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The concept of time and its relation with probability in quantum gravity is studied. It is argued
that the notion of probability is better defined when the topology is fixed. A “probabilistic time” is
then introduced. It coincides with the proper time, in the classical limit, and yields a parabolic field

equation, i.e., the Schrodinger equation.

I. INTRODUCTION

As is well known there is no well-defined notion of time
in quantum gravity, and it is also known that we do not
have a well-based probabilistic interpretation.  The aim of
this paper is to show that both problems are intimately
related, and both can be solved if we endow space-time
with a fixed topology.

Usually, in quantum gravity we foliate space-time, but
we cannot give a time label to each shell, with a precise
and distinct physical meaning. Every component of A;;,
or a function of all of them, such as 4172 (h;; is the metric
of each space surface of the foliation and & =deth,~j), can
be used as a “‘time,” to label the sheets. But none of these
parameters are privileged. None of them could claim to
be something like proper time. Furthermore, A4;; can take
many arbitrary values, thus this parameter can also
change almost arbitrarily. On the contrary, at the classi-
cal, and also at the semiclassical level, we can draw an or-
thogonal trajectory to the foliation and define its proper
time parameter or use other methods of labeling with a
physical basis.

The origin of this amgibuity is our incomplete under-
standing of quantum gravity. To quantize gravity is a
venerable problem of theoretical physics. Two kinds of
difficulties prevent the formulation of a complete satisfac-
tory theory. The first and main trouble is that we do not
have yet a well-behaved gravitational Lagrangian for
short distances, and, therefore, we do not have a renor-
malizable theory. We shall not study this issue in this pa-
per and we shall use the Hilbert-Einstein Lagrangian, a
bad short-distance behaved Lagrangian, to develop a
model theory only.

But, there is a second kind of problem, the well-known
list of interpretation problems. (a) What is the Hilbert
space of states of the theory? And intimately related with
this question, (b) what is the probability interpretation of
the states? Finally, the last, and perhaps more important
question, (c) what variable plays the role of time? If we
do not have a well-defined and unique notion of time,
Hamiltonian quantization is not very satisfactory. We
shall study these problems and try, at least, to sketch a
new solution.

The paper is thus organized as follows.

In Sec. II, we shall see that, perhaps, there exists a
solution to problems (a) and (b), and also problem (c) if
we fix the topology of space-time, and that, in fact, there
are not compelling reasons to vary the topology.

We study the well-known inner product derived from
the Feynman path integral, in Sec. III and explain how
this inner product promotes the states space to a Hilbert
space, if the topology is fixed. Nevertheless, we shall see
that this product does not have the traditional role of an
ordinary inner product of quantum theory, because it is
not related, in the usual way, to the field equation of
quantum gravity, the Wheeler-DeWitt equation. Fur-
thermore the corresponding normalization is, in general,
divergent. We shall try to overcome these difficulties and
to define a new convergent normalization, in Sec. IV, that
will allow us to define probabilities and to introduce a
“probabilistic time”’; the notion that we believe plays the
role of Hamiltonian time in quantum gravity.

In Sec. V we shall study the problem with the Born-
Oppenheimer approximation and show that probabilistic
time coincides with proper time up to leading order. For
gravitation, coupled in a sufficiently general way with a
scalar field, we shall demonstrate that de Sitter space-
time is the model of the Universe (up to this order) as a
rigorous consequence of the formalism.

In Sec. VI we find a Schrodinger equation (where
probabilistic time plays the role of ordinary time) for the
wave function. This fact shows that probabilistic time is
a good candidate to become Hamiltonian time. In a nat-
ural way, we define a new inner product, related in the
usual fashion with the Schrdédinger equation, that com-
pletes the analogy with an ordinary quantum theory.

In Sec. VII we will see that our interpretation of the
problem coincides with the one of Vilenkin,! based on the
Klein-Gordon probability current.

In Sec. VIII we draw our main conclusions and try to
see if the good features of probabilistic time are mainly
due to the approximation we are using, as seems to be the
case for some of them.

In addition, as probabilistic time is defined exactly, and
not through an approximate method, at least provisional-
ly, all the problems stated at the beginning are solved.
Further research will show if the introduced concepts are
valid.
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II. THE FIXED TOPOLOGY

As we have said in the Introduction, one of the most
important problems in the formulation of quantum gravi-
ty theory is how to define an inner product in the state
space, and how to promote this space to a Hilbert space.?
To avoid this problem we can forget the whole Hilbert
space idea and adopt the powerful formalism of the Feyn-
man path integral.>~> Then we can use a similar inter-
pretation to Everett’s® that substitutes the probabilistic
interpretation.

On the other hand, the Feynman integration is per-
formed, at least in principle over the whole set of possible
topologies. This method has been strongly criticized”?
because the change of toplogy might yield nonunitary
problems. In this work we shall use the Feynman in-
tegral, but adopt a fixed toplogy (which we shall always
choose to be a simple one). Thus, we shall see that we
can find a Hilbert space and reestablish the probabilistic
interpretation.

Einstein’s elegant and primordial idea was that gravity
is associated with the geometry of space-time. However,
“geometry” is a word that summarizes several different
mathematical structures: topological, differential, con-
formal, affine, projective, and metric structures.’~!?
Which one of these structures is the one really associated
with the gravitational field? Certainly it is associated
with the metric, and through the metric, with the confor-
mal, affine, and projective structures, via the compatibili-
ty principle. But it is not, by all means, obvious that the
toplogical or the differential structures should be associ-
ated with the gravitational field. We begin to believe that
it is not at all related with these last structures. This fact
is evident, at least locally and at the classical level, be-
cause gravitation is a local effect. In addition, when we
study the Feynman integral of a scalar spin-zero field (or
a vectorial spin-one field, etc.) we do not make the in-
tegral for different topologies. All of the theory turns out

to be correct using one toplogy only. Why must we

change the topology when we study the gravitational
spin-two field? Perhaps the change of topology could
bring a new and interesting insight to the theory.!> How-
ever, it is evident that we can try to formulate a theory
with a fixed topology, at least, as a first approach. This
attitude allows us to define the wave function of the
Universe, as in Ref. 4, and to obtain most interesting re-
sults.'* !> Nevertheless, in these papers the fixed topology
is only accepted as a working hypothesis. On the con-
trary, in this paper, we shall suppose that it is an essential
property of space-time, i.e., the Universe has a certain
differential manifold structure that we shall not change.
We shall see that with this hypothesis we cannot only ob-
tain the results of Refs. 4, 14, and 15, but also define a
‘““usual” normalization.

Of course, we can take a less controversial view. As
the probability of change of topology is normally con-
sidered very small (as in Ref. 4) or vanishing (because an
infinite amount of energy is needed to change the topolo-
gy, as in Refs. 7 and 8), we can disregard this
phenomenon in a great number of problems. Thus, a
more conservative version of our statement will be that a
normalization can be introduced in the cases where the
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probability of a change of topology would be negligible.
The reader can take the version of our idea that he (or
she) likes better.

III. THE HILBERT SPACE

Let us suppose that space-time is a unique and well-
defined connected differentiable manifold M and that
there is also a neutral-scalar field ¢(x) that symbolizes
matter.

The set of all possible histories is the set of all metric
8,(x) that M can have, and all the fields ¢(x) that can be
defined on M. ‘

Let us define two arbitrary regions in the manifold M
[see Figs. 1(a) and 1(b)]: M, where we shall establish the
conditions {C} that the histories (g,,(x),#(x)) must
satisfy; My, where we shall perform our observation.
{0} symbolizes some particular results for these observa-
tions.

The probability amplitude ¥({0} /{C})=(0 | C) is

FIG. 1. (a) A rubber tube. (b) A deformed rubber tube.
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Y({o}/{c})=(o0|C)
= [ Dlg,., 1D $lexp(iS§lg,. (x),$(x)1} ,
(3.1)

where the integral is over the set of histories that satisfy
{0} and {C}, S[g,.,(x),é(x)] is the action we adopt
from fields g,,(x) and ¢(x), integrated in the connected
region that lies between 0M. and 0M,. The Feynman
integration is performed on the set of all the histories that
satisfy conditions {C} and yield observations { O}, count-
ing the histories only once each, because two different g,
could correspond to one and only one history if they are
related by a coordinate transformation. Of course, there
exists part of the histories outside M,,M. and the region
between dM, and OM . However, as in Ref. 5, if we con-
sidered this part of the histories, we should assign a con-
stant value to their contribution.

Let us now consider a hypersurface = of M with no in-
tersection with the regions M and M,. Let us suppose
that the topology is such that X is a connected three-
surface [as in Fig. 1(a)]. On X each four-metric g,,
defines a three-metric h,-j. Let us, in addition, suppose
that the topology is such a one that 3 defines in M two
connected regions M ~, with boundary = and dM, and
J
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M *, with boundary = and 0M,,.
Then we can define the wave functions

¢c[hij’¢z]=<hij’¢z | C)

= [ Dlg,, 1D[41exp(iSE(g,, 4D ,  (3.2)

where the integral is over the set of all histories that satis-
fy {C} and yield h;; and ¢*on 3, and

¢O[hij’¢z]:<hij’¢2 | 0)

= [ Dlg,, 1D[$lexp(iS3[8,..41) »

where the integral is over the set of all histories that satis-
fy {0} and yield h;; and ¢> on =, SZ (S3) is the action
integrated in M~ (M%), and ¢Z is the restriction of ¢ to
3.

Now, let us observe that all the histories {g,,(x);¢(x)}
define a metric h;;(x) and a field $*(x) on 2. If we count
each metric structure of X just once (i.e., all the metric
h;; related by coordinates transformation are counted just
once because they represent only one metric structure),
the set of metric and fields, h,-j,d)z is an exclusive, com-
plete set, because it contains all the possible metric struc-
tures and all possible fields counted just once. Then,

(3.3)

w(o}/{chH=(0|C)= [Dh;1D[*] [ Dig,,1D[] [ Dig,, 1D[$lexp{i(SEg,,$1—S3g,m 8]}

= [ DIh 1D16> W5 ki 0> W clhyn 931

 where the first integral is over the set of all metrics and
all fields in X, the second over the set of histories that
satisfy {C} and yield &;; and ¢* on Z, the third over the
set of all histories that satisfy {O} and yield 4;; and #* on
3, and the final integral is over the set of all metrics and
all fields in 2. :

It is needless to say that all these manipulations are
only a symbolic algorithm, and that we cannot rigorously
compute any one of these integrals until we know the
definition of the corresponding measure. We have only
presented a general formalism that can be used in the
particular cases where the manifold M is defined and we
know the measures (as in the case of minisuperspace).
Only in these cases is the formalism rigorous.

But let us now remark, as in Ref. 4, that Eq. (3.4) al-
lows us to define an inner product in the Hilbert space of
states, at least at our symbolic level. In fact, let us define
the product

(Yo,¥c)=(0|C)
=y({0}/{C})
= [ Dh; 1DI> Wy 8> W Ry, 03], (3.5)

where the integral is over the set of all metrics and all
fields in =. Of course this inner product is independent of
the surface (i.e., “time” independent) because it is directly
defined by Eq. (3.1) where there is not a trace of . In
fact, the wave functions 1/Jc[h,-j,¢2] and ¢0[h,-j,¢2] of

(3.4)

f

Egs. (3.2) and (3.3) do not actually depend on the location
of the surface =, provided = lies between M and dM,,,
but only the intrinsic metric A;; and the scalar field ¢

Hence, the inner product (3.5) does not depend on the

precise location of X. In addition, it is Hermitian and

-positive definite.

Thus, this inner product promotes, at least symbolical-
ly, the space of states to a Hilbert space.

Of course, as stated in Ref. 4, the product (3.5) is not
the one that would be required by a canonical theory to
define a Hilbert space of physical states. It is an “unusu-
al” inner product. We know that the wave field equation
of the theory, the Wheeler-DeWitt equation, is hyperbol-
ic and the product (3.5) is: of a parabolic type. We would
prefer to have a different product related, in the usual
way, to the wave field equation. We ‘shall find this
modified product in Sec. V1.

For the moment, let us only say that the inner product
(3.5) is just a mathematical construction that naturally
stems from the Feynman integral formulation of quan-
tum gravity. It can be used to normalize the wave func-
tion as in Ref. 4, asking that

(Yo, Pc)=1. (3.6)

This kind of product can also be computed in principle
because 2 can be “in the future” of M, and M, as 2’ in
Fig. 1(a). The problem is that the integral on the left-
hand side (LHS) of Eq. (3.6) turns out to be divergent in
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general. Thus this normalization is not only ‘“unusual”
but also divergent. But we can overcome these problems,
as we shall see. Then with this normalization 1/1C[h,»j,¢2 ]

could be interpreted as a probability amplitude and .

| ¢C[hij’¢2] |2 as the probability density to find the
metric h;; and the field configuration ¢Z, if the quantum
state satisfies conditions {C}. We shall use this interpre-
tation in the next section.

Let us now study if the definition of the inner product
(3.5) is possible when the topology is not fixed. In fact, in
Refs. 6 and 16 it is shown that serious problems exist
when we try to define this kind of inner product, based on
the Feynman integral, if the histories can pass more than
once through surface 2, and this phenomenon can occur
if we allow the topology to vary. Therefore, our worries
are in order.

To fix the ideas let us consider a rubber tube, the mani-
fold M [Fig. 1(a)], and let us draw a dotted line in the
tube, the hypersurface =. Let us also draw M. at the
bottom of the tube and M, on the upper part. M+ and
M ~ are perfectly defined. We can vary the metric of the
tube with no change in the topology, i.e., to deform the
tube in all possible ways [Fig. 1(b)]. In this case all the
definitions we have given work all right.

Of course we can also use other kinds of topologies,
e.g., the Hartle-Hawking ‘“no-boundary” where the to-
pology must be compact in the past and all compact
geometries bounded by = should be summed over (i.e., to
use a closed tube in “‘the past™).

However, troubles begin if we try to use all possible to-
pologies. Because if all kinds of topoligies are allowed we
can also add a torus to our cylinder, i.e., to break the
tube and add a handle to it as in Fig. 2. Then it is impos-
sible to define zones M and M~ and to compute the
wave functions of Egs. (3.2) and (3.3). In fact, “the set of
all histories that satisfy {C} and yield A; and #* on 37
are now not well defined because they can now pass by
the handle and reach M, and they are not bounded to
satisfy any condition there. Therefore, Eq. (3.4) is not

valid in this case.
J
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FIG. 2. The cut tube, to build a cylinder with a handle.

Of course, the solution to this problem seems very sim-
ple. We must allow the surface 2 to be nonconnected.
Then surface = will be really 2=X=,UZX, where X, is the
old 2 and =, a new surface that splits the handle (Fig. 2).
Now our wave functions will really be

D 45 7 (2) 43
belhi, 8t hP d%)]

D 43 3(2) 43
Volh 00,0, 05)]

where V.7, (h{?,¢%) are the metric and the scalar

field on =, (£,). Doing so we can reestablish Eq. (3.4) and
everything seems all right. But we can add a new handle
to the torus and repeat the reasoning introducing a third
component of =, 23, and so on, up to =,. Thus to use all
topologies yields a surface £ with n disconnected com-
ponents 2,,2,,...,2,. Then, our wave functions are

really
V28 LR T T TART AN 3 I8
1/’0[hi(j”’¢(21); LA 7hi(jn),¢(2n),2] H

and the inner product (3.4) now reads

yl{o}/{Ch=(0|C)="T [DIh{ 1DI6)]" - - DA IDIST)]

1 43
X'l’?)[hi(j L Ly - - - > by

where n is the numer of components of 2. This inner
product is the analog, for quantum gravity, of the inner
product of Eq. (2.27) of Ref. 6, i.e., the inner product of
ordinary one-particle quantum mechanics for a surface S
that can be crossed and recrossed many times. And this
inner product cannot be defined. In fact, in Ref. 16 Har-
tle showed, using the theory of stochastic processes, that
this inner product does not have a continuum limit.

The same pathology exists in our case because surface
2 can be crossed and recrossed many times, e.g., using
the topology of Fig. 3 (that is the quantum gravity ana-
log of Fig. 2 of Ref. 6).

Anyhow a closer study of the problem shows that this

St ZWclhi ) - - -

(3.4")

=
’ hi(jn)"ﬁ(n):z] >

FIG. 3. Surface 2 is crossed many times.
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disease can be cured at least in some particular cases,!’
but in order to show that the inner product (3.4) can be
used we must overcome at least three problems.

(1) To sum over all possible topologies we must know
all of them. All possible topologies are well known if the
manifold has dimension two, because we have the popu-
lar “genus” clasification. But we are far from having a
similar knowledge when the dimension is greater than
two (see, e.g., Ref. 18).

(2) If we use all possible topologies we will have the
possibility of the creation of universes, i.e., “trousers to-
pologies.” In Refs. 7, 8, and 19 it is shown that an
infinite amount of energy is needed to produce these
changes of topology. Even if these papers are not com-
pletely conclusive we certainly have a new problem here.

(3) Finally, the normalization based on the inner prod-
uct (3.4') [and also the one of Eq. (3.5) when the topology
is fixed] are not satisfactory because in general they are
divergent! and therefore a probabilistic interpretation be-
comes impossible. In fact one of the variables of D(A;;)
must be considered a time, then integral (3.4') or (3.5)
must be evaluated for t = — « or ¢t =0 (the “big bang”) to
t =+ oo and therefore it diverges. Also as we said (3.4")
or (3.5) are unusual because the field equation of the
theory is a hyperbolic one and these products are of para-
bolic type, and also because there is a ‘““time” integration
while in quantum mechanics the inner product is only ob-
tained integrating over the space variables.

As we shall see we can solve all these problems if the
topology is fixed because in this case we can define a foli-
ation and a “probabilistic time.” Of course we cannot
define a foliation in the set of all topologies, therefore the
problems of (3.5) can be solved but not those of (3.4').

For all these reasons we shall work with a fixed topolo-
gy from now on.

We shall conclude that the real difficulty in defining a
satisfactory inner product, when the topology is fixed,
only has a mathematical origin, our ignorance of how to
define a rigorous measure for the Feynman path integral.
On the contrary, if topology fluctuates, we cannot, in
principle, define a normalization with the necessary prop-
erties to build a theory with the usual probabilistic inter-
pretation. In the cases such as minisuperspace, where we
do not have these problems, we can define the normaliza-
tion with a full physical meaning.

IV. PROBABILISTICAL TIME AND THE “USUAL”
NORMALIZATION

We have seen how a fixed topology allows us to define
an inner product in states space and to introduce a proba-
bility interpretation. Let us now see how this interpreta-
tion allows us to define a time.

One of the typical problems of quantum gravity is the
absence of a well-defined physical time. One of the coor-
dinates of h,-j, or a function of all of them, such as the
square root of the determinant of h;;=h 172 plays the role
of “time.” However, there are infinitely many ways to
choose this time, but none of them is privileged nor has a
clear physical interpretation, such as proper time in gen-
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eral relativity, or classical time in mechanics, etc. The
lack of a physical time makes it impossible to implement
a parabolic Schriodinger equation, and makes the inter-
pretation of the results obscure.

Let us see how we can fill the gap and define a “proba-
bilistic time”” with a clear physical motivation. We shall
develop our ideas in minisuperspace to avoid further
problems with the definition of the measure. The natural
generalization to a more general situation will be given at
the end of this section. We shall use the notation of Refs.
4 and 5 [with small modifications to make explicit the
Planck length /=(167G)'/? everywhere].

Let us study minisuperspace with metric

ds’=—NXt)dt*+a*(1)d Q3 , (4.1)

where a (t) is the radius of the Universe, N (¢) is an arbi-
trary lapse function, and d Q2 is the metric of the unitary

three-sphere. The corresponding Euclidean metric is
ds’=NX7)d?+aX1)dQ3, 4.2)

where 7 is the Euclidean time such that t =ir.
The Hilbert-Einstein Lorentzian action, plus the usual
action for the scalar field, in metric (4.1), reads

S=o2 [%fdt(N/a)[(ad/N)z—a2+H2a“]]
+2 4 [ de{—(a*/N)[$+66(a /a)g

T2 IS V()1 |
(4.3)

where 02=12/247% H?=A/3, i.e., one-third of the
cosmological constant, M is the mass of field ¢, £ its cou-
pling constant, and V(¢) an arbitrary potential (the Eu-
clidean action I can be obtained making the change
t=it). The overdot symbolizes the derivative with
respect to ¢ (or 7) in the Lorentzian (Euclidean) case. Let
us change the scalar field as

d—X=(27%)""%a%¢ . 4.4)

We obtain the action

S=(0"%/2) [ dt(N/a)[(ad /N> —o0Ha> %X /N )

+ula)+o2(a,X)],

4.5)
where
ula)=—a’+H?%a*,
(4.6)
v(a,X)=27*{6Ea%*p*+a’ [M*$*+V ()]} .
The metric of minisuperspace is
e |@ 0
Gp=0 0 oX? |’ 4.7)

where a, b=1,2 is an index for the components a and X.
The Wheeler-DeWitt equation for the Lorentzian case is
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L{—(0*/a*>=%)(d/3a)[a'~%(3/3a)]+[0?/a’~12%(3%/ax*)]—ula)/a —o*[v(a,X)/al}¥(a,X)=0 ,

where ¥(a,X) is the wave function ¢(h,-j,¢2) in the
minisuperspace case and we have chosen the Laplace
operator of metric (4.7) as a natural solution for the order
problem. The signs of the potentials # and v change be-
tween the Lorentzian and Euclidean regions.

We shall now introduce the notion of *“probabilistic
time.” Let us consider a volume element of minisuper-
space V' —Gl(a)dadX, where G(a)=detG,,. This
volume element is, in fact, invariant under changes of

. coordinates in minisuperspace. From the discussion of
the previous section |(a,X)|? can be interpreted as the
probability density to find the metric and the field in the
volume element V' —G (a)da dX containing the “point”
(a,X), because the heuristic normalization (3.6) turns out
to be the rigorous one:!’

foaof | $(a,X) |2V =G (a)da dX=1,

(4.9)

in this case. [To avoid for the moment the problem of
the divergency of Eq. (3.5) we integrate between a =0,
the radius of the Universe at the “big bang” and a,, a
final radius of the Universe, i.e., a radius big enough to be
completely outside the quantum-gravity domain. We will
return to this problem below.] Thus, the probability of
finding the metric and the field at (a,X) is

d’p=|¥aX) |V —G(a)da dX . (4.10)

Then the probability of finding the metric in the interval
a,a +da, for all possible values of the field X is

dp=da [ | P(a,X) | =G (a)dX . (4.11)

Therefore dp symbolizes, somehow, a quantity propor-
tional to the number of possible metrics in the interval
a,a +da. Now, as the metric is defined by the sole pa-
rameter a, we can intuitively think that the Universe
must stay in metric a for a period of time proportional to
dp. In other words, if we give to each metric a certain
unitary time period (e.g., a second or, more likely, a
Planck time), the metric of the Universe must lay be-
tween a and a +da, a period proportional to dp multi-
plied by this unitary time (e.g., dp sec or dp X Planck
time). Therefore, we can define the element of probabilis-
tic time as

do=cda [ |(a,X)|?V =G (a)dX , (4.12)
or probabilistic time as
9=cf0"daf | ¥(a,X) |2V =G (a)dX , (4.13)

where a =0 corresponds to an eventual “big bang.” We
shall choose the proportionality constant ¢ below.
Therefore, based on an intuitive idea, the Universe
stops in each one of the possible metrics for the same
time, we have defined a time parameter, the probabilistic
time, and we claim that this definition has some physical
sense. In fact, it seems a valid way to give a physical
meaning to the probability density |(a,X)|2 The
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(4.8)

[

three-metrics are defined by a unique parameter a, but
they are really part of a space-time four-metric, as they
define the metric, not only on an hypersurface but also in
a timelike neighborhood of this hypersurface through Eq.
(4.1). How long does the Universe stay in the metric
defined by a? What is the timelike thickness of the slice?
It seems reasonable to give the same time thickness to
every slice. In other words, if an evolution a (6) is given
and if someone wants to “count” the number of metrics
in the interval a,a +da, it seems natural to divide the
evolution into equal time steps, and then to count the
number of the steps in the interval a,a +da. The invert-
ed procedure yields precisely the definition of the
probabilistic time. Of course, only a systematic study of
this notion in a great number of examples will show if it
is a useful idea or not. We shall see some of these exam-
ples below.

Of course, the definition of probabilistic time can be
extended to the general case. Using the time parameters
h'?2 or K and the notation of Ref. 4, the general
definition reads

o=c [""any [ DIn' 10U, 1D147]
X | Y[h' % h,0%1] %, (4.14)
o=c [* Ko [ DIKIDIA,ID14%] | YK Fyud) |2,
(4.15)

where we have taken a particular trajectory that crosses
all the hypersurfaces of the foliation. 4}’? (or K) are the
values of h!/2 (or K) at the point of intersection of this
trajectory and the hypersurfaces. It is used as a parame-
ter to label the hypersurfaces. D[k /%] (or D[K]) is the
functional integration taking into account the values of
h'/% (or K) in all the other points of the hypersurface ex-
cept the intersection point.

A foliation of space-time is used to define A;;. If no fo-
liation is possible, as in the case of variable topology, this
definition cannot be written.

As we really do not know how to perform these in-
tegrations we prefer to follow the study of probabilistic
time in minisuperspace, using the Born-Oppenheimer ap-
proximation, in the next section.

We must remark that the definition (4.12) also means
that we have chosen the “cosmological arrow of time.”?°
Whether this arrow of time coincides or not with other
arrows of time, in the quantum era, is a difficult problem
that we do not discuss in this paper. (Perhaps an auxili-
ary scalar massless field can be introduced to fix a mono-
tonically increasing time definition, as in Ref. 21.) But
essentially, as DeWitt pointed out,?? all clocks, being
parts of the Universe, are in principle also described by
the wave function of the Universe. To measure time one
just chooses one of these clocks in a more or less arbi-
trary way. When we try to establish the law of motion of
one ‘“‘spatial” variable, what we are really doing is com-
puting the correlation of the ‘“spatial” variable and the
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“time” variable that we have chosen as a clock, i.e.,
another ‘“‘spatial” variable: the clock hand point. The
bigger the clock is, the smaller the quantum fluctuations;
in this sense the best clock is the entire Universe, and the
cosmological arrow of time seems the most reliable one.

Let us try to clarify the probabilistic time definition,
studying how the same definition works in the simplest
example: Let us consider the motion of a one-
dimensional, nonrelativistic particle with a general La-
grangian .L(x,dx /dt,t) and a wave function ¥(x,t), mov-
ing in the domain

O<x <xg, O<t<ty. (4.16)
The wave function will be normalized as
fy %o 2
1) | “dx dt=1. 4.17
S L 1w | ax (4.17)

ty plays the role of a; now. We can see, in fact, that the
integral diverges if f,— o and the normalization be-
comes impossible.

Let us remark that this normalization is “unusual” be-
cause we integrate over the time variable. Now, let us
erase the notion of time. Let us change ¢ for an arbitrary
time 7=7(¢).

Let us also change the time measure, introducing an
arbitrary time measure u(7). Thus, the action is

I= [ Lix,dx /dt,0)dt
= [ [L(x,(dx 7dT)(dr/dt), t(T))u(r)~\(dt /dT)]

Xulrydr

= [L(x,dx /dr,7)p(r)dr . (4.18)

L is the new Lagrangian and u(r) is an arbitrary mea-
sure, but, of course, the physics is the same. Thus,

| 9(x,0) | *dx dt = | ,(x,7) | 2u(r)dx dT , (4.19)

where 1,(x,7) is the new wave function (that depends on
the measure u). Let us now suppose that we only know L
and we compute ¥,, and we want to reconstruct the no-
tion of classical time ¢. In order to do that we can in-
tegrate the last equation in the variable x:

dt fo ® | ¥ix,t) | 2dx =,L<T)d7f0 * | gx,7) | 2dx
(4.20)

Now we may introduce the “usual” normalization for the
wave function: |(x,¢) |2 must be the probability densi-
ty to find the particle at x “normalized for every time.”
Thus,

foxo | $(x,0) | 2=const=t5"" . 4.21)

The constant must be t; ' in order to satisfy normaliza-

tion (4.17). Therefore, we have
dt =tou(rdr [ ] ¢,(x,7)| %dx (4.22)
0
and

t=to [ wirdr [ | 9,0x,7) | %dx (4.23)
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i.e., equations similar to (4.12) and (4.13) [with ¢ =1, as
will be the case, cf. Eq. (5.23)].

Thus, we obtain classical time with the same definition
as probabilistic time in our toy model. But now let us re-
mark that from all possible time parameters 7, and for all
possible measures p(7), the classical time is singled out
via the normalization

) [0 g, m | Pdx =15 (4.24)

because from Eq. (4.20) we can see that in this case 7 be-
comes t. Thus this will be the “usual” normalization,
written for an arbitrary time parameter 7 and an arbi-
trary measure u(7), that substitutes the ‘‘unusual’one
(4.17). It becomes the really usual one (4.21), if we use
the privileged classical time ¢ and the trivial measure
plr)=1.

As we can see the time definition and the way to obtain
the usual normalization are intimately related and both
problems can be solved at the same time.

Finally Eq. (4.24) can be written as

wn) [t | 900,m) | 2dx =1 . 4.25)

This equation shows that what we are really normaliz-
ing is not | ¢, | *but #, | ¥, | > and that the last integral is
convergent even if 35— c0. This will be the recipe to
overcome the divergence problem of Eq. (4.17) when
to— oo: (4.25) does not have this problem.

Let is also remark that (4.21) is a ¢ constant, as is well
known, as a consequence of the Schrddinger equation.
On the contrary, in the general case, the second factor of
(4.25) is not a 7 constant, but it becomes a constant mult-
plied by u(7). The moral is the following: even if some
factors of the normalization equation are not constant as
a consequence of the field equation, they become a con-
stant multiplied by the measure. This fact will be useful
in the quantum gravity case.

Let us now use all the knowledge obtained in the toy
model in our minisuperspace problem. We have the
Wheeler-DeWitt equation (4.3), where the time variable is
a, and the “unusual” (divergent) normalization (4.9). Let
us obtain a privileged time variable and a “usual” (con-
vergent) normalization as before. We must find a time
variable

0=0(a) (4.26)

that would play the role of classical time. As V' —G (a) is
only a function of a the measure u(0) of 6 will be defined
by

V' —G(a)da=pu(6)d6 . (4.27)

Thus we can compute u(6) as soon as we know transfor-
mation (4.26).

As the physics must be the same using a or 6 we can
write [as in Eq. (4.19)]

| ¥(a,X) | *V' —G (a)da dX= | $(6,X) | *u(6)dOdX .
(4.28)
[Let us note that using Eq. (4.27) we do not actually



change the measure, thus we do not need the subindex u
as in Eq. (4.19): there is no arbitrary measure.] Now we
can integrate over the variable X that plays the role of the
spatial variable x:

V=G(aida [ "7 | (a,X)| %X
=w(0)d0 [ 77 | 9(6,x) | %X . (4.29)

The privileged time is singled out as in Eq. (4.24) by the
condition

wo) [T | 9o,x)| 2dx=65" . (4.30)

This is the “usual” normalization obtained integrating
only over the spatial variable X. The privileged time is
defined as in Eqgs. (4.22) and (4.23) by

do=0,Y"—G(a) [ 7 | ¥a,x)|%dX da , (4.31)
e=00f0a°v—G(a)f_+°° | p(a,X)|%dXda . (4.32)

But these are the definitions (4.12) and (4.13) of the
probabilistic time obtained in an independent way (if
¢ =0,, and this will be the case as we shall see in the next
section [cf. Egs. (5.23) and (5.24)] —precisely ¢ =6,=¢,
the classical time; this fact relates (4.22) and (4.23) to
(4.31) and (4.32) even more strongly). Thus probabilistic
time seems a logical interesting notion because it can be
defined through, at least, two different considerations.

The ‘““usual” normalization equation (4.31) can be writ-
ten as

w8 [ 776, ¥la, )| 2dx=1. (4.33)

This fact shows that what we really normalize is
60| ¥ |%and not | |2 If Bp— oo, Eq. (4.33) is still con-
vergent. Moreover in the definition of probabilistic time

| ¥ |? appears as 6, | ¥ |2 thus 6,|¥|? is the relevant

physical quantity. When 6,— 0, | |2—0 but 6,|¢|?
remains finite, and the probabilistic time definition is thus
independent of 8, if 6, is big enough, i.e., it belongs to the
classical period of the Universe.

As in the previous case the second factor in Eq. (4.3) or
(4.33) is not a constant as a consequence of the field equa-
tion of the theory, the Wheeler-DeWitt equation. In fact,
this was one of the main criticisms of this kind of normal-
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ization. But the second factor multiplied by u(6) yields a
constant and therefore a reasonable normalization. And
this feature of the method is not surprising since it also
appears in Eqgs. (4.21) and (4.25) where we are dealing
with a perfectly well-understood toy model. We conclude
that this particular feature is a consequence of the fact
that the times 7 or 6 have nontrivial measures u(7) or
u(6), that play a very important role in the normalization
formulas.

All our considerations up to now are exact; no approxi-
mation was used. But the probabilistic time also has
several interesting properties at the classical and semi-
classical level that we shall study in the following sec-
tions.

V. PROBABILISTIC TIME IN THE SEMICLASSICAL
‘ APPROXIMATION

Let us compute the probability amplitude ¥(a,x) and
the probabilistic time 8 using the Born-Oppenheimer ap-
proximation, as in Ref. 6. Thus, we introduce the decom-
position

Wa,X)=eX 9 (a,x), (5.1)
and we expand K (a) and J (a,X) in powers of o
K=0"Ky+K,+0K,+ -,
(5.2)

J=Jo+o¥,+0* T+ - .

We replace Eqs. (5.1) and (5.2) in the Wheeler-DeWitt
equation (4.8) and we separate the terms with equal
power in o2. Thus, we obtain an equation for each power
or o2 For the leading order o the obtained equation

reads

[dKy(a)/da]*—u(a)=0 . (5.3)

This is, in fact, the Hamilton-Jacobi equation for the vac-
uum, i.e., with no matter field, because the potential
v(a,X) [Eq. (4.6)] corresponding to this field is missing in
Eq. (5.3). From Eq. (5.3) we can obtain K(a) as

1[i(d?Ky/da*)—2(dK y/da)(dK, /da)+i(1—6&)a~(dKy/da)]],

Kol@)==% [ [u(a)]"%da . (5.4)
For the next order o2 we have
+i(dKy/da)(dJy/9a)—Lta =2 +12%(3%, /0X?) +vJ,/2=0, (5.5

where we have two unknowns, K| and J,. This ambigui-
ty is not strange because decomposition (5.1) is, in fact,
ambigous: we can take an arbitrary function of a, from
the first factor to the second one, with no change in the
form of the equation. Thus, we have an extra degree of
freedom and we can adopt an extra equation, to choose
the decomposition in a unique way, as we shall do below.
For the moment, let us return to classical time ¢ of Eq.

(4.1). If we make N (z)=1, t becomes proper time. From
Ref. 6 we know that, if the metric has the form

ds2=—dt2+h,»j(t,x)dxidxj , (5.6)
the gravitational field equation can be written as
dh,j/dt=G,jk18K/8hk1 > (5.7)
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where K [h,»j] is a functional solution of the correspond-
ing Hamilton-Jacobi equation and G;j, the superspace
metric

G =1h _}/Z(hikhjl+hilhjl_hijhkl) . (5.8)

For example, in the vacuum and for the metric (4.1)
K [h;] will be Ko[h;;]1=K(a) given by Eq. (5.4). Equa-
tion (5.7) in our particular case is simply

da/dt =—(1/a)dK /da , (5.9)

and in the particular case that K is only computed up to
the leading order o using Eq. (5.4), we find

da/dt=+u'?/a .

In fact, this last equation, with the definition (4.6),
yields the de Sitter space-time as a solution, i.e., the clas-
sical solution of the problem in the vacuum correspond-
ing to the leading order o° (as we shall show explicitly at
the end of the section).

The inner product (3.5) now reads

(99 )= foa" Jv*¥'vV "Gdadx
- foaodt (dK /da)(V=G /a) [ ¢*¥'dX
=t5" fotod’h/’ﬂ/")(x) ,

where #, is a “final time” corresponding to the final ra-
dius @y and where we have introduced the partial inner
product

(9,9 Yoo =toV'=C /a)dK /da) [ p*y'dX .

(5.10)

(5.11)

(5.12)

In the particular case that we compute K only up to the
leading order, this product reads

D =tou'%a' =% [y*yrax .

The partial inner product (5.12) is naturally related to
the computation of the probability of finding the metric
in the interval t,¢ +dt [Eq. (4.11)] that can now be writ-
ten as

dl’:to_l<¢'»¢>(x)dt ,

where we now introduce proper time ¢, instead of “time”
a, to compute the probability density.

We can now impose the missing condition. The prod-
uct {1, )y, is, in principle, a function of ¢ (or a). We
ask that the decomposition (5.1) must be such that the
inner product

(LI y=to(dK /da)(V'=G /a) [ J*J'dX

(5.13)

(5.14)

(5.15)

should be a constant. There is an important physical
motivation for this condition. If {(J,J’),=const and we
normalize the J of Eq. (5.1) as [cf. Eq. (4.21) of the toy
model]

(L, ) =1, (5.16)
Eq. (5.14) reads
dp =t0_1dt ei[—K*(aH—K(a)] , (5.17)
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i.e., the probability of finding the metric in the interval
(a,a +da), only depends on the function K (q); while
J (X,a) properly normalized by Eq. (5.16), is the probabil-
ity amplitude of finding the field in the interval (X, X 4+-dX)
if the metric is in the interval (¢, ¢ +dt).

If we make the computation only up to the leading or-
der and we only work in the case

ula)=H%*-a’>0, (5.18)
i.e., when

a>H™! (5.19)
in the Lorentzian case and when

a<H™! (5.20)

in the Euclidean case, from Eq. (5.3), K (a) turns out to
be real and Eq. (5.17) is only

dp =tgldt . (5.21)
Then probabilistic time [Eq. (4.12)] reads
dO=cdt/t, . (5.22)

Thus, in the leading order of the semiclassical approxi-
mation, probabilistic time is proportional to proper time;
i.e., when the Universe leaves the quantum era and goes
over to the semiclassical regime, probabilistic time be-
comes proportional to classical time. It is logical to ask
that probabilistic time be equal to proper time, in the
classical limit. This prescription allows us to choose the
constant c,

c =t (5.23)
and therefore, up to the leading order,
0=t . (5.24)

Thus, the probabilistic time is proper time in the leading
order of the semiclassical approximation.??

Now we can compare normalization (4,33) and (5.16),
they turn out to be the same.

In fact, from Eq. (4.7) we can see that a!/? is the mea-
sure corresponding to variable a while a *~25/2 is the one
of variable X. Thus Eq. (4.27), for variable ¢, reads

Viada=p(t)dt (5.25)
and from this equation and Eq. (5.9) we have
w(t)=a "V*(dK /da) , (5.26)

where the minus sign disappears, because we must con-
sider only the absolute value when variables are changed,
i.e., the measure must be positive. The normalization
(4.33) reads

to(V'=G /a)dK /da) [ | 9(1,X) | 2dX =1 (5.27)
and (4.33) coincides with (5.16), i.e., the “usual” normali-
zation turns out to be the natural one at the classical lev-
el, as it was expected.

Let us finally review whether the evolution of the ra-
dius of the Universe is, up to leading order, as a function
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of proper or probabilistic time. We must integrate Eq.
(5.10) (we choose the + sign):

da/d0=[+(H*?*>—1)]'"?, (5.28)

with the 4 (—) for the Lorentzian (Euclidean) case.
For a < H ™! we are in the Euclidean case and the solu-
tion is

a=H cos(HO) , (5.29)

where we have placed the “big bang” at = —7H ~!/2
for simplicity. This solution is correct up to time =0
where a=H ~!. For a>H ! we are in the Lorentzian
sector and the solution is

a=H lcosh(HO) . (5.30)

This solution is correct from =0 (where a=H ') to
6— + . As 0 is proper time in the leading order, these
solutions correspond to a sphere of radius H ! and to a
de Sitter space of the same radius, respectively. Actually,
only the second solution is physically important, because
the leading order could be considered a good approxima-
tion near the classical limit only. In addition, we have
shown that a solution of the problem exists where, after
the quantum period, we have a classical solution that be-
comes a de Sitter expansion in the far future, for all M, &,
and v (a,X). (This is logical because we have taken A5£0.)

VI. THE SCHRODINGER EQUATION

Let us continue the study to the next order o
ing Eq. (5.5) in the form

(i/2)[d*Ky/da*+(1—6&)a ~'dK/da
+2(dKy/da)(d]y/3a)]

_(dKo/da)(dKl/da)Jo"i“ﬂJO:o N (6.1)
where we have introduced the Hamiltonian operator for
the wave field J,: '

2, rewrit-

H=—1a =122 /3x*) + Lv(a,X) . (6.2)
Let us now introduce the new fieid

Jo=[(dKy/da)a'~%1'2], . (6.3)
Using this new field and Eq. (5.10), Eq. (6.1) becomes

i(3J,/36)=[(dK,/d0)+F£/al], . (6.4)

Now, let us define the ordinary Schrodinger inner prod-
uct:

(Jo.Ro)=to [TEKodX , (6.5)
and contract Eq. (6.3) with J, using this product. We ob-
tain

(i /2)(8/36)(J o, T o) =(dK  /d0)( T, T )

+(1/a) Ty, HTy) . (6.6)

Comparing Egs. (5.15), (6.3), and (6.4) we see that, up to
order o2, we have

(J0: T =0, T ) - (6.7)
Thus the normalization (4.33) or (5.16) are now
(JosJo)=1, (6.8)
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and Eq. (6.6), with this condition, reads

dK,/d0=(—1/a)Jy,HT,) . (6.9)

From this equation we can find K,. Now we can intro-
duce this result in Eq. (6.4) and find the equation for J;:

i(8J/30)=(1/a)[H —(To, HI) W » (6.10)

a Schrodinger equation modified by the reaction back of
the gravitational field.

At this point, we have computed the equations that
functions K, K, and J, must satisfy, (5.3), (6.8), and

.(6.9), and thus we can compute, in principle, the wave

function ¥(a,X) [Eq. (5.1)] up to order 0%

Now we are ready to calculate the equation that ¥(a,X)
must satisfy, and it will be a parabolic equation, as we
shall see. However, if we want to obtain a real
Schrodinger equation we must define a new function:

¥=[(dKy/da)a'=%]"%y . 6.11)

In fact, a Schrédinger wave function must be normalized
by the Schrédinger product (6.5), while v is normlaized
by the primitive product (4.33) or (5.16). Both ¥ and ¥
are normalized in their corresponding products:**

(1/’,111)(1/):(1;’17;): L,
so all the normalizations coincide. As, up to this order,?
¥={explilc "2 Ko+K )1} 7o » (6.13)

using Egs. (5.3), (6.8), and (6.9) we can compute the
derivative of ¢ with respect to 6 that reads

i(3%/d0)=(1/a)o " u+F1Y ,

i.e., a Schrodinger equation with a self-adjoint operator
on the right-hand side (RHS). Also ¢ satisfies a parabolic
equation but its RHS does not have a self-adjoint opera-
tor and it is not related, in the usual way, to the
Schrodinger product (6.5).

Therefore, using probabilistic time 6, the field equation
for the wave function is parabolic and it is an ordinary
Schrodinger equation, if the wave function is properly
normalized. (Although this result is not made explicit in
this form, it is implicit in Refs. 14 and 15).

Thus we conclude that in the semiclassical level the
“usual” normalization (4.33) or (5.16) or (6.12) is really
the usual one, because it turns out to be constant in time
via the field equation [i.e., the Schrédinger equation (6.14)
as in ordinary quantum mechanics].

(6.12)

(6.14)

VII. COMPARISON WITH VILENKIN
INTERPRETATION (REF. 1)

We will compare, in this section, our “usual” normali-
zation, with another one, based on a completely different
idea, and we will show that they coincide at the semiclas-
sical level. As the Wheeler-DeWitt equation is a hyper-
bolic one [really Eq. (4.8) is similar to a Klein-Gordon
equation in a curved background with variable “mass”
we can introduce the current

F=(i /2)GUYP* VY, p— PV, P*) , (7.1)



2226

wheie G is the inverse of matrix (4.7). Then it is easy to
show that

V,#=0. (7.2)

Let us define, in our minisuperspace, spatial surfaces;
as a is the “time” they are the a=const surfaces but, of
course, we could define this surface in a more general
way, if we wish to consider the minisuperspace as a
Riemannian two-manifold with metric G,,. Then, let us
define the probability to find the Universe in a point of an
element d 2, of the spatial surface = as

dP=4d3, . (7.3)

The conservation of probability is ensured by the con-
servation current (7.2), but these probabilities can be neg-
atives. This is of course an old problem, that this
definition of probabilities has, in the Klein-Gordon equa-
tion. It cannot be solved in general, but it can be solved
at the semiclassical level, because if 9 is given by (5.1) &,
is just

F1=(—i/2)[¢*(8/0a)p—(3/3a)p*]

= |J(a,X)|?[dK (a)/da] , (7.4)
that can be always positive choosing the right sign for K.

The normalization corresponding to probability (7.3) is
of course

[ #nidz=1, (7.5)
where n¢ is the unit vector normal to =.
Using (7.4) we have
(V=G /a)ldK (a)/da] [ |J(a,X)|2dX=1. (1.6)

As K is real at the lowest order, this normalization is just
the “usual” one (5.27) if we change | ¢ |%2—t,|¥]|? ie.,
the Klein-Gordon normalization used, by Vilenkin, at the
semiclassical level coincides with our normalization, if we
introduce the factor 7, to avoid the divergence problem,
as we have explained.

Thus Vilenkin’s interpretation coincides with ours, at
the semiclassical level, because the normalization is the
same and probability dp [cf. Eq. (7.3)] to find the
Universe at a time a with a potential X is proportional to
| ¥(a,X)|? as we have shown. In Vilenkin’s language a
would be a semiclassical variable and X a quantum vari-
able that corresponds to a ‘“‘small” subsystem of the
Universe, and the coincidence of both interpretations
shows also that our interpretation satisfies the correspon-
dence principle, i.e., that one should be able to recover

the traditional interpretation and normalization for the

quantum variable of the “small” system (this fact was
also shown in the last section).

The coincidence of both interpretations at the semi-
classical level makes both more reliable. But while
Vilenkin’s can only be used in the semiclassical domain
(to avoid negative probabilities) ours can also be used in
the quantum domain. In this sense we consider our inter-
pretation a better one.
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VIII. CONCLUSIONS

We propose the following answers to the list of ques-
tions in the Introduction.

(a) What is the Hilbert space of states of the theory?
The space of states cannot be promoted to a Hilbert
space but only to a normed space, using the norm of Eq.
(4.33) if we keep the topology fixed.

(b) What is the probability interpretation of the states?
The ordinary probability interpretation, with the normal-
ization (4.33), as a consequence of the previous answer.
This interpretation coincides with the Klein-Gordon-
Vilenkin interpretation at the semiclassical level.

(c) What is the variable that plays the role of time?
The probabilistic time, obtained by a natural way from
the probability interpretation, and with several good
properties: it is obtained in the same way that classical
time is “obtained” in quantum mechanics (cf. toy model),
it becomes the ordinary proper time in the classical limit,
it plays the role of ordinary time in the Schrédinger equa-
tion that a rescaled version of the wave function must
satisfy, up to order o2

All these answers are plausible and will be either
confirmed or not by further research.

Let us finish this paper by sketching some future possi-
ble line of research and answering some natural ques-
tions. We have seen that probabilistic time works up to
order 0% In the future we shall see how it works in
higher orders. For the moment, let us, at least, see that it
is also a useful didactical tool in the next order.

Let us consider the conformal case

M=0, V=0, £=1. (8.1)

In this case the wave function, computed by the
steepest-descent method, is (cf. Ref. 5), fora < H !,

¢zexp( _XZ/Z)( _02+a2_H2a4)—1/4

Xexp[ —1/3H*(1—H?a?)*"?] (8.2)
and, fora > H !,
Y=exp(—X2/2)(H?*a*—a?+o2)~" 174
Xcos[(H?*a?—1)*"2/3H>—7/4] . (8.3)

From the last equation using different heuristic argu-
ments, based in the conformal mapping between Einstein
and de Sitter universes, etc., it is argued that the quantum
solution evolves to de Sitter space in the far future (cf.
Refs. 4 and 5). We believe that the real problem with this
reasoning is the lack of a clear time parameter. Now, us-
ing probabilistic time the results stem more rigorously.
In fact, for this case let us repeat the arguments of the

last part of Sec. V, and consider a situation where
a>H™! and a>>0 , (8.4)

and compute the probabilistic time.
As the oscillating cosine factor in Eq. (7.3) can be aver-
aged, we obtain

d6/da~(H%*>—1)"1%, (8.5)
which is again Eq. (5.28). From the solution (5.30) of this
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equation and from the fact that 6 is proper time, in the
situation we are dealing with, we obtain, as a result, that
the Universe evolves to a de Sitter space-time in the far
future. Of course, we can say nothing of the kind for Eq.
(8.2), because the exponential factor cannot be averaged.
Near the “big bang” quantum gravity does not have an
asymptotical regime. We hope that this example, clearer
than the one presented at the end of Sec. V, would show
how, and how far, the concept of probabilistic time can
be used.

We can ask ourselves if the “miraculous” transforma-
tion of the Wheeler-DeWitt equation in a Schrodinger
equation is an exact feature of probabilistic time or just a
property of the approximation we have been working
with. But the transformation of a hyperbolic equation in
a parabolic one is well-known low-energy phenomenon
that happens in a great number of theories. Thus, the
elimination of the second derivative is only a feature of
the approximation. Even if probabilistic time is a precise
quantum gravity concept, defined through Eq. (4.13), it
seems that it behaves as a valid and ordinary time in the
low-energy approximation only. Additional research
must further clarify this point.

Therefore, we have the usual state of affairs at low en-
ergies: the usual inner product (6.5) defined by an in-
tegration, which turns out to be time invariant, and the
usual Schrodinger equation (6.14), related in the usual
way.

What happens at high energies? We have the unusual
inner product (3.6) or (4.9). It is definitely time indepen-
dent but it is unusual because it has a ¢t and a X integra-
tion. The time independence is then obvious because this
product has a t integration. We also have a hyperbolic
equation (4.8), while the inner product is of parabolic
type. The inner product and the field equation are not re-
lated in the usual way at high energies. Moreover the
normalization (4.9) is divergent if a;— «. But following
the example of the toy model we can transform the
unusual normalization in a ‘“‘usual” one (4.25) that turns

2227

out to be convergent. This normalization can be used to
introduce the probability notion and the field equation to
single out the physical states. Why must they be related
in the strictly usual wayj, i.e., hyperbolic product with hy-
perbolic equation and parabolic product with parabolic
equation? Furthermore they behave in the strictly usual
way at low energies.

Let us formulate a last question. Is probabilistic time
really a quantum notion or is it only a semiclassical no-
tion? From the analogy with the toy model of Sec. IV,
we would say that it is really a quantum notion, because
its definition is given in an exact way and no approxima-
tion is used: on the other hand, most likely the Wheeler-
DeWitt equation is only valid at energies lower than
Planck’s energy, because it does not have good short-
distance behavior. Then if we use a ¥ computed via the
Wheeler-DeWitt equation, in the definition of probabilis-
tic time (4.13), then we only have a low-energy reliable
time variable. But the blame must be put on the field
equation and not on the probabilistic time definition, in
such a way that if we would have a completely satisfacto-
ry field equation, for all energies, we would have a simi-
larly satisfactory probabilistic time.

Perhaps this is the solution of the whole interpretation
problem, at least in the case of a fixed topology. (For the
case of topology fluctuation see suggestions in Refs. 26
and 17.)

A preliminary and incomplete version of this paper can
be found in Ref. 27.
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