedding independent while the field operators
P(x), mi(x) are developed by the Heisenberg evolution
generators. These generators are differences between the
Heisenberg embedding momenta and the Hamiltonian
flux operators for the field. In the Heisenberg picture,
the flux operators can be ordered once and for all by
adopting the normal ordering of the geometrically
privileged modes. However, when this is done, the alge-
bra of the Heisenberg evolution generators acquires an
anomaly.

This anomaly is a reflection of the standard Schwinger
terms in the commutators of the components of the
spacetime energy-momentum tensor and, for our two-
dimensional system, it is related to the Virasoro algebra.
It has two parts: one (called iF) depending on the first
derivatives of the 5 function and another (called i„F) de-
pending on the third derivatives of 5. However, because
our modes and the restriction process to curved embed-
dings are specified by geometric structures which do not
depend on the use of coordinates, our anomaly on curved
embeddings is a geometric object whose form
significantly differs (Sec. II D) from the anomaly obtained
by a coordinate-dependent Schrodinger picture ordering
adopted from string theory. ' We exhibit the covariant
form of the anomaly on curved embeddihgs as it appears
in the algebra of the Hamiltonian fiux operators (Sec.
II 8), in the algebra of the Heisenberg evolution genera-
tors (Sec. IIC), and in the related Dirac algebras (Sec.
II D).

The important features of the covariant anomaly are
the Following (Sec. IIB): the anomaly depends only on
the geometric data of an embedding (the intrinsic metric
and the extrinsic curvature). To reconstruct iF from the
geometric data, one needs to know them on the whole
embedding. On the other hand, „,F is a local functional
of the intrinsic metric and the extrinsic curvature.

Because the Heisenberg evolution generators are not
constrained to vanish on the physical space, such an
anomaly in their operator algebra does not lead to any in-
consistency in the Heisenberg picture Dirac constraint
quantization (Sec. IIE). However, the generators have
the wrong commutation relations to become the
Schrodinger embedding momenta. We must modify their
factor ordering to remove the anomaly.

The required modification relies on an important ob-
servation: the anomaly is an exact two form on the space-
Einb(X, M) of embeddings (Sec III A). O.ne can thus find
a one-form A on Emb(X, M) (the anomaly potential)
whose functional curl generates F. By subtracting the
anomaly potential from the Heisenberg evolution genera-
tor (which amounts to reordering the Hamiltoman fiux
operator) we arrive at a commuting set of operators
which we identify with the Schrodinger embedding mo-
menta. We are then able to perform an operator trans-
formation from the Heisenberg to the Schrodinger pic-
ture (Sec. IIIC). The fact that the Schrodinger embed-
ding momenta commute amounts to the cance11ation of
the anomaly in the Dirac algebra of their projections

(Sec. III D).
The anomaly potential can be gauged so that it de-

pends on the same geometric data (the metric g» and the
extrinsic curvature E'ii of an embedding) as the anomaly.
Again, to reconstruct

&
A one needs to know the

geometric data on the whole embedding, while 1&, A is a
local functional of g» and Kii (Sec. III B). The anomaly
potential can be interpreted as the Heisenberg vacuum
expectation value of the reordered Hamiltonian fiux ("the
total Hamiltonian fiux"). The Heisenberg normal-
ordered Hamiltonian flux is a perpendicular projection of
a conserved symmetric trace-free tensor, namely, of the
Heisenberg normal-ordered energy-momentum tensor.
This is no longer true of the total Hamiltonian flux:
while &A can be generated in this way from a geometric
tensor constructed solely from the Killing vectors of the
background, »iA eludes a similar interpretation (Sec. IV).
The new factor ordering is thus intrinsically dependent
on the choice of the hypersurface.

There is a neat physical description of the influence
which the anomaly potentials i A and»i A have on the
distribution of the energy and momentum on a given hy-
persurface (Sec. IV). The potential, A lowers the inertial
energy density by a constant amount —(12m. )

' corre-
sponding to the Casimir effect introduced by the closing
of S'. It also lowers the energy density measured by the
hypersurface observer by an amount which depends on
the local speed of this observer relative to the inertial ob-
server; as that speed approaches the speed of light, the
negative contribution diverges. On the other hand, &„3
leads to a redistribution of the inertial energy (and
momentum) on the hypersurface while keeping their total
values fixed. The inertial energy (and momentum) densi-
ties are thus indefinite; they are spatial gradients of terms
containing the mean extrinsic curvature of the hypersur-
face. IOne can also express these densities in terms of the
arc length derivatives of the Lorentz contraction factor
corresponding to the speed U along the embedding.

The normal factor ordering of the Hamiltonian flux
operator is initially given in terms of the fundamental
Heisenberg operators. However, one can rewrite it en-
tirely in terms of the fundamental Schrodinger variables
P(x) and m, (x) (Sec. VI). The normal-ordering kernel
which achieves this task is a distribution which can be
reconstructed from the geometric data (the intrinsic
metric and the extrinsic curvature) on the embedding
which carries the operator fields P(x), m, (x). From here,
one can also express the factor ordering of the total Ham-
iltonian flux and of the constraint operators directly in
terms of the fundamental Schrodinger operators. This
puts the final touch on our description of the passage
from the Heisenberg to the Schrodinger picture.

Our procedure gave us at the very beginning a com-
muting set of Heisenberg embedding momentum opera-
tors Pi (x). Furthermore, the elimination of the anomaly

by reordering the Heisenberg evolution generators yield-
ed a commuting set of the Schrodinger embedding
momentum operators Pi (x). These two sets of commut-
ing operators enable us to reach our main goal of
representing L DiffM by a commutator algebra of opera-
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tors on H. We obtain two such representations,
U~P(U) and U —+P(U), by smearing either the Heisen-
berg or the Schrodinger momenta by all complete space-
time vector fields U restricted to the embeddings. The
diffeomorphism Hamiltonians P(U) annihilate the physi-
cal states, and the diffeomorphism Heisenberg evolution
generators P(U) evolve the field operators P(x), m&(x).
The first statement yields a many-fingered time
Schrodinger equation in the Schrodinger picture and the
embedding independence of the states in the Heisenberg
picture. The second statement amounts to the
embedding-independence of the Schrodinger field opera-
tors P(x ), n.

i (x ) in the Schrodinger picture, and to the
Heisenberg equations of motion for P(x) and xi(x) in the
Heisenberg picture. The representation of L Diff& real-
ized by the mapping U +P(U—) ensures that the states are
evolved from an initial embedding to a final embedding
by the many-fingered time Schrodinger equation in a way
which does not depend on the connecting foliation. Simi-
larly, the representation of I. DiffM realized by the map-
ping U~P(U) ensures that the evolution of the field ac-
cording to the Heisenberg equations of motion is foliation
independent. Each of these representations rejects the
covariance of the quantum canonical formalism under
spacetirne diffeomorphisms. Taken together they ensure
that the Dirac constraint quantization can be consistently
carried out both in the Heisenberg and in the
Schrodinger pictures. The diffeomorphisrn Harniltonians
P(U) and the diA'eomorphism Heisenberg evolution gen-
erators P(U) are well-defined operators on a single func-
tion space H. The diffeomorphism Hamiltonians select
the physical states from H (which they annihilate) and de-
scribe how such states evolve along an arbitrary foliation.
The space of physical states Ho is then endowed with a
Hilbert-space structure. Similarly, the diffeornorphism
Heisenberg evolution generators are capable of evolving
the field operators P(x) and m, (x) along an arbitrary foli-
ation.

One may ask how the two operator representations of
I. DiffM are connected with those of the group of confor-
rnal isometrics C. In the classical theory, C plays the role
of a symmetry group of the diffeomorphisrn Hamiltonians
P(U). The generators uELC are represented by the
smeared Schrodinger momenta P(u) which have vanish-
ing Poisson brackets with P(U) and are thus constants of
motion. Does our procedure eliminate the anomaly from
the quantum algebra of such constants of motion? The
answer is no. The operators P(u) and P(U) no longer
commute as the classical .variables did; the P(u)'s still
represent I.C, but they do not keep the diffeomorphism
Hamiltonians invariant and therefore they are not quan-
tum constants of motion. On the other hand, the Heisen-
berg normal-ordered Auxes and the corresponding
Heisenberg evolution generators yield nontrivial quantum
constants of motion —h(u) =II(u). However, the opera-
tor algebra of these constants of motion is not
homomorphic to L,C, but to the central extension of I.C.
The symmetry group of the quantum system is thus
different from the symmetry group of the classical sys-
tem. This fact, however, has no bearing on the Dirac
constraint quantization itself.

II. CANONICAL QUANTIZATION AND THE ANOMALY

A. What space are the constraints acting one

In the Dirac constraint quantization the fundamental
canonical variables are turned into operators whose com-
rnutator algebra is isomorphic to the classical Poisson-
brackets algebra. They are supposed to act on a suitably
defined function space H which does not need to have a
Hilbert-space structure. The classical constraints must
also be turned into operators and factor ordered so that
their commutators do not beget other constraints. The
physical space Ho is then defined as the set of states in H
which are annihilated by the constraints. It is only this
space (or its completion) which is endowed with a
Hilbert-space inner product.

Let us specify what our function space H is and what
our fundamental operators X (x), P (x), q, p, ak, a k are
in the Heisenberg picture (we now use the same symbols
for the operators as we previously did for the classical
dynamical variables). Start with the Fock space V on
which ak and a*k act as the standard annihilation and
creation operators. Use the occupation number represen-
tation 'P(nk )=%(n„nz, . . . ) in 9' (the sequence nk gives
the occupation numbers of the harmonic modes
k =+1,62, . . . ). Make 4' also dependent on a real pa-
rameter p and functionally on the embedding variables
X (x)EEmb(X, M):

%=%(nk, p;X] . (2.1)

As a consequence of Eqs. (2.2) and (2.3), the operators
X (x), P, (x), q, p, ak, and a*k satisfy on H commuta-
tion relations which are isomorphic to the Poisson alge-
bra of these variables under the mapping I, [~(1/i)[, ].

One advantage of the Heisenberg picture is that the
constraint functions are identical to the fundamental
embedding variables and hence their quantum algebra is
automatically isomorphic to the classical algebra (I.3.37)
or (I.4.19):

1—.[P, (x),P, p(x')]=0,
l

OI

—.[P(U),P(V)]=P( —[U,V])1

(2.4)

VU, VFLDiffM .

The function(al) 4 is an element of H. The action of the
operators q, p, a„, a"„, X (x), and P, (x) on 4 is
prescribed by the rules

a
q4(n kp;X]=i 4(nk, p;X],

Bp

p+( yak, p; X]=p X %(nk, p; X],
(2.2)

&4("k,p; X]=Q"
&
4("k 5k&, p; X]—,

I+(nk p'»] =+nl+ 1 q (nk+~k1 p X] '

X (x)%(nk, p;X]=X (x)XV(nk, p;X],
(2.3)

Pi (x)%(nk, p;X]= i —4'(nk, p;X]5X (x)
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When the constraints are imposed on the states of the
system,

P, (x)V(nk, p;X)=0, (2.5)

they imply that the Heisenberg states do not depend on
the embedding:

4='(II(nk, p) . (2.6)

Such states are the elements of the physical space Ho.
An inner product ( 'P ( ~ %2 ) is defined only between two
states )Il, and %2 in Ho, not between the states (2.1) in the
big space H. We put

B. Anomaly in the a1gebra of the Hamiltonian Aux operators

As iri the corresponding classical calculation, we begin
with the energy-momentum tensor in the null coordinates
(I.3.8) and express it through Eqs. (I.3.5)—(I.3.7) in terms
of the Heisenberg data q, p, ak, a'k. We normal order the
energy-momentum-tensor operator in the creation and
annihilation operators a*k, ak. Here, as for all other
quadratic operators, we keep the original symbol
T++(T*;q,p, a k,

a* )) for the normal-ordered operator.
We smear the Hamiltonian Aux by the basis vectors

(I.4.10) of the Lie algebras L(z)C and arrive at its
(normal-ordered) Virasoro components (I.4.29):

n =0 Ink I k = —oo

X J dp (p*(n„,p)p(n„, p), (2 7) + g a'~(k+„)apk, n )0,
k=1

h (2) —(h (2) )»

(2.9)

where the infinite product 1i'k excludes k=0, the
sum g(„}is taken over all occupation number sequences

k

with the same total number gk „nk=n of excited
modes k&0, and the final sum g„" o takes care of
diff'erent total numbers n The op.erators q, p, and qk, pk
given by Eqs. (I.3.74) are self-adjoint under this inner
product.

Instead of the occupation number representation
4'(nk, p;X], the states in the big space H can equally well

be given in the P(k', P(k') representation V(P(k', P(k', X] or,
what amounts to the same thing, in the Schrodinger func-
tional representation (II[/(x ),X(x ) ]. Note that this
Schrodinger functional representation is taken in the
Heisenberg picture, i.e., that P(x) is the distribution of
the scalar field on the initial embedding (I.3.40).

The rest of this paper is essentially devoted to two
problems: (I) how to construct the Schrodinger operators
P(x), ~((x), X (x), and Pi (x) from the Heisenberg
operators q, p, a„, a*„,X (x), and P, (x) so that they
are well defined on the space H described above, and
satisfy on H the correct fundamental commutator algebra
and (II) how to express the constraints Pi (x) as properly
ordered combinations of such Schrodinger picture opera-
tors. This is the crux of the problem as to whether the
Dirac constraint quantization can be consistently carried
out in the Schrodinger picture by imposing the con-
straints in the Schrodinger form,

+i—,', m (m —1)5 +„o,

—.[h'+', h' '„]=0 .
l

(2.10)

Because the only term sensitive to the factor ordering is
h{*)o, the anomaly is proportional to 5 +„o. When we
reconstruct T+ + ( T ) from its Fourier components
(I.4.28),

(2.11)

we learn that

. [T (T—), T —(T—)]
l

=T++(T )5 +(T T)——(T ~T——)

There is only a finite number of the double-creator terms
in h' —'„and of the double-annihilator terms in h'*'
there are no such terms in h'*'o. The expressions (2.9)
are thus well defined as operators when they act on the
states (2.1).

The standard calculation yields the anomaly in the
Virasoro algebra:

1
—.[h'*', h' '„]=i(rn n)h'—*' +„
l

P, (x;P, m. ,X,P]%[/(x),X(x)]=0, (2.8)

(2.12)
on the Schrodinger states. %'e shall not explicitly solve
the problem of how to transform a given Heisenberg state
%[/(x)]&Ho into the corresponding Schrodinger state
%[/(x), X(x)] which satisfies the Schrodinger equation
(2.8).

We start the calculations in the Heisenberg picture and
make our way step by step to the Schrodinger picture.

and

—[T+ +(T+),T (T )]=0 .
l

(2.13)

The term 5 +++ is the standard Schwinger term, the 5 +
term is brought in by the finite size of the spatial sections
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of M=RXS .
By projections and restrictions of Eqs. (2.12) and (2.13)

we get the algebra of the null components of the Harnil-
tonian Aux operator:

Equations (2.15)—(2.18) can be written in a form which
is valid in an arbitrary spacetime coordinate system X .
The regular part of the algebra is identical to the classical
algebra (I.3.83) and it undergoes the same rearrangement
(I.3.86):

hip(x):=Tgp(T*(x))n*, (x;T*]

=+T+ +(T {x))T,(x) . (2.14)
1

—.[hi (x),h, p(x')]

This algebra =C r tr(x, x';X]hi&(x)5) i(x,x') —(ax~ax')
1

—.[h, ~(x),h).+(x')]
Fi i p(x x 'X] (2.19)

F)+) +(x x 'T ]

1
—.[hi+(x), h, (x')]=0,
l

(2.15)

=(T i(x) ) 'h (~ (x )5, ((x,x ') —(x~x ')
The coeScient C'

& is given by the classical expression
(I.3.87). Our only task is to find the covariant transcrip-
tion

F,~, . (px, x';X]= Fi~(p((x,x';X]

difFers from the corresponding classical algebra (I.3.83)
by the anomaly

+niFi, p(x, x', X] (2.20)

F1+1'+(x~x 'T ] IF(+1'+(x&x )+iIIF(+l'+(xix iT ]

(2.16)

of the anomaly.
For &I& & & this is easily achieved by using the proper-

ties (I.2.8) of the'privileged null basis e(+)..

1 1F,+, +(x,x') =+
12 2m

5, ,(x,x'), (2.17) ...,p(x, x', X

I ~ +ii(F(+)'+(xix ~ T 1 1

12 2m
(e(+) (X(x))e(+)p(X(x'))

= T (T* (x)) (D' —'
) 5 ~ (x,x')

, 1 ]. 1', 1

= + (),(T—,(x) ) '(),(T—,(x) ) '5, ,(x,x') .

(2 18) Alternatively,

e( ) (X(x))e( )p(X(x )))5) ((x|x )

(2.21)

We used the identities (I.B2) and (I.B4) for the
differentiated 5 functions when projecting the anomaly.
%'e split the anomaly into two pieces. The first piece
(2.17) is brought in by the finite profile of the cylinder
M = 1R XS ', it contains only the 6rst derivative of the
spatial 5 function and it does not depend on the embed-
ding T—(x). The second piece (2.18) is independent of the
size of the cylinder M=RXS'; it contains the third
derivatives of the spatial 5 function and it depends on the
embedding T—(x) through the covariant derivatives
D' —'&. It is evident that the anomaly proportional to the
third derivative of the 5 function must depend on the
embedding to preserve the spatial covariance of Eqs.
(2.15)—(2.18). The concrete form of the expressions (2.17)
and (2.18) was obtained by using the projection formulas
(I.B2) and (I.B4) for the derivatives of the spacetime 5
functions.

(ep(x&x ~X]

(t (X{x))sp(X(x'))1 1

6 2m

+s (X(x))tp(X(x')))5, i(x,x')

(2.22)

in terms of the privileged spacetime basis (I.2.1).
In hyper surface dynamics, however, all quantities

should be expressed directly in terms of the hypersurface
data. To do that, we must use the nonlocal reconstruc-
tion (I.2.28) of the spacetime basis e(+) from the hyper-
surface basis n(+). The anomaly (2.22) then assumes the
form
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,F, , p(x, x', X]

(A (x)ni+i (x)A (x')ni+~p(x')1 1

12 2m'

—A(x)n( ) (x)A(x')n( )p(x'))5] i(x,x')

algebra of the Hamiltonian Aux operators has an anoma-
ly, Eqs. (2.19) or (2.26). Therefore it is not surprising that
the anomaly Ands its way into the algebra of the natural
candidates

(2.23) 11, (x):=P, (x)—h, (x) (2.29)

D' ' n '=O=D' ' n$n( —)(y ]n{+)~ ~ (2.25)

Note that &&&E» & is expressed directly in terms of the
hypersurface data and does not involve the slope factor
A.

with the slope factor A(x; X] given by the integrals
(I.2.31) and (I.2.35).

A manifestly covariant form of the second part of the
anomaly is

iiiFi i'p(xyx pX]

1 1
(n(+) (x)n(+)p(x )D iD]. ( —) ( —)

12 2m'

—n( ).'(x)n( )pi( x)D' +',D' +', .)5,. ,( ,xx) .

(2.24)

To arrive at Eq. (2.24) from Eq. (2.18) we have used the
properties (I.2.27) of the null hypersurface basis and the
fact that —[II(u), II(v)]=II( —[u, v]) —F(u, v) .1

l
(2.30)

The unsmeared form of Eq. (2.30) is

for the Schrodinger embedding momentum operators.
Because of this anomaly, the expressions (2.29) do not
commute among themselves and hence cannot be inter-
preted as momentum operators [this is why we denote
them by a symbol II& which differs from that used for
the classical quantities (I.3.47)]. The operators II i still
retain the classical function of evolving the Schrodinger
field variables in the Heisenberg picture, Eq. (I.3.53). For
that reason we shall call them the Heisenberg evolution
generators.

To evaluate the anomaly we smear Eq. (2.29) by a con-
formal Killing vector field u&LC and use Eqs. (2.4),
(2.26), and (2.28):

The algebra (2.19) of the Hamiltonian Aux operators
may be smeared by conformal Killing vector fields

u, v ELC, with the result

—[II, (x), II, ,p(x')]= —F, , p(x, x', X];1

l
(2.31)

—[h (u), h (v)]=h ([u, v])—F(u, v) .1

l
(2.26) this can then be smeared by arbitrary vector fields

U, V EL DiffM to yield

We see that h (u), u&LC, no longer represent the alge-
bra LC of conformal isometrics because of the smeared
anomaly

—.[II(U), II(V)]=II(—[U,V])—F(U, V) .
1

(2.32)

F(u, v):=J dx' I dx'

X u (X(x))Fi,.p(x, x', X]u P(X(x') ) .

(2.27)

However, h(u) are still constants of motion, as in the
classical case (I.4.25):

—.[h(u), P(V)]=0, VuELC and VVGL DiffM .
1

l

(2.28)

The proof is exactly the same as in Eq. (I.4.26): h (u) de-
pends only on the Heisenberg data q, p, ak, a*k, but not
on the Heisenberg embedding. This is made entirely ex-
plicit in the case of the Virasoro generators (2.9). We
shall discuss the significance of these two results, Eqs.
(2.26) and (2.28), after we pass to the Schrodinger picture.

C. Anomaly in the algebra
of the Heisenberg evolution generators

The quantum algebra (2.4) of the Heisenberg embed-
ding momenta has no anomaly. On the other hand, the

D. Anomaly in the Dirac algebra

In parametrized field theories it is best to handle the
constraints Pi (x), the Hamiltonian Ilux h, (x), and the
Heisenberg evolution generators II, (x)=P, (x)—h, (x)
in the unprojected form. Their commutators then natu-
rally lead to the commutator algebras of the smeared
quantities P(U), II(U), UEL DiffM, and h(u), uELC.
In general relativity and string theory, however, it is cus-
tomary to work in terms of the projected quantities
P»~, P»,' h I &~, h», and II »~, II». In classical theory, the
Poisson brackets of either set of these projected quantities
follow the same pattern, namely, Eq. (I.3.34), which
defines what is meant by the Dirac algebra. In quantum
theory, the commutators (1/i)[, ] of the projected con-
straint operators P»z, P» follow exactly the Dirac alge-
bra. However, the commutators (1/i)[, ] of the Hamil-
tonian Aux operators h»~, h» or of the Heisenberg evolu-
tion generators II»~, II» develop an anomaly. To com-
pare this anomaly with the expressions given in the litera-
ture, we must work out the commutator algebra of these
projections. By projecting Eq. (2.19) we get the algebra
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1
—.[k „(x),h, , (x')]
l

=h ii(x)5& &(xix ) (x~x ) Fii i~& (xix )

The combinations of the slope factor which occur in Eq.
(2.35) can be expressed in terms of the velocity &) (x) of
the hypersurface observer n relative to the privileged
inertial observer t:

1+v~2 A
—2 4

1 U
2

1 U

(2.37)

=hiii(x)5&, (x,x') —(x~x') —F»i& i (x,x'),
(2.33)

1
—.[h»i(x), h» i(x'}J

1

=hi&(x)5& &(xqx ) (x~x ) F&&i& & &(X&x )

Furthermore, the D' ', derivatives in Eqs. (2.36) can be
replaced by the metric covariant derivative D& and the
extrinsic curvature. Each of the D' —

'& and D' '& deriva-
tives in Eq. (2.36) acts on a covector. Under such an ac-
tion,

which Bitters from the classical Dirac algebra only by the
projected anomaly

D [*],=D, +g,r
in accordance with Eq. (I.2.24). Hence,

(2.38)

Fii i i (X&x );:F&&p&( yxx)X& (x)X&'(x )
(D(+) D(+) D( —

) D( —)

F»i»''(x~x'): F&&& p(x, x')n i (x)XP& (x')

F» i»''i(xqx ):=Fi i p(x&x )n i (x}X& (x )

(2.34)

and

=2K i(x)5, , (x,x')g, .(x') —(x~x') (2.39)

By projecting Eq. (2.31) we get exactly the same anoma-
lous algebra for the projections H&&i and II&&.

We must evaluate expressions (2.34). From Eqs. (2.23)
and (2.24) (using n(+)~& =+1 and n(+)'ni = —1) we
obtain

&F» »''(x~x } &F&&&.&'&'l(x&x

(D(+) D(+) +D( ) D( ) )5 (x x')

=2(D, D, +K(x)g, (x}K(x')g,(x'))5, ,(x,x')

=2g»(x)bD& 5, i(x,x')

and

(A (x)—A (x) }
12 2m'

Xg, (x)5, , (x,x')g, (x'),

1 1
&F» i& i (»x )= (A (x)+A (x))

Xgi(x)5& i(x x')gi. (x')

(2.35)

+(K (x)g, (x)5, , (x,x')gi. (x') —. (x~x') } .

(2.40)

The equivalence of the last two forms of Eq. (2 40) can
best be proved by smearing this equation by two test vec-
tor fields M'(x) and N' (x') on X.

The rearrangement (2.39) and (2.40) leads us to the
final form for the projected anomaly (2.36): namely,

I&IF&1 i'i'(x~x } I&IF&iii'i'i(x~x

mF»» (»x )

III 11&.i'&'1(

(D(+) D(+) D( —) D( —
) )5 (,)

1 1
X&X

(2.36)

mF»&& i (»x'}

1 1 (K (x)5, (x,x')g, (x')
, 1 1', 1 & ]

—(x~x') ), (2.41)

1 1
(D, D&.

6 2m

+gi(x)K(x)g, (x')K(x')}5, ,(x,x') .
(D' 'D' '

~ +D 'D ' )5 (xx')
12 2' (2.42)
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Note that the third derivative of the 5 function disap-
pears from the projections (2.41) and persists only in the
mixed projection (2.42).

Let us compare our covariant factor ordering and the
resulting anomaly . (2.35), (2.41), and (2.42) with the
prescription discussed by Teitelboim. By adapting a
procedure common in string theory, Teitelboim expands
the fields P(x) and mi(x) on a given embedding X:X~M
in Fourier components with respect to a given coordinate
system x' on X, and normal orders the operators h»i(x)
and h» (x) in the corresponding creation and annihilation
operators. Unlike our normal ordering based on the
Heisenberg modes, Teitelboim s prescription is not co-
variant. It depends (among other things) on the choice of
the spatial coordinate x . This is refiected in the struc-
ture of the anomaly. Teitelboim's anomaly resides entire-
ly in the F»i, , (x,x') component, while the other two
components F» i i (x,x') and Fiiii i i(x,x') vanish. The
form of F»i, i.(x,x') itself is also difFerent from our ex-
pressions. Teitelboim's iF»j&, (x,x') is proportional to
5, ,(x,x'), without the geometric correcting factor
(A (x)+A (x))g, (x)g, (x'), but with a coefficient
which depends on the inverse square of the coordinate
length. Similarly, Teitelboim's niFiii, , (x,x') is equal to—(12m) times the third partial derivative 5,. »i(x, x )
of the 5 function. Our expression (2.24) uses the covari-
ant derivatives D&D& which ensure covariance under
DiffX, and in addition contains the terms which depend
on the extrinsic curvature (bending) of the embedding. It
is obvious that the two prescriptions do not coincide on a
generic embedding even if one uses the geometrically
privileged arc length parameter o. in the role of x'. The
only case in which the two expressions for the anomaly
equal each other is on maximal circles parametrized by
the are length where everything reduces to the result
originally obtained by Boulware and Deser.

E. Does the anomaly matter
in the Dirac constraint quantixationf

In the Heisenberg picture, the states 4 are embedding
independent,

P(U)%[X,P]=0 VUCL DiffM, (2.43)

and the field P(x;X,P, m ],m.
i (x;X,P, m ] is propagated by

II(U)[X,P, P, n ] by the Heisenberg equations of motion

—[P(x),II(U)]=0= —.[n.&(x),II(U)] .1 1
(2.44)

Because P(U) represent L DiffM without any anomaly
[Eq. (2.4)] the constraints (2.43) on the physical states
O'&HO of the system are consistent. %"ere there an
anomaly in the commutator (2.4) of the smeared Hei-
senberg momenta, (1/i) [P(U), P( V)]=P( —[U,V] )

F(U, V), the constr—aints (2.43) would force the physical
states 4 to vanish. For the consistency of the Dirac con-
straint quantization it is vital that the quantum commu-

tator algebra of the constraint operators not have any
anomaly. The same kind of argument can of course be
carried out with the Dirac algebra of the projected con-
straints, ' the consistency of the constraint equation again
depends on the fact that the quantum Dirac algebra of
the projected constraint operators does not have any
anomaly.

%'e must now decide whether the consistency of the
field evolution (2.44) is in jeopardy because the quantum
algebra (2.32) of the Heisenberg evolution generators
II(U) has an anomaly. I.et us evolve the field first by de-
forming the embedding in the steps U(X(x)),V(X(x)),
then, equivalently, in the steps V(X(x)), U(V(x)), and
[U,V](X(x)), and see whether the final result is the
same. In other words, we must check the validity of the
equation

—.[(1/i)[P(x), 11(U)],II(V)]—(U V)
1

1

(2.45)

Now, by the Jacobi identity and the anomalous represen-
tation equation (2.32) the left-hand side of Eq. (2.45)
reduces to

—.[$(x),(1/i)[II(U), II(V)]]I

= —.[y(x), II( —[U, V] )]+—.[F(U,V), Ijl(x )]; (2.46)
1 1

l

the last commutator is indeed equal to zero because the
anomaly depends only on the embeddings and the field
p(x) does not depend on the conjugate embedding
momentum. The same reasoning, of course, applies to
the evolution of n i(x).

The evolution of the field variables P(x), n, (x) by II(U)
is thus consistent in spite of the anomaly in the algebra of
the II(U)'s. A fundamental difference between the
Heisenberg evolution generators II(U) and the con-
straints P(U) is that the former are not supposed to van-
ish. Therefore, there is no equation for II(U) analogous
to Eq. (2.43) in which the anomaly would matter.

In the Heisenberg picture we can live with the genera-
tors II(U) whose algebra has an anomaly. However, if
we acquiesce in this, we must give up any hope that we
can ever pass to the Schrodinger picture: the generators
II, (x) have wrong commutation relations to become the
Schrodinger embedding momenta. The question remains
whether we can replace the Heisenberg evolution genera-
tors II(U) by some other operators P(U) which evolve
the fields equally well, but which have the commutators
appropriate for the smeared momenta. Vfe shall show
that this is indeed possible and thereby open the way
from the Heisenberg to the Schrodinger picture.
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III. REMOVAL OF THE ANOMALY

A. Integrability of the anomaly

Our trouble is that the Heisenberg evolution generators
(2.29) do not commute among themselves [Eq. (2.31)] and

I

thus cannot serve as the Schrodinger embedding momen-
ta. The commutator in Eq. (2.31), however, must satisfy
the Jacobi identity. Because the anomaly depends only
on the embedding X(x) but not on the dynamical vari-
ables q, p, ak, a*k, we get

—[(1/&)[II, (x), II, ,p(x')], II,„(x")]+cyclicpermutations (ax,px', yx" )
I,

1= ——.[F, , p(x, x';X],P, -&(x")]+cyclic permutations (ax, 13x', yx")
l

= IF» p(x, x', X],P, r(x")I+cyclic permutations (ax, Px', yx")

=5F&
& p(x, x', X]/5X~(x")+cyc1ic permutations (ax, Px', yx")=0 . (3.1)

PbI 5b IP Pb]

but the mechanical momentum

(3.2)

H, =P, +3, (3.3)

This is the statement that the functional exterior deriva-
tive of F& &.p(x, x';X] with respect to the embedding vari-
ables Xr(x) vanishes. [Note that in Eq. (3.1) it is perniis-
sible to pass from the operators X (x) and P&-r(x") to
the classical variables while replacing the commutator by
the corresponding Poisson bracket. ]

The final situation resembles that of a charged particle
e= 1 moving in a configuration space Q with coordinates
q' in an external magnetic field F,b(q) with a vector po-
tential A, (q). The generalized momentum P, of the par-
ticle has the standard Poisson brackets,

the vector potential —A, we get the generalized momen-
turn

P, :=H, —3, (3.8)

with correct Poisson brackets (3.2).
In our original problem, Emb(X, M) plays the role of

Q, the embedding variables X (x) the role of the coordi-
nates q', and the anomaly F, , p(x, x', X] the role of the
field strength F,b(q). The anomaly two-form is closed:
Eq. (3.1). Our space of orientation-preserving spacelike
embeddings Emb(X, M ) is simply connected because each
continuous closed curve X (x, t) in Emb(X, M) can be
continuously deformed into a point X (x). Therefore, we
expect that there exists a potential A, (x;X] in
Emb(X, M ) whose functional curl generates the anomaly

of the particle does not. Indeed,

I II„IIb I
= F,b—

yields the field strength

(3.4)

F& & p(x x 'X]

= —
I A, (x),P, .p(x')I+ I A, p(x'), P, (x)I

F,b
——IA„Pb]+I Ab, P, j= —Ag b+Ab, .

By its construction (3.5), F,b is a closed two-form:

IF,b, P, ]+cyclic permuations (abc)

Fab, c+Fy~ a +Fc~ b
=0 .

(3.5)

(3.6)

= —5A, (x;X]/5XP(x')+5A, p(x', X]/5X (x) .

(3.9)

~e shall call such a potential A
&

(x;X] the anomaly po-
tential. Of course, A &~(x;X] is determined by Eq. (3.9)

only up to a functional gradient,

The argument can be inverted. Let us have the
mechanical momentum Il, which satisfies Eq. (3.4) in

which the field strength is closed, Eq. (3.6). On a simply
connected configuration space Q there exists a vector po-
tential A, whose curl generates F,b, Eq. (3.5). Of course,
the potential A, is determined by Eq. (3.5) only up to a
gauge transformation

(3.7)

A, (x;X]~A, (x;X]=A, (x;X]+5A[X]/5X (x),
(3.10)

of an arbitrary gauge potential Q[X] which depends sole-

ly on embeddings. Once we find an anomaly potential
which generates the anomaly by Eq. (3.9) we can subtract
it from the Heisenberg evolution generator II, (x) and
thereby construct the operators

When we complement the mechanical momentum H, by P, (x;X,P, q, p, ak, a*k]:=II) (x)—A, (x;X] (3.1 1)
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which commute among themselves:

—[P, (x),Pi p(x')]=0 .1

l
(3.12)

and

5A i~( )/5T ( ') —
( . ) = —Fi+i+(,x'; T—]

(3.13)

To prevent any misinterpretation of our analogy, let us
stress the physical difference between the two situatioris.
In the case of a charged particle the coordinates q' are
true dynamical variables; in our problem the embedding
variables X (x } play the role of time, which is a canonical
coordinate in the extended phase space, but is not one of
the physical degrees of freedom. Second, the field

strength I',I, already exists at the classical level, prior to
quantization, while the anomaly Fi, .p(x, x';X] arises

only in the quantized theory as a consequence of the nor-
mal ordering and vanishes in the classical limit A' —+0. It
is not our intention to stretch the analogy beyond its for-
rnal limits.

A, ~(x;X]=A, ~(x;T—+] . (3.15)

This is consistent with Eq. (3.13) because F,+ i + depends
only on T (x) and Fi i. only on T (x). A particular
solution of these equations can be found by inspection:

Aia(x'T )=iAia(x T )+iiiAi+(x;T*), (3.16)

with

5A i+(x)/5T (x') —5A i. (x')/5T+(x) =0 . (3.14)

The anomaly in Eq. (3.13) is given by the expressions
(2.16)—(2.18). Equation (3.14) can easily be satisfied by
putting

B. The anomaly potential
1 1

,Ai~(x;T ]=+ T*,(x), (3.17)

We now know that an anomaly potential exists; our
next task is to And it. As so often in the pist we find it
convenient to carry out our calculations in null coordi-
nates and to cast the result into a covariant form only in
the end.

In the null coordinates Eq. (3.9}reduces to

»iA ia(x T ]=+
24 2

(3.18)

While &A, +(x) is a covector under spatial transforma-
tions, iii A i+(x) is not. One cannot therefore meaningful-
ly subtract », A, +(x) from the covector II,+(x) to obtain
P,+(x). To improve this, write

mAi+(x'»+l=— 1 1 (T~ )
T

24 2m

1 1

T+ i ) 24 2m.

((T*,) 'giX), +M[T+,T ]/5T+(x), (3.19)

where

Q[T+,T ]:=——— f dx'ln(T+ i(x))kiln( —T i(x)),
24 2m x

(3.20)

and the extrinsic - curvature was introduced by Eq.
(I.2.23). We see that we can gauge the old potential (3.18)
into a new potential

iAi (x;X]
1 1

24 2 (~(+)ae(+)p+~~ —i ~-ip)" i

IIIA lh(x X] ((T,l} gl+), 1

1 1 (3.21) 1 1 2 p
24 2~ "~+~ "&+)P+A "(—

) "&—)P)

which is a spatial covector and still generates the same
anomaly. Note that while the + component of the old
potential depended only on T+ (x) and the —component
only on T (x), each component of the new potential
(3.21) depends on both embedding variables T—(x). It is
impossible to construct an anomaly potential which
would be a spatial covector and whose + cornponerits
would depend only on the corresponding T—(x) variables.

The potentials (3.17) and (3.21) can be written in a
form which holds in an arbitrary system of spacetime
coordinates. For the potential (3.17), this form relies on
the privileged e[+] basis,

1 1
g, (K,X' —J n ) . (3.23)

(3.22)

Like the anomaly iFi i p(x, x';X] which it generates, the
potential (3.22) can be obtained from the hypersurface
data only with help of a nonlocally constructed slope fac-
tor A. On the other hand, the covariant form of the po-
tential IIiA, + is a local function of g&I and E».

1 1
i,iAi (x;X]=—— XPiVp(KgiX')

6 2m
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In the last rearrangement of Eq. (3.23) we have used the
Gauss-Weingaarten equation

(3.24)

C. Quantum canonical transformation
to the Schrodinger picture

The Heisenberg evolution generators IIi (x) correctly
propagate the quantum field P(x ),m. ,(x ) by the Heisen-

berg equations of motion (2.44), but their commutator
has an anomaly, Eq. (2.31). When we subtract from them
the anomaly potential, we construct a set of commuting
operators (3.11). These operators still correctly propa-
gate the Geld operators by the Heisenberg equations of
motion,

—.[$(x),P, (x')]=0=—.[m, (x),Pi. (x')], (3.25)
1, j
l l

because P(x) and m i(x) commute with the anomaly po-
tential . Ai (x;X]. Moreover, they retain the correct
commutaiors

—.[X (x},P, &(x')]=01 (3.26}
l

with the embedding variables

dering. We learned, however, that this anomaly can be
canceled by subtracting from the Heisenberg evolution
generators an anomaly potential and thereby passing to
the Schrodinger embedding momentum operators (3.11).
This is done at no expense to their commutators (3.25}
with the Schrodinger Geld operators and their commuta-
tors (3.26) with the embedding. We are thus led to the
conclusion that the transformation (3.28) from the
Heisenberg picture to the Schrodinger picture accom-
plished by Eqs. (I.3.5), (I.3.6), (I.3.68), and (I.3.70) for the
field variables and by Eqs. (3.27), (2.29), (3.11), (3.22), and
(3.23} for the embedding variables leads to the correct
commutators (3.29), (3.25), (3.26), and (3.12) between the
fundamental Schrodinger operators. This is what makes
the transition to the Schrodinger picture and the Dirac
constraint quantization in that picture possible.

D. Cancellation of anomaly in the Dirac algebra

When the operators P, :=P, —h1 —
A& commute,

their projections P11~.=P1 n1 and P1].=P& X1 must
necessarily obey the Dirac algebra [cf. (I.3.34)]

—.[Pi, (x),Pi i (x')]=Pii(x)5i i(x,x') —(x~x'),
l

X (x)=X (x) . (3.27)
—.[P„~(x),P, , (x')]=Piii (x)5i i(x,x') —(x~x'),
l

These properties enable us to accomplish a "quantum
canonical transformation"

X (x),P, (x),q, p, ak, a*k —+X (x),P, (x),P(x), n. ,(x)

(3.28)

(3.30)

[P i(iI)x& P i'ij (x ) ]=Pi i (x)5i i(x&x ) (x~x )
l

This implies that the projected anomaly (2.35), (2.41), and
(2.42) must be related to the projected anomaly potential

from the Heisenberg picture to the Schrodinger picture.
First, the Schrodinger field operators P(x), n. ,(x) are
defined in terms of the Heisenberg mode operators
q, p, a„,a*k and the Heisenberg embedding X (x) as in
the classical theory, Eqs. (I.3.5}, (I.3.6), (I.3.68), and
(I.3.70). Because they are linear in the Heisenberg mode
operators and no factor ordering is thus involved, the
classical derivation of their fundamental Poisson brackets
(I.3.69), (I.3.72), and (I.3.73) still holds for the commuta-
tors:

(3.29)

,Aii= — gii(A +A ),1 1

24 2m

1
IEE 11 6 2 1,1A = —— g E

21
III 11l 6 2 11

by a set of three identities:

(3.31)

(3.32)

1
—.[P(x),m, (x')]=5,.(x,x') .
l

!

Second, the Heisenberg evolution generators are intro-
duced by Eq. (2.29). Their definition involves normal or-
dering of the Hamiltonian Aux operator in the Heisen-
berg mode operators. Their commutators (2.44) with the
field operators nevertheless preserve the classical algebra
(I.4.21) because the field operators are linear in the
Heisenberg mode operators. On the other hand, the corn-
mutator algebra of two Heisenberg evolution generators
contains an anomaly because each of them is quadratic in
the Heisenberg mode operators and involves a normal or-

I A»(x), P, , (x')I —(x~x')=2F», , (x,x'), (3.33)

and

I A iig(x)qPi i i(x )I =Fii i i~g(xqx )

I A iij (x)&Pi i i(x )] (x++x )=2FiiJi~i g(xqx )

(3.34)

(3.35)
The argument that these identities must be satisfied is al-
ways the same and we shall present it for only one of
them, say, Eq. (3.35).

We use the definition (3.11) of the Schrodinger embed-
ding momentum and write Eq. (3.30) in the form
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—[11„,(x), II.,..(x')]— —[A», (x),P. ..{x')]—(x~x') = II»(x)5, ,(x,x') —(x~x )
l l

—( A»(x)5, ,(x,x') —(x~x') ) . (3.36)

In Sec. II D we have noticed that the II's satisfy the same
anomalous Dirac algebra (2.33) as the Ii's. The first terms
on each side of Eq. (3.36) thus bring in the anomaly
E»», i(x,x'). The last term in Eq. (3.36), when we com-
pare it with expressions (2.35) and (2.41), again yields the
same anomaly. This leads us to the identity (3.35). Of
course, one can also prove the identities (3.33)—(3.35)
directly. For example, the identity (3.35) for the», A»i
part of the potential is a consequence of the Mainardi
equation (I.A6).

The argument, of course, can also be run backward.
By virtue of the identities (3.33)—(3.35), when we subtract
the projected anomaly potential 3 &&, A &i& from the pro-
jected Heisenberg evolution generator II», H»~, we can-
cel the anomaly in the Dirac algebra of IIii, II&&& and ar-
rive at the Dirac algebra (3.30) for the projections
P, &,P»~ of the Schrodinger embedding momentum.

IV. THE TOTAL HAMILTONIAN FLUX

By Eqs. (3.11) and (2.29) the Schrodinger embedding
momentum operator is related to the Heisenberg embed-
ding momentum operator through the relation

P,.(x)=P, (x)—H, (x),
in which

H, (x):=h, (x)+A, (x) .

(4.1)

(4.2)

(4.4)

We want to understand how the potential A I (x;X]con-
tributes to the energy and momentum distributions.

In either picture the expression (4.2) depends only on the
field operators and the embedding. We can interpret Eqs.
(4.1) and (4.2) by saying that our old interpretation of the
Hamiltonian Aux operator as the projected normal-
ordered energy-momentum tensor h

&

= T &n &
was inap-13

propriate and that the true Hamiltonian Aux operator is
to be identified with the expression H) (x). The two flux
operators H, (x) and ?I, (x) can be considered as two
different factor orderings of the same classical Aux. The
anomaly potential A, (x) is a correction which must be
added to the normal-ordered flux?I, (x) to yield the new
factor ordering. At a given point X, this correction de-
pends on the embedding X(x) passing through that point.
To distinguish it from h, ~(x) we shall call H i (x) the to-
tal Hamiltonian Aux operator.

Because the expectation value of h, (x) vanishes in the
Heisenberg vacuum state (pa=%'(nk =0,p =0),

(4.3)

we can also identify A i (x;X] with the vacuum expecta-
tion value of the total Hamiltonian flux operator Hi~(x):

The field Hamiltonian flux is a projection of a con-
served symmetric trace-free tensor, namely, the energy-
momentum tensor T &.

h, (x)=T p(X(x))nP(x;X] . (4.5)

Does there exist a purely geometric conserved symmetric
and trace-free tensor 6 p(X) such that

A, (x)=e~p(X(x))nP(x;X]'? (4.6)

We shall show that the answer is "yes" for, A, (x) and
"no" for III') (x)

From the covariant form (3.22) of, A i (x) we see that
,B p(X) must be given by

1 1ie p(X)=—
24 2m' (e(+)~e(+)p+e( ) e( )p) . (4.7)

This tensor is obviously symmetric and trace free. It is
also conserved, because the vectors e~+~ are teleparallel
and hence V' ie p=o. More generally, if k is a Killing
vector field, the tensor field

BP. kkP+ (—k kr)5P (4.&)

1 1
,e.p= —— (I.Ip+s.sp) . (4.9)

Let us calculate the energy densities corresponding to
&e & measured by different observers. The energy "densi-
ty" measured by the privileged inertial observer t on any
maximal hypersurface T=const is

(4.10)

This constant negative energy density corresponds to the
Casimir effect introduced by the closing of 5'. The ener-
gy density measured by the hypersurface observer n is

IA i(Il, n):=II i~n =ie~pn n i

g, (A +A )

1 1 1+u
~g) ~62~ 1 —v' (4.11)

where u (x) is the velocity of the hypersurface observer n
with respect to the privileged inertial observer t. The
density (4.11) is always negative; it has its maximal value
for v=0, i.e., for n =t, and it goes to —~ as u ~+1.

Unless n is a Killing vector field n=t, the total energy

is conserved by virtue of the Killing equation. So is the
sum of two such tensors. The tensor (4.7) is the sum of
two tensors (4.8) generated by the null Killing vector
fields e~+~ and it is therefore conserved. The tensor ~e &
can also be expressed in terms of the Killing vectors t and
S:
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1 1 1
I ] & ' I aP 1 6 2 1 2

A (t,n):= 6 t n = —— g (4.13)

which the observer t measures on the hypersurface with
the normal n difFers from the privileged density (4.10) by
the square of the Lorentz contraction factor

( 1 2) —1/2

The Virasoro components of i A i (x) are

Iz dx 'z A, (n, n) is not conserved. However, from Eq.
(I.4.23) we know that

id (u):=f dx tt ieapn i (4.12)
X

is a constant of motion for any conformal Killing vector
field u. In particular, for u=t, iA (t)= —

—,
' (the value

which the total energy has on a maximal hypersurface).
The energy density

X (x) in the vicinity of a point ox fixed, but modify the
embedding outside that stretch, »ie p(x; X] pt
remains unchanged. For simplicity, choose Ox such that
T*(ax)=0 (the embedding passes through the origin of
the null coordinate system). Boost a piece of the embed-
ding in the vicinity (Ox —e, Ox +e) of the origin by a con-
stant A, ,

(4.20)

and complete the boosted piece T (x), (Ox —e, Ox +e),
arbitrarily into a new complete embedding T (x}. If
„,6 p(x;X] were a restriction of a spacetime tensor
field, Eq. (4.19), ,i,6 p(ox; T+,T ] should equal
,»6 p(ox; T,T ]. The boost changes neither the spa-
tial metric nor the extrinsic curvature as a function of x
about Ox, but it changes the slope factor (I.2.29):

(4.14) A(x)~A(x)=RA(x) . (4.21)

This term modifies the anomaly of the Virasoro algebra
of the quantities

H' ':=h'*' + A'*'
I n n I n (4.15)

Indeed,

(4.16)

the extra term I A '*' cancels that part of the anomaly in
Eq. (2.10) which is proportional to m.

The situation with iiiAi (x) is different. From Eq.
(3.23}we can identify the symmetric trace-free tensor

The null basis e(~) (X(ox)) at Ox stays fixed. From the
second form of Eq. (4.17) it follows that
iii6 p(ox; T+,T ]&i»6 p(ox; T+,T ]. There is. no
spacetime tensor field i«6 p(X) which would yield

iiie p(x; X]by restriction, Eq. (4.19).
We could come to the same conclusion by bending the

embedding at OX =X (Ox) without boosting it, i.e., by
changing K and/or K, at Ox while keeping X, (ox),
n i (Ox), and A(()x) fixed. Again, this changes

»,6 p(ox;X] as given by Eq. (4.17), and hence Eq. (4.19)
must fail. Finally, the argument wouM still hold if we ad-
mitted», 6 p(x; X] with a trace.

For completeness let us note that, by virtue of the
Mainardi equation (I.A6),

1 1
iiieap(x &X] ((g K i K )n(+)an(+)p12 2m

—(g'K i+K )n( ) n( )p)

n (x)B K(x):=fdx'n (x')M(x)/6X (x')

=K (x),

and hence

(4.22)

1 1
& z z

12 2m
((g'K )

—K )A e(~) e( )

—(g'K, +K )A e( ) e( )p)

(4.17)

g'K i+K =n(~) B~ .

This enables us to write»ie p(x;X] in the form

1 1 ri»6 p (n(+) "(+)p"(
—)

(4.23)

whose projection yields iii A ia(x; X]:

»iA) (x;X]=„,6 p(x;X]nP(x;X] . The energy density

n( )an { )pn (+ ) )dyK (4.24)

However, there is no sPacetime tensor field iiie p(X)
such that

»iA)a(x;X]n (x,X]=—— g, K~~01 1
(4.25)

„,e.p(x; X]=„,e.p(X(x) ) . (4.19}

To see this, note first that expression (4.17) is a local
functional of the embedding: if we keep a small stretch of

measured by the hypersurface observer is always negative
unless a piece of the embedding is extrinsically fiat (un-
bent). On the other hand, the energy density measured
on the hypersurface by the privileged inertial observer t is
inde6nite:
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1 1
», A, (x;X]t (X(x) ) = —— (Kg) t '), i =0 ' (4.26) 1 1„,A, (x;X]u (X(x))=—— (Kg, u'),

indeed, the total anomaly energy vanishes,

„,A (t):=f dx mA(a(x)t (X(x))=0 (4.27)

+ g, K W[u] .1 1

12 2m
(4.34)

and hence it is trivially conserved. Similarly, the inertial
momentum density

1 1
i,iA, (x;X]s (X(x))= —— (Kg,s'), =0 (4.28)

Integrating,

=1 1«iA(u)= fdx'giK W[u] . (4.35)

yields the vanishing total anomaly momentum

», A (s):=f dx 'iiiA i (x;X]s (X(x))=0 . (4.29)

This is a spatial invariant and hence its Poisson bracket
with Pii(x) vanishes. However, the Poisson bracket of
«iA (u) with Pi)(x) does not vanish; by the Mainardi
equation (I.A6),

Adding &&&A &
to h

&
thus amounts to redistributing the

inertial energy and momentum on a hypersurface while
keeping their total values fixed. On the other hand, add-
ing &A &

to h &~ not only changes the energy distribution
(4.13), but also lowers its total value by the Casimir ener-

gy
The energy density (4.26) can be given a nice intuitive

interpretation. Parametrize the embedding by the arc
length o.. Then

(mA (u»P)i(x)I

1 1
( —g) b 8'[u]+g, K fP [iu])

1 1 gi(D(+) D(+) + (T+( ))12 2w , +

+D iD' ' u, (T (x))) . (4.36)

t '= dT/do = —v /+ I —u— (4.30)
This means that while h (u), u C LC is a quantum con-
stant of motion, H (u) is not.

and

Kg )
=d 1»A/d o = du(o )

do
(1—v ), (4.31)

V. SPACKTIMK DIFFKOMORPHISMS
AND CONFORMAI. ISOMKTRIKS IN

THE DIRAC CONSTRAINT QUANTIZATION

where v (o ) is the velocity of the hypersurface observer
with respect to the inertial observer. From here we see
that the energy density

1 1 d
,«A, (o;X]t (X(cr))=— y((r)

6 2~ dg2
(4.32)

iiiA)a(o", X]s (X((r))=—1 1 d 1 d 1

6 2m. do v o) do y(a
(4.33)

While, »A, (x) smeared by the privileged Killing vec-
tor fields t and s [and thus also by an arbitrary Killing
vector field (I.2.9)] is zero and hence conserved, », A, (x)
smeared by a conformal Killing vector field u EL,C is not
a constant of motion. This distinguishes, iiA, (x) from
, A i (x); we have seen that, A (u) is a constant of motion.
To study what happens, multiply Eq. (3.23) by u (X(x))
and use the conformal Killing equation (I.4.2):

is proportional to the second arc length derivative of the
Lorentz contraction factor y((r):=(1—u (o )) '~ . A
similar result holds for the momentum density

A. Operator representations of
I. DiRM and of the Dirac algebra

We have seen that spacetime diffeomorphisms play the
role of a dynamical group of the classical theory. The
generators U of L, DiffM can be homomorphically
represented either by the smeared Schrodinger momenta
P(U) or the smeared Heisenberg momenta P(U), Eqs.
(I.4.18) and (I.4.19). The dynamical variables P(U) gen-
erate the evolution of classical states under infinitesimal
diffeomorphisms U, Eq. (I.4.20). The representation
equation (I.4.19) ensures that this evolution is foliation
independent. Similarly, the dynamical variables P(U)
generate, by the Heisenberg equations of motion (I.4.21),
the evolution of the field variables P(x) and w, (x).
Again, the representation equation (I.4.18) ensures the
foliation independence of this evolution.

Our definition (2.3) of the commuting Heisenberg
operators Pi (x) and the subsequent construction (2.29)
and (3.11) of the commuting Schrodinger operators
P,~(x) enable us to take these classical relations over into
the quantum theory. By smearing the momentum opera-
tors Pi (x) and P, (x) by the vector fields U(X) restrict-
ed to the embedding, we map each generator
UGL DiffM into an operator, P(U) or P(U), acting on
the function space described in Sec. II A. From the fun-
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damental commutation relations (2.4) and (3.12) it follows
that the smeared operators homomorphically represent
the Lie algebra I. DiffM by the commutator algebra on
H:

—.[P(U), P(V)]=P( —[U,V]),1

l

—.[P(U),P(V)]=P ( —[U,V]) .1

l

(5.1)

(5.2)

The smeared form of Eq. (2.5) imposes the constraints
as the restrictions

P(U)4=0 VUEL DiffM (5.3)

These equations are quantum counterparts of the classi-
cal equations (I.4.20) and (I.4.21).

In the Schrodinger picture, Eq. (5.4) is an expression of
the familiar fact that the Schrodinger field operators do
not explicitly depend on the Schrodinger time (the
Schrodinger embedding). On the other hand, Eq. (5.3)
acquires the dynamical meaning of the Schrodinger equa-
tion

l xlU Xx 5%'X —H UC, X
5X (x}

(5.5)

Equation (5.5) specifies how the Schrodinger state
%[X,P] evolves from an embedding X(x) to a nearby
embedding X(x)+U(X(x)) which is a result of displac-
ing X(x) by an infinitesimal diffeomorphism U(X). The
representation equation (5.1) ensures that when we de-
form an initial embedding into a final embedding either
by a two-step process U(X(x)),V(X(x)), or by an
equivalent three-step process V(X(x)), U(X(x)), and
[U,V](X(x)), the initial state always evolves into the
same final state up to terms of second order in the dis-
placements U and V. From here we can conclude by a
familiar argument that the evolution of the state does not
depend on the foliation connecting a given initial embed-
ding with a given final embedding.

Because the deformation vector U(X) is arbitrary, the
Schrodinger equation (5.5) can also be written as a varia-
tional differential equation (2.8):

i ' =H, (x)%[X,Q] .i —
i~ x (5.6)

Th&s form of the Schrodinger equation underscores the
role of the embedding as a many-fingered time variable.

Another possibility is to look at Eqs. (5.3) and (5.4)
from the point of view of the Heisenberg picture. Equa-
tion (5.3) then reduces to the statement that the Heisen-
berg states do not depend on the embedding, Eq. (2.6). It
is now Eq. (5.4) which has a dynamical ineaning: it tells
us how the field operators P(x) and n. ,(x) evolve under an

on the physical states O'&Ho of the system. Similarly,
the smeared form of Eq. (3.25} tells us how the field
operators P(x) and vri(x) are evolved by the generitors
P(U):

—.[$(x),P(U)]=0= —.[m, (x),P(U)]1

l l

VUEL DiffM . (5.4)

infinitesimal diffeomorphism U(X) which displaces the
embedding X(x) into X(x)+U(X(x)}. In the same way
in which the representation equation (5.1) ensures that
the evolution of the Schrodinger states did not depend on
the choice of foliation, the representation equation (5.2)
now ensures that the evolution of the field operators P(x)
and n i(x) does not depend on such a choice.

The representation equations (5.1) anrl (5.2) crown our
effort to find a covariant constraint quantization of a
parametrized field theory. They ensure that the Dirac
constraint quantization can be consistently carried out
both in the Heisenberg and in the Schrodinger pictures.
The key to our solution of the problem was the elimina-
tion of the anomaly from the operator representation
equations. The generators of spacetime diffeomorphisms
are then represented by the operators P(U) and P(U)
which generate evolutions along all possible foliations.
These operators are we11 defined on a single function
space H which, after the constraints are imposed, reduces
to the physical space Ho with a Hilbert structure.

In our discussion we took advantage of the formal and
conceptual simplifications brought in by working with
the unprojected constraints and the associated spacetime
diffeomorphism algebra, instead of with the more usual
projected constraints (the super-Hamiltonian and super-
momentum constraints) and the associated Dirac algebra.
All arguments, however, can easily be repeated in this
slightly more cumbersome language, smearing the quan-
tum Dirac algebra of the projected operators
P»i(x), P»(x) [or P»i(x), P»(x)] by externally pre-
scribed lapse and shift functions N' (x) and N'(x)
Again, the key element in performing a consistent Dirac
constraint quantization of our parametrized system is the
ability to construct the Dirac operator algebra (3.30)
without any anomaly.

B. Conformal isometrics and quantum constants of motion

In classical theory, the group C of conformal
isometrics can be considered either as a subgroup of the
dynamical group DiffM or as a symmetry group of the
diffeomorphism Hamiltonians. In the first way of looking
at C, the generators u of LC are represented by the
smeared Heisenberg momenta P(u) and they satisfy the
representation equation (I.4.19). In the second way of
looking at C, the generators of I.C are represented by the
smeared Schrodinger momenta P (u) and they satisfy the
representation equation (I.4.18). Moreover, the mixed
Poisson brackets between P(u), uCLC and P(V),
V C L DiffM (weakly) vanish: Eq. (I.4.33). The
diffeomorphism Hamiltonians P(V) are thus left condi-
tionally symmetric under a conformal motion generated
by P(u), and P(u) is a constant of motion. The dynanii-
cal variable P(u) is weakly equal to the smeared Hamil-
tonian fiux —h (u) which is also a constant of motion;
indeed, because h (u) does not depend on the embedding
momenta, its Poisson bracket with the diffeomorphism
Hamiltonian P(V) vanishes strongly rather than weakly,
Eq. (I.4.25). The constants of motion h(u) form an an-
tihomomorphic representation of LC, Eq. (I.4.27).

Let us see how much of this classical structure survives
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When we apply the operator (5.7) to a physical state
O'EH0, the Poisson bracket term yields a nonvanishing
contribution because the anomaly potential »]2 (u) is not
conserved under normal deformations, Eq. (4.36):

—[P (u), P(V) ]4+0 for O' C H0 . (5.8)

We must conclude that the diffeomorphism Hamiltonian
operators are not left invariant by the generators P(u) of
conformal isometrics, and that these generators are not
quantum constants of motion on the physical space Ho.

On the other hand, when we smear the original Heisen-
berg evolution generator (2.29) based on the normal-
ordered Aux by a conformal Killing vector uELC, we do
get a quantum constant of motion. Indeed, from Eqs.
(2.28), (2.29), and (5.1),

—.[II(u),P(V)]=P( —[u, V])1

(5.9)

However, because of the anomaly, Eq. (2.32), the opera-
tors II(u) do not represent the Lie algebra LC. Note also
that II(u) are equivalent to the Hamiltonian ffux opera-
tors —h (u). This brings us back to our old results of
Sec. II 8: because the Hamiltonian ffux operators h (u)
do not depend on the embedding momenta, they are
quantum constants of motion not only on the physical
space HQ, but also on the big function space H, Eq. (2.28).
However, as their weak equivalents —II(u), they do not
represent the I.ie algebra L,C, due to the anomaly in Eq.
(2.26).

To summarize this part of our discussion, the genera-
tors P(u) of LC no longer leave the diff'eomorphism
Hamiltonian operators invariant on the physical Hilbert
space H0, and as a consequence they are no longer (quan-
tum) constants of motion. One can find an infinite system
of constants of motion, namely, —h(u)=II(u). These
generate quantum canonical transformations which leave
the diffeomorphism Hamiltonian operators invariant, but
their operator algebra differs from LC by the anomaly.
The symmetry group of the quantum system is thus
different from the symmetry group of the classical sys-

the Dirac constraint quantization. Of course, to consider
C as a subgroup of the dynamical group DiffM is
straightforward; all that is needed is to restrict the ele-
ments UEL, DiffM in the operator representation equa-
tions (5.1) and (5.2) to the elements uCLC. Problems
arise only when we try to consider C as a symmetry
group of diffeomorphism Hamiltonian operators: the
operators P(u) which represent the elements u&LC, Eq.
(5.2), no longer weakly commute with the P(V). Indeed
by Eqs. (2.28), (4.1), (4.2), and (5.1),

—[P(u), P(U)]=P( —[u, V))—
[ A (u), P(V) } . (5.7)1

tern. Fortunately, this does not effect in any way the con-
sistency of the Dirac constraint quantization.

VI. FACTOR ORDERING OF THK CONSTRAINTS
IN THK SCHRODINGER PICTURE

In the Heisenberg picture the constraints require no
factor ordering because they turn out to be the funda-
mental Heisenberg operators P] (x). On the other hand,
the operators

P] (x;X,P, p, q, ak, a'k]

:=P] (x)—&] (x;X,p, q, ak, a'k] —Q] (x;X], (6.1)

which in the Heisenberg picture evolve the field variables
P{x),m](x), must have a definite ordering to be well-
defined operators on the function space H and to com-
mute with each other, Eq. (3.12). We have shown that
this factor ordering amounts to taking A ] (x;X] as the
multiplication operator, P] (x) as the variational deriva-
tive operator, and performing the normal ordering of the
Heisenberg mode operators a&, a*k in the field Hamil-
tonian flux h] (x).

In the Schrodinger picture the factor ordering of the
constraints

P, (x):=P] (x)+h] (x;X,P,~]+A] (x;X] (6 2)

&]~(x)=—,(n{ )~](x;X]h]]{+)(x)

+—,'n(+)'(x;X]h]]( )(x), (6.3)

which reduces our task to finding the correct ordering of
the hypersurface null components (I.3.30) of the flux,

h ]](y )(x )= 2 (7T](y)(x ) )

In the Schrodinger picture, the null momenta

vr](+)(x):=n](x)+P ](x)

(6.4)

(6.5)

are simple combinations of the fundamental Schrodinger
field variables. On the other hand, they are related by
Eqs. (I.3.29), (I.2.27), and (I.2.37) to the spacetime fields

(() +( T—;q, p, ak, a*k ) of the Heisenberg picture:

77](~){x)=+2T ](x )P @(T (x) )

=2A '{x)g](x)P +(T (x)) . (6.6)

becomes nontrivial. The Schrodinger operators
A] (x;X] and P] (x) are now the multiplication and the
variational derivative operators; our task is to find the
factor ordering of the field Hamiltonian Aux

h] (x;X,g, ir] in the Schrodinger operators X (x), P(x),
and m](x) which would ensure that the constraints P] (x)
commute: Eq. (3.12). The correct ordering of h] (x) of
course amounts to a transcription of the Heisenberg nor-
mal ordering to the Schrodinger set of variables.

We start from Eq. (I.3.35),
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The slope factor A(x;X] is given by the integrals (I.2.31)
and (I.2.35).

Equations (6.4) and (6.6) set the framework for what we
want to do. In the first step we define kernels of integral
operators which separate the spacetime fields P ~(T*)
into the positive-frequency (the Heisenberg annihilator
a„) and negative-frequency {the Heisenberg creator a'k)
parts:

=A(x)g, (x)(~)5 f dx' g, .(x")A(x")
X

(6.16)

negative-frequency parts (6.14) and (6.15) depend on the
embedding. We can write these functions in a form
which does not require knowledge of the privileged null
coordinates T+:

(~)5,(x',x; T+]

(6 7) and

In the second step we restrict these kernels to obtain the
corresponding split of the null Schrodinger momenta
(6.6),

17)(y)(x)=(+)7T,(+)(x)+( )7r, (y)(x) . (6.8)

In the third and the Gnal step we place the positive-
frequency parts before the negative-frequency parts in the
fiux components (6.4) and thereby obtain their normal-
ordering kernels.

The separation (6.7) of the positive- and negative-
frequency parts of P +(T*) is achieved by the positive-
and negative-frequency parts (+)5 of the 5 functions
5( T*):

(p)P +(T+)=f dT+ (g)5(T+ —T+ )(5 +(T+ ),
(6.9)

(g)({) (T )=f dT (~)5(T —T )it, (T ) .

These functions are defined by the formulas

(+)5,(x', x;T ]
T

= —A '(x)g, (x)(+)5 —f dx' g, (x")A '(x")
X

(6.17)

The functional form of the spacetime functions (+)5( ) in
Eqs. (6.16) and (6.17) is the same, namely, (6.10) and
(6.11). Their arguments are given by Eq. (I.2.38). Like
the slope factor A(X) itself, the functions (6.16) and (6.17)
are reconstructed from the intrinsic geometry and the ex-
trinsic curvature of the embedding.

The normal-ordered fiuxes (6.4) can now be expressed
in terms of the functions (6.16) and (6.17). We get

h(((+)(x)= f dx f dx N (()+)( xq xtx qT ]
X X

5(T+). 1 + y e TikT1 +
( )

Ic =1
(6.10)

X77(+ )(X )7T(+)(X ) (6.18)

The kernels X»~+~ which enforce the normal ordering
have the form

5(T—). ) + y e+ikT
k=1

(6.1 1) N))(+)(X,X'yx"; T+]=25((x',x—)5)(x",x)

In each of these equations, the homogeneous mode is di-
vided equally between the positive- and the negative-
frequency parts. Let us note that

+2i{5 ( )',x)5x+ (( )("x, XT ]—
—5,(x",x)5(+),(x',x; T—])

5 =(+ )5+ ( )5 and (+ )5=
( )5 (6.12) (6.19)

for both of the expressions {6.10) and (6.11).
We use Eq. (6.6) to induce the splitting (6.8) of the null

Schrodinger momenta:
I

(+P ((+ )(x ) =2f dx (y)5((x ~x &

T+ ]w)~(+ )(x )

(6.13)
(y)7T)( )(x ) =2f dx (g)5((x qx t T ]71( ( )(X )

X

Here,

(+)5)(x',x; T+ ):=A(x)g, (x)(~)5(T+(x)—T+(x') )

(6.14)

in which the dependence on the embedding enters
through a set of two real functions:

1
5(y)((x' x; T ]= . ((+)5((x',x; T+]

l

(6.20)

We see that the normal-ordering kernels (6.19) are Her-
mitian in the arguments x', x":

N*
()y()( &xx& )x=N (y)()( ~

x'»xx) (6.21)

(+)5)(x',x; T ]:=—A (x)g, {x)(+)5(T (x) T(x')) . —

(6.15)

Unlike the 5 functions themselves, the positive- and

this ensures the self-adjointness of the Hamiltonian flux
operator (6.18).

To summarize, Eqs. (6.3) and (6.18) express the Hamil-
tonian flux operator normal ordered in the Heisenberg
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modes in terms of the Schrodinger field variables (6.5).
The kernels (6.19) which arrange the normal ordering on
an embedding X(x) are invariantly constructed from the
intrinsic geometry and the extrinsic curvature of that
embedding by Eqs. (6.20), (6.16), (6.17), (6.10), (6.11),
(I.2.31), and (I.2.35). The factor ordering leading to the
total Hamiltonian Aux operator diA'ers from the factor or-
dering (6.3) and (6.18) by the anomaly potential, Eq. (4.2).
Either one of these two covariant factor orderings is con-
siderably more involved than the straightforward nonco-
variant factor ordering suggested by the string theory.
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