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Mixmaster cosmological model in theories of gravity with a quadratic Lagrangian
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We use the method of matched asymptotic expansions to examine the behavior of the vacuum Bi-
anchi type-IX mixmaster universe in a gravity theory derived from a purely quadratic gravitational
Lagrangian. The chaotic behavior characteristic of the general-relativistic mixmaster model disap-
pears and the asymptotic behavior is of the monotonic, nonchaotic form found in the exactly soluble
Bianchi type-I models of the quadratic theory. The asymptotic behavior far from the singularity is
also found to be of monotonic nonchaotic type.

The solution of the Einstein equations for a Bianchi
type-IX metric in vacuum has the property that the evo-
lution proceeds towards an initial Weyl curvature singu-
larity via a chaotically unpredictable sequence of oscilla-
tions which ergodically pass close to a sequence of Kas-
ner eras. ' The smooth invariant measure of the associated
Poincare mapping has been found in closed form by
Chernoff and Barrow. It has also been shown that un-
der certain conditions the introduction of a cosmological
constant does not change the alternation of Kasner eras
on approach to the initial singularity. Various detailed
investigations have been made into the ergodic theory of
this chaotic behavior which have revealed that the spatial
dimension of the Bianchi type-IX space-time plays a cru-
cial role in determining whether or not the evolution is
chaotic. If the space-time metric has the product mani-
fold structure of Kaluza-Klein type, with internal and
external manifolds uncoupled, then chaotic behavior is
only possible in universes with three spatial dimensions.
If the manifold is of nonproduct type then chaos becomes
possible in models with spatial dimension in the range
three to nine if off-diagonal terms are included in the
type-IX metric tensor. If they are not included, or if they
are but the number of spatia1 dimensions exceeds nine,
then the chaotic behavior disappears completely. A11 of
these spatially homogeneous, anisotropic, type-IX cosmo-
logical models can be viewed as Hamiltonian dynamical
systems in which a "universe point" moves inside a
closed time-dependent potential. As the dimensionality
of space increases the speed at which the walls expand in-
creases relative to the speed of the "universe point. "
Eventually, for a sufficiently high dimension the normal
component of the velocity of the "universe point" relative
to the walls is never sufficient to allow it to catch the
wall. No more reflections occur and there can be no
chaotic behavior.

On approach to the initial singularity we would expect
higher-order curvature corrections to the gravitational
Lagrangian to generalize the field equations provided by
general relativity and it is therefore of fundamental im-

portance to determine whether the approach to any
space-time singularity is chaotic in the most general cases
we can analyze. As in general relativity, the most general
situation available for complete analysis is that of the
spatially homogeneous Bianchi type-IX universe. In this
paper we shall describe an investigation of the behavior
of the three-dimensional Bianchi type-IX (mixmaster)
vacuum universe when the gravitational field equations
are derived from a scale-invariant Lagrangian that is
purely quadratic in the scalar curvature of space-time:

The resulting system of field equations provides a good
approximation to the more complicated fourth-order sys-
tem of equations generated by the more general quadratic
Lagrangian I.=8 +aA, u constant, in regions of large
space-time four-curvature. An analysis of this more
complicated case will be presented elsewhere. General
features of Lagrangians of general functional form L (R)
have been considered in Refs. 7 and 9—11.

We shall examine the field equations derived from (I)
for the Bianchi type-IX metric, near its initial singularity.
We show that in complete contrast with the situation in
general relativity, the nonchaotic Kasner behavior
characteristic of the Bianchi type-I universe is asymptoti-
cally stable. Finally, we show that for large times the Bi-
anchi type-I asymptote is also stable with exponents re-
lated to its behavior near the singularity at early times.
We shall analyze directly the field equations coming from
the Lagrangian K=A . The conformal equivalence be-
tween these theories and general relativity with an addi-
tional scalar field ' ' could also be used as basis for in-
vestigating the singularity and the behavior of the solu-

7 1 3 14

The general vacuum field equations derived from the
variation of the action formed from (I) with respect to
the metric g & are

R(R„——,'Rg„)+CIRg„—R.„. =0 .
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Taking the trace we have the constraint

R=0,
which simplifies (2) to

RR„——,'R g„—R.„. =0 .

(3)

(4)

The sum of the first three equations is

[e«+ e 40+ e4r 2(e2~~+P~+ e 2~0+ r ~2'
2(r+a))]+ 25 0 (13)

Any solution of the vacuum Einstein equations (R p=0)
is also a solution of (3) and (4) [see Barrow and Ottewill
for more general versions of this correspondence between
the solutions of general relativity and an L (R) Lagrang-
ian gravity theory]. For a spatially homogeneous space-
time with a metric of Bianchi type-IX,

ds =dt gy—; (t)cr'(x)cr~(x), 1 ~i,j ~3, (5)

y,,(t) =diag [a'(t), b'(t), c'(t) J .

Equation (3) becomes

(6)

where cr~(x) are the SO(3)-invariant differential forms
which generate the homogeneous space of Bianchi type-
IX, satisfying do'=e'ko. R, o. , where e'JQ is the com-
pletely antisymmetric rank-3 tensor and the time depen-
dence is carried by

Notice that the field equations are now of second order,
contrary to the general field equations which follow from
a Lagrangian with quadratic terms. This is due to (8)
which is a solution of Eq. (3) in spatially homogeneous
space-times. However, the equations contain terms [the
second and last in (12a)—(12c)] in addition to those
present in the general-relativistic type-IX universe. In
order to study the solutions of these equations one can
carry through an analysis similar to that made for Bian-
chi type-IX solutions of the Einstein equations (derived
from the linear Lagrangian L =R ) without the cosmolog-
ical constant. ' First, we examine the asymptotic behav-
ior as v ~0. If we were to neglect terms such as exp(4a )

and exp[2(P+y)] in Eqs. (12a)—(12d), then the field
equations reduce exactly to those of Bianchi type-I stud-
ied by Buchdahl' in his analysis of R Bianchi type-I
cosmological models:

~ ~ S ~R+3—R =0,S (7)
we" +e'+ e =0,

4

where S =abc and the overdot denotes a derivative with
respect to t. We integrate Eq. (7) and obtain

R=
S3

rP" +P'+ e =0,
4

~y" +y'+ —e"=0,
4

(14b)

(14c)

dt
S'(t)

Hence Eq. (8) can be integrated again:

(9)

The integration constant is set equal to unity by a change
of scale of the x' (i =1,2, 3). We introduce a new time
coordinate ~ defined by

5"—2( a'P'+ 8'y '+ y'a' ) + —e s =0 .25

4
(14d)

exp( —5)=(3/4n )' r (Cr"+C 'r "),
[a,b, c]=e p(x5/3)[ 'rr ', r 'j,

(15)

(16)

These equations can be solved exactly for a, P, y, and 5
to give

R=a. (10)

Here the integration constant has been set equal to zero
without loss of generality by choosing R =0 for ~=0.

We introduce the variables a, /3, y, and 5 defined as

a=e, B=e~, c=er, 5=a+p+y .

where C is a constant and
3 3

g v;=0, g v; =(4n —9)/6, 3n

For ~~0, the scale factors behave as'
' 1/6

(17)

2
ra" +a' ——[(e ~—e r) —e ]+—e =0, (12a)

Using (10) the four essential field equations for the Bian-
chi type-IX metric, in terms of a, P, y, 5, and r, are the
cyclic set

4na—
3

4n
3

( 1/3 &I

1/6
C1/3 &2

(18a)

(18b)

2
A/3" +P' [(e r e—) e—~—]+ e—~s =0,—(12b)

1/6
4n (1/3 &3 (18c)

2
ry" +y' ——[(e —e ~) —e r ]+ es= 0, —

265"—2(a'g'+P'y'+y'a')+ —e =0 .

(12c)

(12d)

where

n 1
p =———+v for i =1,2, 3 .l 3 2

Hence, we have the constraints

(19)
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gp, =n —
—,
' ~0,

gp, =(n+ —,')(n —
—,') &0,

gp;p = ,' ——n~0,

(20)

(21)

(22)

a 4n
3

' 1/6

( 1/3 (32)

which has the same behavior as in the initial state (18a).
Notice that from (30) and D )0 we obtain

where i,j are summed over 1,2,3 in all cases. The last for-
mula shows that at least one of the three p; must be nega-
tive if we exclude the degenerate case n =

—,'.
Substituting for abc from (18) allows us to integrate (9)

to obtain the r( t ) relation
1/2

4n
3

e
1

2

(23)

Hence, we see that when ~ decreases, t decreases as well.
We have chosen a null integration constant in order that
~=0 corresponds to t =0.

The supplementary terms such as exp(4a) and
exp[2(P+y)] in (12) and (13) can be considered now as
perturbations of the Bianchi type-I field equations. We
investigate the stability of the Bianchi type-I solution
given above as ~—+0 assuming that at some given time
ro) 0 the solution is well approximated by (18)—(21).

If we suppose that the p s are ordered as

P1) ——' (33)

F
e&=H2~ 'exp—

2/3
4n 2(2p + 1)l

8(2p, +1)
(34a)

F~e~=H3~ 'exp

' 2/3
4n 2(2p + 1)

1

8(2p, +1)

(34b)

Considering the highest-order term (for small r) and the
initial conditions (18) at r:ro we—obtain

A solution exists only if p, satisfies condition (33). After
substituting for exp(4a) the general solutions of (25b) and
(25c) are given by

(24)

then to leading order after neglecting the lower-order
terms, Eqs. (12) become

4nH2=
3

1/6

C 1/3

(35)

(36)

4asex" +o,"+—e =0,
2

4aiP"+P' ——e =0,
2

(25a)

(25b)

and

4nH3=
3

1/6

C 1/3

(37)

(38)
4a7p +p ——e =0 .

2

In order to solve (25a) we set

(25c)

e =X (26)

and it becomes

vJ"X—~X' +J'J —~=0 . (27)

This has the general solution

g —D r( +r i /2D+ E —i r—i /2D
) (28)

where D and E are the integration constants and D is pos-
itive. For small values of v we have

1/2

4n
3

(39)

Thus the perturbations do not change the initial behavior
of a ( t ), (bt), and c ( t ). The monotonic solutions
(18a)—(18c), of Bianchi type-I form remain stable. There
are no chaotic oscillations. For a discussion of the form
of the perturbations which do and do not give rise to
chaotic oscillations in a more general context see Ref. 4.

We now examine the evolution of the metric far from
the initial singularity. We know that in the absence of
the terms such as exp(4a) and exp[2(P+y)] the solution
for exp(5) is given by (15). When r is very large, we have

' 1/2

e' C
—1 —(n +3/2)

D
1/4D —1/2 {29) and

1/6

Imposing the Bianchi type-I asymptotic initial conditions
(18) at w=—ro gives

4na—
3

g —1/3 &1
7

1/6
1 1 =71 ~

1/2 ' ' 1/6
E 4n
D 3

(30)

(31)

4n
3

4n
3

C
—1/3

1/6

'r

(41)

Therefore we find that with
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n 1
q I 3 2 I (43)

dition for the existence of a solution. The rest of the
asymptotic solution to (49) is

2/3
gq, = n———', &0,

gq, = ( n + ,' )—(n ——,
'

) )0,
Qq, q =2(n+ —', ))0.

(44)

(45)

(46)

F
e =H'17 'exp 4n

3
2(2q +1)

8(2qz + 1)

(53a)

This implies that at least one of the q, is negative. More-
over from (19) and (43) we obtain

H27 p exp
2

2/3
4n 2(2q +1)

8(2qi + 1)

2n
q& =5'& (47} (53b)

Therefore p; &0 implies q, &0 and p, &p2 &p3 leads to
q1 &q2 &q3. At this stage we look at the stability of the
solution (40)—(42) with respect to the perturbations for
increasing times. The higher-order terms in the field

4q&+1
equations are ~ ' and ~ ' ". In order to keep the
highest, two cases should be considered:

F1=q1 (54a)

where H'„F'„H2, and F'2 are integration constants. By
keeping the highest-order terms (at large r) and using the
initial conditions at i=i, given by (40)—(42) we obtain
the constraints

n+1 .. n+1(i} qi (—,(ii) q&
)— (48) H1=

1/6
4n

C
—1/3

3
(54b)

p 7 4~a"+a' ——e4& =0,
2

(49a)

In case (i) the field equations are identical to Bianchi
type-I and the solution is just the solution (40)—(42). In
case (ii) the field equations become

IF2=q2,
1/6

4n
2 3

( —1/3

(54c)

(54d)

7 4rp" +p' ——e r=0,
2

(49b) .

7 4zy" +y'+ —e "~=0 .
2

(49c)

Equation (49c) is similar to (25a). Thus the general solu-
tion is of the form (28). For very large r we have

e
1

D'E'

' 1/2
—1/4D' —1/2'T (50)

where D' and E' are two integration constants and D' is
positive. Setting initial conditions at ~=~1)0 requires

4n
3

' 1/6

C
—1/3 &3

T1 (51)

and we obtain

1 1
, +—= —

q (52a)

1

D /+I

1/3
4n
3

(52b)

which show that the solution is identical to the initial
one. Formula (52a) leads to qi (—

—,
' as a necessary con-

Therefore for large ~ also, the perturbations do not
change the behavior of a, b, and c and there is no chaotic
oscillatory behavior of the sort found in general relativi-

16

Following Eq. (4) we remarked that any vacuum solu-
tion of general relativity is also a solution of the R field
equations. In particular this means that the chaotic mix-
master vacuum solution of general relativity is a particu-
lar solution of the R vacuum field equations also. What
we have shown is that this solution is unstable to the
presence of the additional higher-derivative terms that
appear in the R field equations. These terms create
many more degrees of freedom for the solution. Whereas
the most general solution of the Einstein equations in a
synchronous coordinate system requires four arbitrary
functions of three spatial variables to be prescribed on a
Cauchy surface of constant time, the R theory requires
more initial data. ' The field equations (2) and (3) require
R,R plus 12=6 X 2 components of the metric and its first
derivatives in a synchronous coordinate system (with
g 0 =5 o), but this total can be reduced to 6 by using the
four coordinate covariances and the four Bianchi identi-
ties. The most general chaotic vacuum mixmaster model
would be determined by four arbitrary constants because
it is spatially homogeneous. The additional degrees of
freedom present in the R theory render the chaotic par-
ticular solution of general relativity unstable to the
monotonic Kasner-type behavior. From the Hamiltonian
potential viewpoint of the mixmaster model as a particle
motion inside a contracting, effectively closed, potential
as t~0, the effect of the R terms is to slow the motion
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of the moving point relative to that of the walls so that
they are never reached by the point. No oscillations
occur and the evolution remains characteristic of that
with no potential present —that is of the Kasner-type
solution.
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