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Nonequilibrium statistical quantum field theory for open systems
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Recently, a number of authors have begun to study the evolution of quantum fields in the early
Universe characterized by a time-dependent density matrix pz(t). All of this work is predicated on
the assumption that one's subsystem" of interest is in some sense "decoupled" from the rest of the
Universe, so that pz satisfies a Liouville —von Neumann equation which implies, e.g. , an isentropic
evolution. Starting from "first principles, " i.e., the Schrodinger equation for the totality of "subsys-
tem" plus surroundings ("bath"), it is shown here how such a picture can be derived as the limiting
case of a more complete statistical description. Quite generally, one finds that ps and the "bath"
density matrix pz satisfy coupled nonlinear generalizations of the Liouville-von Neumann equation
and evidence a nonisentropic evolution. However, in a Vlasov-type approximation, p& and p& satis-
fy instead much simpler bilinear equations which imply an isentropic evolution. And finally, in the
limit that the "back reaction" of pz on pz can be neglected in computing the evolution of p&, one
recovers a true Liouville —von Neumann equation for the evolution of p& in an external field.

I. INTRODUCTION

Over the past several years, much attention has been
focused on the use of statistical quantum field theory in
understanding various physical processes in the early
Universe. The general discipline of statistical quantum
field theory has indeed a long and successful history, but,
unfortunately, its most powerful realization, namely,
finite-temperature field theory, is oftentimes inapplicable
in a cosmological setting. There is usually no reason a
priori to assume that the fields of interest are "at equilib-
rium" —such an equilibrium should be derived, rather
than inserted by hand —and there may in fact be good
reason to expect that the fields are not "at equilibrium. "
The Universe as a whole is expanding, so that, strictly
speaking, except for special models like a conforrnally in-
variant field theory in a conformally static spacetime,
equilibrium cannot even be defined. It is only in the limit
that some appropriate "relaxation" or "reaction" time tz
is significantly shorter than the expansion time tH that an
approximate notion of equilibrium can make sense.

For this reason, one seems constrained to return to the
full dynamics, working with a Schrodinger equation or its
field-theoretic analogue, the Tomonaga-Schwinger equa-
tion. This, however, leads to different problems, both
conceptual and practical. Given the assumption that
there exists but one Universe which is characterized by a
single wave function, it seems diScult to impart some
concrete meaning to the ordinary ensembles of statistical
physics. And, even more pragmatically, given that one is
trying to probe, either observationally or theoretically,
only a part of the Universe (if nothing else, one is quite
likely neglecting the quantum dynamics of the gravita-
tional field), which need not be totally decoupled from the
rest of the Universe, there is no obvious sense in which
the density matrix ps for one's subsystem of interest can
be assumed to satisfy a simple Liouville (or Liouville —von
Neumann) equation.

However, despite these uncertainties, one does have
the intuition that, at least in certain cases, it may prove
reasonable to assume that the evolution of ps is in fact
governed by a Liouville equation of the form

dPs = —il~s ps'dt

where the brackets denote a commutator and %z denotes
an appropriate subsystem Harniltonian. This is, e.g., the
starting point for the elegant functional Schrodinger ap-
proach to statistical quantum field theory in the early
Universe being developed by Jackiw and his co-workers'
or by Cooper and Mottola. And moreover, such a Liou-
ville equation also underlies the more simphstic ap-
proaches to a Schrodinger evolution predicated on a
straightforward mode decomposition.

The obvious questions are as follows. Is there in fact
some mathematically well-defined and physically reason-
able limit in which this description is valid? And how, at
least in principle, might one go beyond such an approxi-
mate description. Thus, e.g., this description is limited in
the sense that it implies an isentropic evolution. Indeed,
it follows trivially that the "entropy"

5, = —Trsps lnps

(where Trs denotes a trace over the subsystem variables)
is conserved absolutely, i.e., that the time derivative
de(t)ddt =0, although there do exist other useful mea-
sures of "entropy" which can exhibit a nontrivial time
evolution.

The objective here is (a) to derive an exact equation for
the evolution of ps(t) which is amenable to approximate
analyses and then (b) to show how the implementation of
such approximations leads to a Liouville equation for ps.

The basic idea is to start from an isolated system
characterized by a wave function f and an associated
pure-state density matrix p, to view this composite sys-
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tern as a coupled "subsystem" and "bath, " characterized
by impure reduced density matrices pz and p~, and then
to study the mutual interactions of p& and pz. In so do-
ing, one is implicitly decomposing the total p into two
pieces, a contribution p~:—psp~ which rejects the
separate behavior of the subsystem and the bath, and a
remaining contribution pI =p —pz which reflects the
correlations associated with their interactions.

This is a useful para. digm to adopt because of two "nat-
ural" approximations that may oftentimes prove
justifiable.

(1) Either because the interaction of the subsystem and
the bath is weak, or perhaps for some other reason, it
may be that the correlations between the subsystem and
the bath are small, so that, in the spirit of a Vlasov
description, one can approximate p=p& =p&p&. In this
approximation, one finds that p& and pz will satisfy cou-
pled linear equations which constitute an obvious analo-
gue of well-known mean-field equations for the composite
system of matter and electromagnetic radiation. Indeed,
if ps and pz are reinterpreted as the reduced density ma-
trices for matter and electromagnetic radiation in a sys-
tem of two-level atoms, the moments of Eqs. (3.1) and
(3.2) imply the Bloch-Maxwell equations of quantum op-
tics.

(2) Et may further prove that, even though pB has a
significant inQuence on the evolution of ps, the "back re-
action" of pz on pz is comparatively weak. In this case,
the evolution of pz is governed approximately by a
decoupled Liouville equation

further pB(t) can be viewed as a given function of time,

ps will satisfy a Liouville equation with the bath playing
the role of an external field.

II. EXACT NONLINEAR EQUATIONS
FOR A COUPLED SUBSYSTEM AND BATH

The starting point for the analysis is a wave function g,
the evolution of which is governed by the Schrodinger
equation. This i)'j serves to define a (pure state) density
matrix p, the evolution of which is determined by the
Liouville (or Liouville —von Neumann) equation

dp
dt

i [—H,p]:— 1(t)p(t—) . (2.1)

Here H is the (in general time-dependent) Hamiltonian,
the square brackets denote a commutator, and I.(t) is the
so-called Liouville operator. The density matrix is as-
sumed so normalized that Trp=l, where Tr denotes a
trace over all the variables.

One wishes now to split the composite system de-
scribed by p into two pieces, a "subsystem" characterized
abstractly by some set of variables x, and a "bath"
characterized by variables y. The associated reduced
density matrices PB(x) and pB(y), not themselves corre-
sponding to pure states, take the forms

PB(x)=TrBp(x, y)

dpi'
i [HB~PB ]dt

(1.3) pB(y)=Trsp(x y) (2.2)

the forma1 solution of which will then serve as a source
for the time derivative dps(t)Idt.

Suppose in particular (a) that the "subsystem" and
"bath" refer to the matter and gravitational sectors of a

quantum theory of gravity described by a Wheeler-
DeWitt equation and (b) that, as suggested by several au-
thors, one can make sense of the Wheeler-DeWitt equa-
tion as a time-dependent Schrodinger equation. Assump-
tion (1) then implies a neglect of correlations between the
gravitational and matter sectors, and (2) is consistent
with the "heavy-light" splitting implicit in the assump-
tion that, to lowest order, the gravitational sector is
characterized by a wave function y=exp(t'S), where S is
the classical action associated with some vacuum solution
of the Einstein equation.

Section II of this paper uses elementary projection
operator techniques to derive exact coupled, nonlinear
equations for dpi'/dt and dpi' Idt which contain no ex-
plicit reference to pI

—=p —pzpz except through the prop-
agation of an initial condition pI(to). This is simply a
transcription into a different setting of an approach first
developed by Willis and Picard, which has already
found applications and generalizations in areas extending
from stellar dynamics and galaxy clustering to "entropy
generation" in the early Universe. ' Section III then
shows that if one neglects the correlations buried in pI,
one recovers a linear system for ps and p~, and that if

where Tr~ and Trs denote, respectively, partial traces
over bath and subsystem variables. The total Hamiltoni-
an 0 decomposes into subsystem and bath contributions,
and an additional interaction piece:

H(x, y)=HB(x)+HB(y)+AHt(x, y) . (2.3)

PB(x y) =ps(x)PB(y)— (2.4)

denotes that piece of the total p which contains no infor-
mation about correlations between the subsystem and the
bath. Indeed, as will be seen below, the ansatz p=pz
leads to a sim. pie Vlasov description.

As is well known in nonequilibrium statistical mechan-
ics, this sort of decomposition can be rendered "canoni-
cal" and "consistent with the dynamics" through the in-
troduction of an appropriate "projection operator. " This
can be done in many different ways. ' However, the sim-
plest, and perhaps most intuitive, fashion in which to
proceed is simply to introduce the operator (cf. Ref. 5)

Associated with this decomposition are Liouville opera-
tors I.s, L~, and ALI. The introduction of the parameter
A, , not necessarily assumed small, will prove useful below.

The objective now is to implement this splitting into
subsystem and bath in a fashion well suited for analyzing
the dynamical evolution (2.1). One "natural" way in
which to do this is to write p in the form p=pz+pI,
where, by definition,
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P [pz (t)]:P—(t) =ps(t)Trs+pz(t)Trz

ps(t)p~(t)TrsTr~ . (2.&)

dpI +(1 P—)LpI = —(1 P—)LP& (2.10)

One then verifies that

P (t)p(t) =p~ (t) =ps(t)p~(t),

that

P ( tz )P ( t, )g(x,y ) =P ( t~ )g(x,y)

for all matrices g(x,y) and all times t~ ~ t „and that

P(t), p(t) —=0 .
d

'di

(2.6)

(2.7)

(2.8)

It is straightforward to solve formally for the evolution of
pt(t) in terms of an initial condition pI(tp) and the values
of p~ at retarded times t' & t, and then to insert this solu-
tion to (2.10) into Eq. (2.9). The net result is an exact, al-
beit nonlocal and nonlinear, equation for the time evolu-
tion of PR(t) which contains explicit reference to pI only
through the propagation of an initial condition pt(tp).
Thus, explicitly, one finds that

dpi'
dt

+PLpz =C[pR]

where

dpi' +PI p&
= —PI.pldt

(2.9)

and

Equation (2.6) shows that P serves to "project out" p~
from the total p, and (2.7) then implies that, at fixed t, P
is in fact idempotent, i.e., a real projection operator. This
manifests a precise sense in which p~ and pr are "orthog-
onal. " Equation (2.8) shows that the operations of pro-
jection and time evolution effectively commute, so that
the decomposition p=pz +pl is consistent with the dy-
namics.

By acting on (2.1) with the operators P and (1 P), one-
is then led to a coupled system of the form

and

C [pg ]= P (t)L (t)G (t tp )pI(tp )

f —fo+ J drP(t)L(t)G(t, t —r)
0

X [1 P(t r—)]L (t—r)p~(t —r—)

(2. 1 1)

G (tz, t, ) = Texp —J dt [1 P(t)]L (t)—
1

(2.12)

Coupled equations for p~ and p~ follow immediately
from this formal solution by taking partial traces Tr~ and
Trz. Thus, for example, one sees that

dp~ dpi' dps(x)
Trz +PLpz = +i Tr~[H, (x)+XHt(x y) ps(x)pa(y)] +' f~s(x) ps(x)]dt dt dt

(2.13)

where

&s(x)=Hs(x)+A, Tr~p~(y)Ht(x, y) (2.14)

dp (ys, t) +' [~a ~ pa ]dt

denotes an "average subsystem Hamiltonian" weighted
by the bath density matrix. In terms of &s(x) and the
corresponding

TrsL ( t)G ( t tp )pI( tp)
fo

+A'J d, r Trsb(t)G(t, t r)b(t —r)—
&z(y) =Hz(y)+XTrsps(x)Hz(x, y) (2.15)

Xp~(t r)ps(t —r), (2.1—7)

for the bath, straightforward manipulations then lead to
equations of the form"

dps(x, t) +i[~s Psldt

where, for arbitrary g(x,y ),

Ab(x, y)g(x, y) =i [H(x,y) —&s—(x)—&~(y), g(x, y)]
= I k[Ht(x, y ) —Trzpz(y')Ht(x, y')

—Trsps(x')Ht(x', y), g(x,y)] . (2.18)

III. APPROXIMATE EVOLUTION EQUATIONS

TlgL (t)G (t tp )pt(tp)
I —fo

+A'J dr, Tr~b(t)G(t, t r)b(t —r)—
Xp~(t r)ps(t —r) (2.16—) Equations (2.16) and (2.17) constitute a complicated

nonlinear system reAecting the detailed effects of correla-
tions between the subsystem and the bath. They do, how-
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ever, simplify enormously in the limit that these correla-
tions are "weak, " so that, in some appropriate sense, the
operator A,h is small. This will obviously be true if AH,t
itself is small. In this case, assuming for simplicity an ini-
tial condition pt(to) =0, the right-hand sides of (2.16) and
(2.17) may be viewed as being of order k in a A, expan-
sion, and hence small compared with the left-hand sides,
which are only of order A, . Indeed, in this case the linear
equations

ps
dt

+& [~s ps)=0 (3.1)

dpi'
dt

+i [&a,pa]=0 (3.2)

can be viewed formally as equations appropriate in a
weak-coupling expansion truncated at 0 (A, ).

Even when A,Ht is large, A,h may be small in a suitable
sense. This is, e.g., well known in the theory of Newtoni-
an stellar dynamics. ' Here the quantum density matrix
p is replaced by a classical N-particle distribution func-
tion which satisfies a classical Liouville equation, and the
"uncorrelated piece" of this distribution function pz is
constructed as a product of S r'educed one-particle distri-
bution functions. In this case, A,Hz denotes the total
gravitational potential energy and the corresponding in-
teraction Liouville operator ALt involves the total gravi-
tational force acting on each of the stars, a quantity
which can in no sense be viewed as small. However, A,b.
involves instead a "Auctuating" gravitational force, from
which the "average" Vlasov contribution has been sub-
tracted, and )here is a we11-defined sense in which this is
small. Although pointwise the "fluctuating" force may
be large compared with the "true" force, it is small in the
sense that its e6'ects are typically manifested only on a
very long "relaxation time" tz.

In any case, the assumption that p=pspz leads im-
mediately to the bilinear system (3.1) and (3.2), which im-
plies an isentropic evolution. Indeed, one verifies im-
mediately that the subsystem and bath "en&ropies"

satisfies an equation

de & &p=Tr f d~ptt '(t)g(t)G(t, t —r)g(t ~—),
dt 0

where

k=~pa ~pspa .

(3.5')

(3.6)

This implies in particular that, as the subsystem and bath
interact to generate correlations as rejected by a nonvan-
ishing pt(t), their joint entropy Sa must increase at least
initially:

dSa (to+ b, t)
dt

=At Trpa '(t, )g'(t, ) &0 . (3.7)

Although the Vlasov description of (3.1) and (3.2) leads
to conserved entropies Ss and Sz, energy conservation is
more subtle. This for two reasons: (a) If the full Hamil-
tonian H is time dependent, there can be no fundamental
energy conservation; (2) even if H is time independent, so
that its expectation value defined with respect to p is con-
served, there is the possibility of energy exchange be-
tween the subsystem and the bath, so that there need be
no individually conserved subsystem and bath entropies.

Consistent with these caveats, however, two concrete
results can be derived. Provided that H is independent of
time, the "mean field energy"

E =TrH(x y)ps(x)pa(y) (3.8)

As noted in the Introduction, this Vlasov description
simplifies further in the limit that A,H~ has a negligible
impact on the evolution of the bath. Indeed, to the ex-
tent that one can approximate &a =Ha, pa will satisfy a
closed equation

associated with pz =pspz will in fact be conserved. And,
moreover, in the limit that AH&-0, i.e., in the absence of
any interactions between the subsystem and the bath,
there do exist individually conserved quantities

Es=TrsHs(x)ps(x) and Ea =TraHa(y)pa(y) . (3.9)

Ss = Trspslnps and S& = —Tr&p&lnp (3.3) dpa
i [Ha, p—a ]= La(t)pa(t)—,dt

(3.10)

S= —Trp lnp (3.4)

of the isolated system change. Equation (2.1) implies that
dS Idt—:0.

If, alternatively, one considers the exact equations
(2.16) and (2.17), the entropies Ss and Sa will evidence a
nontrivial time dependence. Indeed, if one assumes once
again an initial condition pt(to) =0, it follows that

S~ —= —Trpb Input Ss+S&, (3.5)

the sum of contributions from subsystem and bath,

are both conserved in this Vlasov description:
dSs Idt =dSa ldt—:0. It is only by allowing for changes
in the degree of correlations between subsystem and bath
that one can generate entropy for either the subsystem or
the bath. And never will the total entropy

so that the formal solution
E

pa(t)=T exp —f drLa(r) pa(tp)
0

(3.1 1)

allows one to view pz as a known function of t. By in-
serting this pa(t) back into (3.1), one is then led finally to
a Liouville —von Neumann equation for the reduced densi-
ty matrix of the subsystem, ps now satisfying an evolu-
tion equation appropriate in the presence of an external
field characterized by a Hamiltonian

H,„,(x)=A, TraHt(x y)pa(y) . (3.12)

%'ithin the context of the setting suggested in the In-
troduction, where ps and p~ reAect the matter and gravi-
tational sectors of some quantum theory of gravity, the
final Liouville equation
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dps =i [Hs+H t~ps]dt
(3.13)

would presumably be interpreted as defining a "mean
field" theory of matter associated with a gravitational
background which need not be dominated by some single
semiclassical solution.

One final point should be stressed. Although it has
been assumed far conceptual reasons that the composite
system of "subsystem" plus "bath" is characterized by a
puie state density matrix, this was not used in any of the
analysis. The preceding works for any density matrix p,
either pure or impure, provided only that p satisfies the
Liouville equation (2.1). This ambivalence reflects an im-

S& = —Trp&lnp& = —Trp lnp (3.14)

(where now Tr denotes a phase-space integral}, so that,
quite generally, dS+ Idt =0. Only because of "quantum
efTects" can a pure state for the composite system lead to
a nonisentropic evolution for the subsystem.

portarit feature of the quantum description which would
be lost in the classical limit. In this limit, p is reinterpret-
ed as a distribution function, so that a pure state corre-
sponds to a delta function in some appropriate phase
space. This means, however, that the reduced distribu-
tion fuhctions pz and pz also correspond to delta func-
tions, so that p =p~p~. It follows, therefore, that
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