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Steepest-descent contours in the path-integral approach to quantum cosmology.
I. The de Sitter minisuperspace model
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We consider the issue of finding a convergent contour of integration in the path-integral represen-
tation of the wave function for a simple exactly soluble model, the de Sitter minisuperspace model.
Following a suggestion of Hartle, we look for the steepest-descent contour in the space of complex
four-metrics. We determine all the possible contours which give solutions to the Wheeler-DeWitt
equation or Green's functions of the Wheeler-DeWitt operator. We attempt to apply the
boundary-condition proposal of Hartle and Hawking. We find that the proposal does not fix the
solution uniquely because, although the initial point of the paths is fixed, the contour is not. We
find a contour which represents the Vilenkin wave function and discuss the differences between the
Hartle-Hawking and Vilenkin wave functions. We also discuss some of the implications of integrat-
ing over complex metrics. One consequence is that the signature of the metric is not respected, even
at the semiclassical level.

I. INTRODUCTION

I= —Jd xg' (8 —2A) —2fd xh' K (1.2)

There are at least five things that need to be specified be-
fore (1.1) may be regarded as properly and uniquely
defined. These are (i) gauge-fixing terms, (ii) a regulariza-
tion scheme, (iii) a measure, (iv) boundary conditions, and
(v) a contour of integration. This last ingredient is highly
nontrivial in quantum gravity because the Einstein-
Hilbert action has a special feature that distinguishes it
from most matter-field actions —it is not positive definite.
As a consequence, the path integral (1.1) wi11 not con-
verge if taken over real Euclidean metrics.

A way around this difhculty was proposed by Gibbons,
Hawking, and Perry. ' They observed that it is the con-
formal part of the Euclidean four-metric which is respon-
sible for the Euclidean action becoming negative. They
therefore suggested that the integral over all metrics be
split up into a sum over conformal equivalence classes
and a sum over conformal factors within each class,
where the representant is chosen in such a way that
R =4A. They claimed that the integral could then be
made convergent if the integration over conformal fac-
tors was rotated to lie parallel to the imaginary axis.

There have, however, been objections to this proposal.
First of all, it is not obvious that the proposed split into
conformal equivalence classes can always be carried out
in the manner claimed —it seems to miss out on some
metrics. Second, the proposal does not work when the
metric is coupled to nonconformally invariant manner—

Many modern approaches to quantum gravity involve
a Euclidean functional integral of the form

g„exp —I g„ (1.1)
C

where I is the Euclidean version of the Einstein-Hilbert
action:

the positivity of the Euclidean matter action is not
preserved by the conformal rotation. And finally, the
proposal is very difficult to implement in concrete exam-
ples.

In an attempt to sidestep these dim. culties, an alterna-
tive proposal was made by Hartle. He suggested that the
path integral (1.1) be taken along the steepest-descent
path in the space of complex four-metrics. In this ap-
proach, one does not necessarily take a Euclidean. or
Lorentzian path-integral expression to be the starting
point. Rather, g„ is regarded as complex and the in-
tegration is taken along the contour along which the real
part of the action increases most rapidly. Such a contour
is not unique, as we shall see in the example below.

In this paper, we will apply this idea to a simple mini-
superspace model in which the path integral can be eval-
uated exactly. The model is the de Sitter minisuperspace
model, in which one restricts the metric to be of the
Robertson-Walker type, described by a single scale fac-
tor, and the action is taken to be the Einstein-Hilbert ac-
tion with cosmological term. This model is to quantum
cosmology what the simple harmonic oscillator is to basic
quantum mechanics —it is the simplest nontrivial exactly
soluble model. Our primary aim is to determine the con-
tours that yield a convergent path integral. We will then
go on to study the implementation of the boundary-
condition proposals of Hartle and Hawking, and of
Vilenkin. This is of interest because a careful discussion
of exactly how the Hartle-Hawking proposal is imple-
mented in the path integral has never been given. In ad-
dition, the Vilenkin proposal is normally expressed as a
statement about the behavior of the wave function in su-
perspace. Although a path-integral version of this propo-
sal has been suggested, its consequences have not been
worked out in detail. It would be useful for the purposes
of comparing the proposals to have a path-integral ex-
pression encapsulating both the Hartle-Hawking and
Vilenkin proposals.
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There are a number of issues concerning a more precise
definition of the above proposal which we will not go into
here. For example, we do not fully address the issue of
what it means to integrate along a path of steepest des-
cent in a multidimensional integral. In our model, it will
turn out that all the integrations but one (the lapse in-
tegration) are essentially trivial, so the definition of
steepest descents is not a pressing issue. These and other
issues concerning the contour are discussed in Ref. 7.

The general path-integral construction for minisuper-
space models, including all the ghost and gauge-fixing
terms, and a discussion of the measure and operator-
ordering problein, was given in Ref. 8. It was found that
the minisuperspace propagator, in the gauge N =0,
where N is the lapse function, reduces to an expression of
the form

G(q" Iq')= fdT(q" Tlq', o&, (1.3)

= —[&q",Tlq', o&]", (1.5)

where T, and T2 are the beginning and end points of the
T contour. If T is taken to have an infinite range, then
the right-hand side of (1.5) is zero, assuming that
(q", Tlq', 0& goes to zero at the end points, and 6 is then
a solution to the Wheeler-DeWitt equation. If T is taken
to have a half-infinite range, T, =0, then the right-hand
side of (1.5) is a delta function, and G is a Green's func-
tion of the Wheeler-DeWitt operator, again assuming
certain convergence properties. This was discussed in
Ref. 8, where the convergence properties were assumed.
In the simple model of this paper, we shall show explicit-
ly that contours can be found for which the assumed con-
vergence properties hold. We are mainly interested in
solutions to the Wheeler-DeWitt equation, but we will

briefly discuss the Careen's functions also. We do not
wish to suggest, however, that one of these objects is
more relevant than the other. The point of view that the
Green's functions are the objects of interest has been put
forward by Teitelboim. A further possibility for the T
contour, which seems to us to be an attractive one, is to
take it to be a closed loop about the origin. This yields a
solution to the Wheeler-DeWitt equation.

In Secs. II and III we consider the path integral for the
amplitude (1.3), with fixed initial q and fixed initial p. All
the p and q integrations are essentially trivial (i.e., Gauss-
ian), leaving the T integral as the only nontrivial one. We
list the possible contours and evaluate the path integral
along these contours. In Sec. IV we attempt to apply the
boundary-condition proposal of Hartle and Hawking,
which is that one integrate over compact four-metrics.

where T is proportional to N and (q", T lq', 0 & is the usu-
al (Euclidean) quantum-mechanical propagator:

(q", Tlq', 0& =f2)p 2)q exp( I[p,q]—) . (1.4)

Operating on (1.3) with 8 ", the Hamiltonian operator at
q", and using the fact that (1.4) satisfies the Euclidean
Schrodinger equation, one obtains

8 "G=—fdT &q", Tlq', 0&

We find that it does not fix the solution uniquely in that
although it fixes the end points, it does not fix the con-
tour. We also find a contour for the Vilenkin wave func-
tion, and discuss the difFerence between the two wave
functions. In Sec. V we discuss some of the consequences
of a complex contour. The main consequence is that the
signature of the metric is not respected. This means that
the path integral can receive contributions from saddle
points at which the action has an unexpected sign. We
summarize and conclude in Sec. VI.

II. THE DE SIj.LER MIMSUPERSPACE
MODEL

(2.2)

where A, is the (rescaled) cosniological constant. This is
the action appropriate to fixed initial and final q. The ex-
tremizing solution is a four-sphere of radius A, ', i.e.,
the Euclidean section of de Sitter space.

The Hamiltonian form of the Euclidean action is
II

I[p(r), q(r)]= f dw(pq NH), —
7'

where

(2.3)

H= —,'( —4p —I(,q+ I) .

The classical field equations are (taking N = 1)

~ =A q= —4p2'

(2.4)

(2.5)

In addition, the I.agrange multiplier N enforces the Ham-
iltonian constraint, H =0.

As mentioned in the Introduction, the explicit path-
integral construction for this model in the gauge N=O,
for fixed initial and final q, is given by

G(q" Iq') =fdT f2)p 2)q exp[ —I[I (v), q(r)][, (2.6)

where T=N(r" r') (Ref. 8). Ou—r aim is to determine
the contours for which (2.6) converges.

We are also interested in the path integral between
fixed initial p and final q,

G(q" Ip')= fdT f2)p 2)q exp[ —l[p(~), q(v)][ (2.7)

and this is what we shall consider first, since it is simpler.
In (2.7), I is the Hamiltonian form of the Euclidean ac-
tion appropriate to fixed initial p and final q:

I= f d~(pq H)+p'q', —
0

The metric of the de Sitter minisuperspace model may
be taken to be

ds2= d~ +q(r)dQ3,N (~) (2.1)
q(r)

where dQ3 is the metric on the unit three-sphere. The
factor of q dividing N turns out to simplify the algebra
(it makes the Hamiltonian quadratic). The Einstein-
Hilbert action with cosmological constant for this metric
is
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where p', q' are the initial values of p, q, and we have ab-
sorbed X into the definition of ~. It has been argued that
the propagation amplitude from fixed initial p is the ap-
propriate object to consider when implementing Hartle-
Hawking boundary conditions, in more general models. '

For the model considered here, however, either (2.6) or
(2.7) is suitable. (2.6) will be discussed in the next section.

The contour of integration in (2.7) runs through
the infinite-dimensional space with coordinates
(T,p(r), q(r)), subject to the boundary conditions

p(0) =p', q(T) =q" (2.9)

with p(T) and q(0) free. It can be studied most
effectively by separating out those integrations for which
the contour is essentially trivial (i.e., Gaussian). It turns
out that this is most easily achieved by performing the
following shift of the variables of integration: let

q(r)=q(r)+Q(r), p(r)=p(r)+P(r), (2.10)

In terms of the new variables (2.10), the action is

I=I (q", T~p', 0)+I [Q(r),P(r)],
where I&& is the action of the solution (2.11),

(2.12)

where q(r) and p(r) are the solution to the field equa-
tions (2.5), satisfying the boundary conditions (2.9), but
they do not satisfy the constraint equation H=0. That is,
they are saddle points of the p, q functional integral but
they are not saddle points of the T integral. The explicit
forms for q(r) and p(r) are

q(r) = —A(r —T ) 4p'(r T—)+q",—
(2.11)

P(r) = +p' .
2

equal number of P and Q integrations. The functional in-
tegration over P and Q is therefore just equal to a con-
stant, independent of T. There is of course the question
of choosing contours for P and Q. We will return to this
point in the final section.

The path integral (2.15) is now just a single ordinary in-
tegration

G(q" ~p') = fdT exp[ Io(q—",T~p', 0)] (2.16)

and we can proceed to the steepest-descent analysis.
Consider first the case A,q" &1. There are two saddle
points, at

T = T =—[ —2p'+(1 —Aq")' ]
1

(2.17)

at which Io takes the values

t 3

Io=+ (1—Aq") ~ +—p'—
3A. A, 3

(2.18)

These saddle points correspond to solutions of the field
equations (2.5) and the constraint, H =0.

Because we are considering the propagator with fixed
initial p, the geometric interpretation of the saddle points
is a little more subtle that the case of fixed initial q.
There are two possible geometric pictures, if ~p'~ & —,'.
These are that the boundary three-spheres are connected
by sections of four-sphere which either include or exclude
the equator. The former possibility is realized at T+
when p' &0 and at T when p') 0, whilst the latter pos-
sibility is realized at T+ when p

' )0, arid at T when
p' (0. If ~p'~ )—,

' there is no obvious geometric picture.
The steepest-descent paths are the paths for which

Im(Io) is constant. The paths which pass through the
saddle points are shown in Fig. 1.

Consider now the case A,q" ) 1. The saddle points are
now at

A, T Aq" —1
Io = +Ap'T + +2p' T+q "p' (2.13)

(2.19)

I, = f dr(PQ+2P') .

The path integral (2.7) may now be written

(2.14)

with action

Io =+ (Aq" —1) +—p'—3/2 1, 4p
3

(2.20)

G(q" ~p')= fdT exp( Io)f2)P2)Q e—xp( l2) . (2.15—)

Consider the functional integral over P and Q. It may
be defined by a time-slicing procedure and the measure is
just the Liouville measure dP dQ on each time slice. It
follows from (2.9) and (2.10) that the boundary conditions
are that I' is zero on the initial slice and integrated on the
final slice, and Q is integrated on the initial slice and zero
on the final slice. There are therefore an equal number of
P and Q integrations. This path integral can be evaluated
exactly, since it is so simple. However, the result can
clearly depend only on T, and this dependence can be
determined by a simple scaling argument. Let r +r/T, —
P +T '~ P, and Q —+T'~ Q.—Then all dependence on T
drops out of the action I2. Furthermore, the measure is
unchanged by this transformation since there are an

The steepest-descent paths passing through these points
are shown in Fig. 2.

c
W

FIG. 1. The steepest-descent paths in the complex T plane
for G(q" ~p') in the case Aq" ( 1. The arrows point downhill.
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3
G(q" ~p') =exp — —p'

3
r

A. 1 Aq + . . 1 Aq
(2g)2/3 (2g)2/3

(2.25)

(2.25) has the asymptotic forms

4 I 3

G(q" ~p') =exp — —p'
3

FIG. 2. The case A,q" & 1.
Xexp (1—Aq")3/2

3X
The integral can be evaluated exactly in terms of Airy

functions. " Let T= T 2p'/A—,. Then (2.16) becomes

4 I 3

G(q" ~p') =exp — —p'
3

3

G(q" ~p') =exp — —p'
3

for kq" (1, (2.26)

x fdT p
AT + (1——kq")&

(221)

In Fig. 1 there are two distinct contours along which the
integral will converge. The erst possibility is to take the
contour ABD. This corresponds to the contour EEG in
Fig. 2. It may be distorted into the contour Re(T)=0,
and using (2.21), one obtains

T

1 4p', . 1 —Aq"G(q" ~p') =exp — —p' Ai
3 (2~ )z/3

(2.22)

where we have ignored overall constant factors. (2.22)
has the asymptotic forms

I 3

G(q-~p )=exp — ~ -p
3

—1
Xexp (1—

A,q") /
3A,

for Aq:" & 1, (2.23)

I 3

G(q" ~p') =exp — —p'
3

Xexp (1—
A,q") /

3

for A,q") 1 . (2.27)

The contour DBC will of course yield a third solution,
the complex conjugate of (2.25), but this is not linearly in-
dependent of the first two.

Using (2.21), for example, one may verify that
G(q"~p') is an exact solution to the Wheeler-DeWitt
equation at q":

A'"G= —4 —Aq" +1 G=0,1
(2.28)

dq
II

where A" is the Hamiltonian (2.4) with the substitution
p ~—d /dq. There is no factor of i because these are Eu-
clidean momenta. Had we done everything from the
outset in a Lorentzian framework, we would have
Lorentzian momenta pL, say, and the classical Hamil-
tonian (2.4) would have the opposite relative sign between
the potential and kinetic terms. We would then have
made the substitution pI ~ i(d /d—q ) and the resulting
Wheeler-DeWitt equation would coincide precisely with
(2.28). We should point out, however, that not all au-
thors agree on this issue (see Ref. 9, for example). Note

'

that the operator ordering in (2.28) is the one correspond-
ing to our choice of the Liouville measure in (2.15). G is
also a solution to the Wheeler-DeWitt equation at p' in
the momentum representation:

X cos (1—&q" )
3k 4

for A,q" & 1 . (2.24)

The second possibility is to take the contour ABC. It
corresponds to the contour EI' in Fig. 2. It may be dis-
torted into the contour in which T runs from +i ao to 0
and then from 0 to oo. Using (2.21), one thus obtains

8 'G =——4p' —
A, , + 1 G =0,

2 dp
(2.29)

where 8 ' is the Hamiltonian (2.4) with the substitution
q ~d /dp.

III. FIXED INITIAL Q

We now consider the propagator between fixed values
of q, (2.6). This may be calculated by following the steps
used in the previous section; thus we begin by shifting to
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the solution of the field equations (2.5) (again without en-
forcing the constraint equation) subject to the boundary
conditions

D

q(T)=q", q(0)=q' .

The solution is

(3.1)

p(r)=
2

T

q
4 T

(3.2) FIG. 3. The steepest-descent paths in the complex T plane
for G(q" ~q') the case Aq'()iq" ( l.

Following the same steps as in Sec. II, the path integral
(2.6) reduces to with action

G (q"
~

q') =f, 2 exp[ Io(q"—, T
~
q', 0)],dT

(3.3) Io=+ [(1—Aq') / Ti(Aq" 1) —] .
1

(3.12)

where Io is the action of the solution (3.2), and is given by

X2T3 A(q" +q') 1 (q"—q')'
24 4 2 8T

(3.4)

The integral (3.3) has four saddle points, and there are
four di6'erent possibilities for their location, depending on
whether each of A,q' and A,q" are greater or less than one.
We are ultimately interested in the case q'=0 so we will
restrict attention to the two cases A,q' & A,q" & 1 and
A.q' & 1 & Aq".

Consider first the case A,q' &A,q" & 1. Two of the sad-
dle points are at real positive values of T,

T=—[(1 iraq')'/ +(1——Aq")'/ ]
1 (3.5)

with negative action,

(3.6)

The other two saddle points are at real negative values of
T

T= ——[(1—Aq')' +(1—)iq")' ]
1

(3.7)

with positive action,

I = + [( 1 Aq )3/2+( 1 Aq )3/2]1

3X
(3.8)

The steepest-descent contours passing through these four
saddle points are shown in Fig. 3.

In the case A,q'&1&A,q", two of the saddle points are
at

The steepest-descent contours passing through these sad-
dle points are shown in Fig. 4.

The saddle points (3.5) correspond to solutions to the
Einstein equations representing a section of four-sphere
of radius A,

'/ interpolating between two three-spheres.
The plus/minus signs correspond, respectively, to the sit-
uation in which the section of four-sphere does/does not
include the equator. The saddle points (3.7) are the same
as (3.5) but with the sign of T reversed. Their significance
will be discussed later. The saddle points (3.9) and (3.11)
correspond to some kind of "complex" geometry consist-
ing of a section of four-sphere matched onto a section of
de Sitter space.

Consider now the possible contours in Figs. 3 and 4.
The exponent in (3.3) is single-valued. However, because
of the factor of T '/ in the measure, the whole in-
tegrand is not. This means that a branch cut should be
included in the complex T plane and due care be taken
when choosing the contours. There are six contours for
which the cut is essentially irrelevant. In Fig. 3 these are
ASH, ASH, ADF, AGF, HGF, and HDF. These cor-
respond in Fig. 4, respectively, to IER, IXR, ILK,
IKQPN, RPN, and RKJLN. One contour for which the
cut is relevant is that which runs just below the positive
real axis I'E, round T=O and then back out just above
the positive real axis EF, with the cut taken along the
positive real axis.

The integral (3.3) along these contours is not one that
appears in standard tables. However, it may be evaluated
as follows. It is easily verified that (3.3) satisfies the

T=—[(1—Aq')' +i(iq" —1)' ]
1

(3.9)

with action

Io= — [(1—Aq') / +i(Aq" 1) ] . — (3.10)

The other two saddle points are at

T= ——[(1—Aq')'/ +i(Aq" —1)'/ ]
1 (3.11) FIG. 4. The case A,q' & 1 & ~q".
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TABLE I. This table shows the result of evaluating the path integral exactly along certain infinite
contours, yielding solutions to the Wheeler-DeWitt equation, and their asymptotic forms. We have
used the notation z =(1—A,q)(2), I(q) =(1/3A, )(1—kq), and S(q) =(1/3X)(kq —1) —m/4.
Each contour is labeled by the letters appearing in Fig. 3 and the contour into which it is distorted in
Fig. 4 is shown in parentheses. Only the contributions from saddle points which are global maxima are
shown in the asymptotic forms.

Contour

ABH (IKR)
AEH (INR)
ADF (ILN)

Ai(z")Ai(z')
Ai(z" )Bi(z')+Ai(z')Bi(z" )
[Ai(z")+i Bi(z")][Ai(z')+i Bi(z')]

Aq'&Aq" &1
—I(q') —I(q" )

I(q') —I(q" )

I(q') I(q" )

A,q &1&i,q"

e 'q 'cosS(q")
e 'q 'cosS(q")

I(q') —iS(q" )

Wheeler-DeWitt equation (2.28), with respect to both q'
and q". The solutions to (2.28) are Airy functions. (3.3)
is symmetric in q' and q" so it is equal to sums of sym-
metric products of Airy functions. That is,

G(q" ~q') =a Ai(z" )Ai(z')+b Bi(z")Bi(z')

+c [Ai(z" )Bi(z') +Bi(z")Ai(z') ], (3.13)

where z=(1—Aq )(2A, ) ~ and a, b, and c are coefficients
to be determined. By writing the q's in terms of z in (3.4),
one first sees that a, b, and e depend on A, by an overall
prefactor, A,

'~ . One may then set z"=z'=z and ex-
pand both sides of (3.13) as a Taylor series about z =0, to
quadratic order in z. The terms that occur on the left-
hand side, involving 6 and it's derivatives at z=O, may
be evaluated using (3.3), in terms of the gamma function.
a, b, and c may then be determined by matching the
series on either side of (3.13). The results of a selection of
contours and their asymptotic forms, are shown in Table
I. The contours are labeled by the letters appearing in
Fig. 3, with the contour into which it is deformed in Fig.
4 shown in parentheses. Only the contributions from the
saddle points which are global maxima are shown in the
asymptotic forms.

In addition to these solutions to the Wheeler-DeWitt
equation, there are also Green's functions of the
Wheeler-DeWitt operator, obtained by integrating over a
half-infinite contour which begins at the essential singu-
larity at T=O, leaving it in the direction Re(T) &0.
There are two independent ones, given by the contours
KI and KR in Fig. 4, with corresponding contours in Fig.
3. The integral along these contours can be evaluated us-
ing methods similar to that above. The results are shown
in Table II.

Finally, one may have thought that one could use the
closed contour CDEGC. Indeed, the possibility of using
a closed contour was mentioned in the Introduction. It
has the attraction that convergence is not an issue to be
investigated, in contrast with the other contours. More-

over, since it is generally the case that quantum-
mechanical propagator (1.4) has an essential singularity
at T=O, one might have thought that it will always give
a nontrivial result, The model considered here, however,
gives a trivial result for this contour. The reason is that,
as noted above, there is a branch point at T=O. It has
the consequence that the integrand will not return to it' s
original value if T goes once around the origin, so the
contour CDEGC will not yield a solution to the Wheeler-
DeWitt equation. Of course, one could always take a
contour which goes twice around the origin, but this
would yield zero. So the closed contour is no use in this
model.

The closed contour may be of value in models for
which the minisuperspace is more than one dimensional,
however. For an n-dimensional minisuperspace, the pre-
factor in the quantum-mechanical propagator (1.4)
behaves like T " for small T, so the closed contour
may give nontrivial results for even-dimensional minisu-
perspace models. We hope to investigate this possibility
in future publications.

IV. BOUNDARY CONDITIONS

We have studied the possible contours in the path-
integral representations of G(q" ~q') and G(q" ~p') and
their correspondence to solutions of the Wheeler-DeWitt
equation and Green functions of the Wheeler-DeWitt
operator, for this simple model. We now attempt to ap-
ply certain boundary-condition proposals for the wave
function of the Universe, to determine the extent to
which they fix the solution uniquely. The boundary-
condition proposals we shall consider are those of Hartle
and Hawking and of Vilenkin.

The first point to note is that the initial values alone do
not uniquely fix the form of the propagator. One also has
to specify a contour. The solution is uniquely determined
only after one has specified two pieces of information-
the initial values and the contour of integration. This
will generally be true of all minisuperspace models.

TABLE II. This table shows the result of evaluating the path integral exactly along certain half-
infinite contour, yielding Green s functions of the Wheeler-DeWitt operator. Here, z& (z& ) is the
greater (lesser) of z" and z'. Likewise q & and q q. Note that z & =(1—Aq & )(2A,),and vice versa.

Contour

ABK (IJK)
HBK (RQK)

Ai(z )[Ai(z( )+ i Bi(z, )]
Ai(z )[Ai(z ( ) i Bi(z )]—

(A.q& ) &1
—I(q ) I(q )

e e—I(q ) I(q )
e e

(Xq. ) &1
—I(q ) —iS(q )

—I( )
+iS(q )

e q e
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A. The Hartle-Hawking proposal

Consider first the boundary-condition proposal of Har-
tle and Hawking. Their proposal is that the wave func-
tion be defined by a path integral over compact four-
metrics which match a prescribed three-metric on a
three-surface. In the de Sitter minisuperspace mode1, this
means that one calculates G(q" q') with q'=0, and the
saddle points then correspond to more than half or less
than half of a four-sphere. From the above, one can see
immediately that this does not fix the solution uniquely,
however, because it does not obviously fix the contour.

In their original paper, Hartle and Hawking claimed
that the contour of integration passed only through the
saddle point corresponding to less than half a four-
sphere, implying that the wave function is exponentially
growing for small q. Many subsequent authors have tak-
en this to be the defining feature of the Hartle-Hawking
proposal. We hive seen, however, that there are many
possible contours for this simple model, not all of which
pass through the saddle point in question (the point E in
Fig. 3), and even those that do pass through it do not al-
ways receive their dominant contribution from this point.
The contour is not fixed unless one puts in some extra in-
formation, which Hartle and Hawking did not obviously
do. We therefore wish to question the reasoning which
led to their claim above.

Hartle and Hawking gave two arguments which were
designed to show that the dominant contribution comes
from the saddle point corresponding to less than half a
four-sphere. The first involved considering the functional
integral over the scale factor a, with the action written in
terms of conformal time g:

I=—,
' J dg( —a' —a +ha ) . (4 l)

They argued that the a contour would have to be rotated
to lie parallel to the imaginary axis for the path integral
to converge. They then argued that although the more-
than-half a four-sphere saddle point has more negative
action than the less-than-half saddle point, it is the latter
that would dominate because of the conformal rotation.
They did not, however, give the contours explicitly; nor
did they fix the gauge and consider the integral over the
lapse. In this paper we have given what we believe to be
a more careful discussion of the possible contours, and we
have seen that the lapse integral plays a crucial role in
determining which saddle points contribute.

Their second argument involved writing the wave func-
tion as an inverse Fourier or Laplace transform. In our
approach, one would expect to be able to obtain such an
expression in a deductive fashion from the path integral
(2.6), by integrating out everything except the p integral
on the final slice, p =p" say. We will return to this point
in the final section. There would be two saddle points
corresponding, respectively, to more than or less than
half a four-sphere. Hartle and Hawking assumed that the
p contour has to be parallel to the imaginary p,xis, to the
right of any singularities. From this they deduced that it
can be distorted to pass only through the less-than-half
saddle point, but not the other one. Our criticism of this
argument is that it is not obvious why one should choose

that particular contour as the starting point. There will
be other contours for which the integral converges, which
also yield solutions, but pass through the other saddle
point.

To summarize the previous two paragraphs: we feel
that the original arguments given by Hartle and Hawking
are not correct as they stand, first because they have im-
plicitly made a choice of contour, but without motivating
that choice, and second, because they did not consider a
properly defined path integral. The Hartle-Hawking pro-
posal therefore uniquely specifies the wave function only
after a choice of contour has been made.

One could now ask whether or not there exists a way of
fixing the contour so as to obtain the result they claimed
to obtain. Consider Fig. 3. The saddle point at E is the
one corresponding to less than half a four-sphere. The
idea, then, is to propose a rule which singles out a con-
tour which is dominated by the saddle point at E. One
possible step in this direction is to demand that the result
be real, which was always claimed to be one of the prop-
erties of the Hartle-Hawking wave function. This does
not fix it uniquely, however. There are three contours
which give a real result: namely, ASH, AEH, and the
contour which runs along the positive real axis on either
side of the cut.

We mentioned above that the closed contour has cer-
tain attractions, but is trivial in this model. It could be,
however, that it provides a good way of specifying the
Hartle-Hawking wave function for even-dimensional
minisuperspace models. We have little evidence to sup-
port this claim at the time of writing but hope to report
on this possibility in future publications (see, however,
the models in Refs. 3, 12, and 13 in which nontrivial
closed contours were found).

Another possible approach to the question of imposing
Hartle-Hawking boundary conditions is to fix the initial
momenta. As mentioned in Sec. II it has been argued
that this may be what one has to do in more general mod-
els. ' The idea is that one chooses the initial momentum
p' so that it corresponds, via the Harniltonian constraint,
to zero initial q. This means that p'=+ —,

' in this model.
It is not obvious how one decides between the plus and
minus signs, but one way might be to demand that in the
Euclidean region, the final surface is to the "future" of
the initial surface at the saddle point. This means that we
need T+ )0 in (2.17), which implies that p'= —

—,'. Let us
also demand that the result be real. This uniquely fixes
the contour to be ABD in Fig. 1, and the path integral
gives the result (2.22), with p'= —

—,'. This is indeed the
wave function Hartle and Hawking claimed to obtain.

Whilst this may be the most appropriate way to define
the Hartle-Hawking wave function, one can object to it
for the following reason. Fixing the initial momentum in
the manner described above corresponds to zero three-
geometry only at the semiclassical level. In the full path
integral, because the initial p is fixed, one integrates over
all initial q. This means that most of the geometries in
the sum do not close, which appears to depart rather rad-
ically from the original proposal of Hartle and Hawking.

So these are the possible approaches to imposing
Hartle-Hawking boundary conditions. They are both
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Consider next the proposal of Vilenkin. His proposal
is normally given as a statement about the behavior of the
wave function in minisuperspace. It is that the wave
function should consist of outgoing modes at singular
boundaries of minisuperspace. In this model, it implies
that the wave function should be of the form e ' in the
oscillatory region, with no components proportional to
e+' . It is easy to see how this is achieved in the path-
integral representation. One chooses the contour in (3.3)
such that the dominant contribution comes from either
the saddle point at M in Fig. 4, or the one at J. There are
two in6nite contours which are dominated by M: name-
ly, ILN and RKJLN. These differ only in their subdom-
inant contributions. There is just one contour which is
dominated by the saddle point at J: namely, the half-
infinite contour KI, which yields a Greens function.
Whether the Vilenkin proposal should yield a solution or
a Green's function is not clear, so we shall entertain both
possibilities.

To decide between these possible contours, it is useful
to consider an alternative de6nition of the Vilenkin wave
function, which is not obviously equialent to the propo-
sal above. It is that it be defined by a path integral over
Lorentzian metrics starting at q=0 (Ref. 6). This sug-
gests that in our model, the T contour is taken to be one
which may be distorted to lie along the imaginary axis.
Both the infinite contour RKI and the half-infinite con-
tour KI may be so distorted in Fig. 4. However, only the
half-in6nite one yields the asymptotic form e '; thus
only if one takes the half-in6nite contour do the two ver-
sions of the proposal agree, in this model. A possible
path-integral statement of the Vilenkin proposal is there-
fore that it be de6ned by a path integral over Lorentzian
metrics with positive lapse.

With this definition of the Vilenkin wave function, one
finds that it has the form

(q ) =exp — exp — (A,q
—1)'~1 l

3A, 3k
(4.2)

in the oscillatory region. Contrast this with the explicit
form of the Hartle-Hawking wave function, obtained us-
ing the contour suggested above for G(q" ~p') with
p'= —

—,'. In the oscillatory region, it has the form

VHH=exp cos (Aq —1) ~ ——1 - 1

3A. 3A,
(4.3)

There are two key differences between (4.2) and (4.3).
The first is that the Vilenkin wave function consists of a
single WKB component, e ', whilst the Hartle-Hawking
wave function is a sum of two such components. It is
normally argued that these two components have negligi-
ble interference and may therefore be considered sepa-
rately. '

The second, and more important difFerence, is the sign
in the prefactor, exp(+I/3A, ). This is important for the

problematic, and at the moment we regard the issue of
defining the Hartle-Hawking proposal precisely as still
open.

B. The Vilenkin proposal

following reason. One is norinally interested in a more
complicated minisuperspace model consisting of a
Robertson-Walker model coupled to a homogeneous sca-
lar field P, with potential V(P) (Ref. 5). In regions where
the potential is approximately fiat, the P dependence of
the wave 'function is negligible and the minisuperspace
model is well approximated by the de Sitter model de-
scribed here, with I,= V(P). The wave functions for the
scalar field model are peaked about sets of classical
solutions with Hamilton-Jacobi function S=+(Aq
—1) /3A, . Each member of the set may be labeled by
its initial value of P. The prefactor exp[+I/3V($)] then
gives a measure on this set of initial values, and hence on
the set of classical solutions. Clearly, the behavior of this
measure is going to depend rather crucially on which sign
one takes, i.e., on whether one uses the Hartle-Hawking
(+) or Vilenkin ( —) wave functions. The consequences
of each sign have been thoroughly discussed by Vilenkin
and will not be pursued here. We will however, discuss
the origin of these signs.

The factor exp(1/3A, ) in the Hartle-Hawking wave
function has the interpretation as the amplitude to propa-
gate from q =0 to q =I, ', since —1/3A, is the action of
half a four-sphere. The factor with the opposite sign in
the Vilenkin wave function has essentially the same inter-
pretation, except that it comes from the saddle point with
the opposite value of T. These saddle points are dis-
cussed in the next section.

To discuss these issues more thoroughly, one needs to
include the dependence on the scalar field, which we have
certainly not done here. We hope to address this in a fu-
ture publication.

V. CONSEQUENCES OF A COMPLEX CONTOUR

The fact that the contour is over complex metrics has a
number of interesting consequences. First, let us discuss
the significance of the saddle points (3.7). Recall that
they are the same as the saddle points (3.5), but with the
sign of T reversed, so they have positive Euclidean ac-
tion. This is rather surprising because one would expect
that the only solution to the Euclidean Einstein equations
in this model are sections of four-sphere, which always
have negative action. On the face of it there seems to be
no way the extremum value of the action can be anything
but negative. The explanation is as follows. These unex-
pected saddle points have arisen because we have allowed
the four-metric to be complex in the contour of integra-
tion. The action (1.2) involves a square root (detg„)'
and by convention, one takes the positive sign. This
square root causes no problem if one deals only with real
Euclidean metrics. However, if, as here, one lets the
metric become complex, then the contour may go around
the branch point at detg„=0 and end up on the second
Riemann sheet, thus changing the sign of the action. So
for every extremum with positive T there will be another
solution with T replaced by —T, and equal action but of
opposite sign. Hence the extra unexpected saddle points,
(3.7). A similar phenomenon was observed in the Regge
calculus model studied by Hartle.
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These considerations mean that the signature of the
metric is not respected in the path integral, in this ap-
proach. Some readers may find this unacceptable. We
find it an inevitable consequence of our choice of complex
contour, which in turn is necessary in order that the path
integral converges.

One might object to having saddle points at T & 0 on
the grounds that if a coupling to matter was included, the
positivity of the matter action would be destroyed.
Whilst this is certainly true, it is not necessarily a fatal
objection. When considering the Euclidean path integral
for matter alone, one may integrate over real field
configurations to obtain convergence. On coupling to
gravity, however, since we need to integrate over com-
plex metrics to ensure convergence of the gravitational
part of the path integral, the matter action will become
complex. One would therefore expect to have to in-
tegrate over complex rnatter fields also, to ensure conver-
gence of the matter part of the path integral. So if the
matter action is real and negative at a saddle point of the
T integral for which T & 0, one could still obtain conver-
gence of the matter action by integrating over complex
matter-field configurations.

A related point concerns the signature of the three-
metric. The physically relevant range of the scale factor
squared q is q )0, that is deth;- & 0. One can ask whether
or not this condition should be required of the paths
summed over in the path integral. The technical
difhculty involved in imposing this condition was dis-
cussed in Ref. 8 (see also Ref. 15 for an example in which
the condition q) 0 was imposed in the path integral).
Our attitude towards this should be clear from the
above —it is that one should not attempt to impose such
a condition. This is again a consequence of our choice of
complex contour.

A further related point concerns the range of integra-
tion of the lapse function, i.e., of T. Teitelboim, who con-
sidered Lorentzian path integrals, has argued that the
range of T should not be infinite because the four-metric
becomes degenerate as the contour passes through T=O.
Furthermore, he advocates that the range be taken to be
from zero to infinity. This involves the notion of some
kind of causality condition in superspace —that the final
geometry should lie to the "future" of the initial
geometry. It has the consequence that 6 is a Green's
function of the Wheeler-DeWitt operator, as pointed out
earlier. Our considerations here shed new light on his ar-
guments. Because we are allowing a complex contour, T
may have an infinite range but need not pass through
T=D. Essentially it avoids passing through T=O by go-
ing around it in the complex plane. It is also interesting
to note that the T contour is uniquely specified by
Teitelboim s causality condition, in contrast with the am-
biguities encountered in the previous section. One might
reasonably interpret his condition in our approach as im-
plying that the T contour be that which may be distorted
into one running from up the positive imaginary axis.
This is the contour KI in Fig. 4, for example. It is there-
fore very similar to the Vilenkin proposal, discussed
above. Teitelboim, however, was considering the propa-
gator between arbitrary three-geometries, whereas Vilen-

kin was interested in the special case of tunneling from
zero initial geometry.

Finally, we make some remarks on the semiclassical
approximation in quantum gravity. A commonly used
approximation to the path integral in quantum gravity is
to take it to be a discrete sum of terms of the form

gl, e ", where the Ik are the actions of solutions to the
Einstein equations. This approximation can be incorrect
in at least two ways. First of all, it depends on the con-
tour of integration. One ought to show that there exists a
contour which passes through all the saddle points
represented in the sum. We have seen in the simple mod-
el considered here, for example, that a typical contour
will not pass through all the saddle points. Second, since
a complex contour appears to be necessary to ensure con-
vergence, there can be complex saddle points. This
means that the Ik in the above should not be just the ac-
tions of real Euclidean solutions, as is usually taken to be
the case, but the actions of all complex solutions. These
considerations could be relevant for the mechanism re-
cently proposed by Coleman for the vanishing of the
cosmological constant, which uses the semiclassical ap-
proximation to the path integral in an essential way. '

VI. SUMMARY AND DISCUSSION

We have studied the steepest-descent contours in the
path integral for the de Sitter minisuperspace model, and
evaluated the path integral exactly. By choosing difFerent
contours, we generated dN'erent solutions to the
Wheeler-DeWitt equation. We attempted to apply the
boundary-condition proposal of Hartle and Hawking to
the path integral. This proposal fixes the initial point q'
in the propagator G(q" ~q') but it does not fix the solution
uniquely because it does not fix the contour. We tenta-
tively suggested that a possible contour for the Hartle-
Hawking proposal, applicable only to even-dimensional
models, is to take the lapse contour to be a closed con-
tour about the origin. We also considered the possibility
that the Hartle-Hawking wave function be defined to be
G(q" ~p') with p' corresponding to zero three-geometry.
We found a contour for the Vilenkin proposal and con-
trasted the Hartle-Hawking and Vilenkin wave functions.
Finally, we discussed some of the consequences of a corn-
plex contour. The main consequence is that the signature
of the metric is not respected in the sum over paths. This
means that there can be saddle points of the path integral
which have neither Lorentzian nor Euclidean signature.

In this paper we studied the contours in a minisuper-
space model, in which the metric was severely restricted,
but the path integral was still a functional integral over
q(r). Seemingly more restricted models have recently
been studied. Hartle and Louko and Tuckey' studied
the contours in Regge calculus models. There, the
geometry is a Regge lattice which is specified by

aconite

number of edge lengths. The functional integral in these
models reduces to a finite number of ordinary integra-
tions over the edge lengths. A related model, something
of a hybrid between the Regge models and the one stud-
ied in this paper, involved summing over geometries
which were precisely sections of four-sphere, allowing
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only the four-sphere radius to vary. ' The functional in-
tegral thus reduced to an ordinary integral over the ra-
dius. These exceedingly restricted models might reason-
ably be referred to as "microsuperspace" models.

In some ways the model studied here is little better
than the microsuperspace models described above. This
is because we have really only specified the contour of in-
tegration for one variable T, but not the remaining
ones —P and Q in Sec. II. Although we believe the
heuristic evaluation of the P and Q integrals is correct,
we did not say precisely what the contours are. At this
point one comes up against the issue of defining steepest
descents for functional integrals. It is not dificult to find
contours for P and Q —in each integration T is merely
regarded as a complex parameter —but it is not obvious
what would happen if the integrations were done in a
di6'erent order. An important consequence of the P and
Q integrations, however, was that it brought in the factor
T ' in the measure, thereby eliminating the possibility
of a closed contour. This is perhaps something one
should watch out for when studying microsuperspace
models.

For similar reasons, we have not studied the relation-
ship between the G(q" ~p') and G(q" ~q'). One would ex-
pect that they are related by some kind of Fourier trans-
form, but one cannot necessarily assume this because G
and G are not square integrable. However, one ought to
be able to derive such a relationship by starting with the
expression (2.6) for G(q" ~q') and then carrying out all
the integrations except the p integration on the initial
slice. If one knew the contours for p and q on each slice,
one would thereby deduce the appropriate contours to
take in the Fourier transform. One might have thought
that the relationship between G and G is straightforward,
but this is not so, as may be seen by comparing the ob-
tained forms for G and G. G(q" ~p') is a product of a
function of p' with a function of q". On Fourier trans-
forming, one would thus deduce that G(q" ~q') is a prod-
uct of a function of q' with a function of q". We have
seen, however, that this is not the case —it is a sum of

such products. This suggests that the relationship be-
tween the T contours in G and in G is not so obvious. We
hope to return to this point in a future publication.

The continuation of the investigation described here
may be found in papers II and III of this series. ' '

Note added in proof. After completion of this work, we
became aware of an independent proposal of Linde which
yields a wave function essentially the same as the Vilen-
kin wave function Zh. Eksp. Teor. Fiz. 87, 369 (1984}(A.
Linde, [Sov. Phys. JETP 60, 211 (1984)]; Lett. Nuovo
Cimento 39, 401 (1984); Rep. Prog. Phys. 47, 925 (1984)}.
Linde seems to regard a purely Lorentzian path integral
as his starting point. Because the usual Wick rotation to
Euclidean time leads to a minus sign in frowst of the kinet-
ic term for the scale factor, he proposed that the Wick
rotation should be performed in the "wrong" direction.
In our approach, it seems reasonable to interpret this
proposal as implying ythat one should take the T contour
in Figs. 3 and 4 to be the distortion into the region
Re(T) (0 of the contour running up the positive imagi-
nary axis. This is essentially the same as the way we
defined the Vilenkin wave function in Sec. IV, and yields
a wave function proportional to exp( —I /3A, ) in the semi-
classical approximation. We are grateful to Andrei Linde
for bringing his proposal to our attention.
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