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We present a study of the parameter space of solutions for initial data in the plane-symmetric vac-
uum Einstein equations. We use the York splitting into free and constrainted variables to find ana-
lytic solutions to the momentum and Hamiltonian constraints to first and second perturbative or-
ders. We construct a numerical code to solve the equations in the full nonperturbative regime and
present extensive tests to verify its accuracy. We parametrize the solution space by the amplitude of
waves in the free data and present examples in several cases of interest. These results clearly show
the differences among solutions to the linear, weakly nonlinear {second-order), and fully nonlinear
equations.

I. INTRODUCTION

The aim of this work is to understand the basic non-
linear physics of the gravitational field as exemplified by
solutions to the classical Einstein vacuum field equations.
For all the progress in recent years in solutions to these
equations in complex multidimensional systems, e.g. , the
collision of two black holes' and axisymmetric stellar
collapse, ' many basic issues remain unresolved. For ex-
ample, what is the nature of the basic nonlinear gravita-
tional self-interaction? Do traveling waves steepen to
form shocks or spread out through dispersion? What is
the physical basis for the so-called gravitational "soliton"
solutions? ' These general-relativistic problems are
necessarily complicated by the possibility of dynamical
coordinate systems and their entanglement with the phys-
ical gravitational degrees of freedom. Nevertheless, the
answers to questions such as these, posed in the contexts
of other continuum field theories such as electrodynamics
and hydrodynamics, have greatly increased our under-
standing of the physical basis of these theories and have
allowed us to tackle more complicated situations.

We begin studying the simplified problem of one-
dimensional (1D), i.e., one spatial dimension plus time,
plane-symmetric solutions. This includes the evolution of
standing waves, as well as the propagation and interac-
tion of traveling waves. Of course, questions regarding
the generality of such results, in particular their sensitivi-
ty to dimensionality (different physical behavior in one,
two, or three dimensions), must be kept in mind.
Nonetheless, such simple systems often form the building
blocks for more complex multidimensional problems.
For example, the evolution of 20 axisymmetric hydro-
dynamic jets is resplendent with shocks and rarefactions
first elucidated in 1D (Ref. 11).

Our approach uses a synergistic combination of analyt-
ic and numerical techniques. ' ' On the one hand, we

carry out a perturbation treatment of the equations to
second order. Thus, we have an analytic description of
the behavior of the field theory in both the linearized lim-
it and the weakly nonlinear second-order regime. In ad-
dition, we construct a numerical code to solve for fully
developed nonlinear solutions. These two techniques
complement one another. For example, unlike the case
of the linearized limit, there is no guarantee that our sys-
tem has a valid second-order description; it could under-
go an abrupt change in behavior when terms beyond first
order reach a certain level. However, a numerical solu-
tion can be used as a scout for the onset of nonlinearity
and, in particular, the existence of a second-order regime.
In fact, it was just such a numerical investigation at an
earlier stage of this work' that led to the present study.
In return, the perturbative solutions can serve as test-bed
calculations for verifying the accuracy of the numerical
code. Such interaction between analytic and numerical
techniques is critical to the success of this work.

In this paper we concentrate on the initial-value prob-
lem for plane-symmetric solutions to the vacuum Einstein
equations. We work within the context of the "3+1"
splitting of spacetime' and use the formalism developed
by York' to decompose the initial data into its freely
specifiable and constrained parts. The resulting equa-
tions are the Hamiltonian constraint, which is nonlinear
in the conformal factor for which we solve, and the
momentum constraint, which is linear in the momentum
variables but nonlinear in the freely specifiable data.

We find analytic solutions to these equations to first
and second order. In addition, we obtain analytic solu-
tions to the momentum constraint to all orders in certain
cases, although this is not possible for the Hamiltonian
constraint in these cases due to its intrinsic nonlinearity.
We construct a numerical code and demonstrate that it
agrees with the analytic solutions in their region of validi-
ty. Special effort is made to develop a means of testing

39 2155 1989 The American Physical Society



2156 PETER ANNINOS, JOAN CENTRELLA, AND RICHARD MATZNER 39

the numerical solution of the nonlinear Hamiltonian con-
straint. The code is then used to solve the initial-value
problem in the fully developed nonlinear regime.

Our methodology is to study the solution space of the
initial-value problem as a function of parameters in the
freely specifiable data. Several examples are given show-
ing the responses of the system to increasing the arnpli-
tude and changing the wavelengths in the free data.
These examples help clarify which parameters, or corn-
binations of parameters, are important in determining the
nonlinear behavior.

II. SYSTEM VARIABLES AND BASIC FQUATIONS

The 10 spacetime metric we treat is

ds = —(a —A P )dt +2A Pdz dt

+ A (dx +h dy +dz ) (2.1)

where a, P, A, and h are functions of z and t. The metric
variable h describes transverse anisotropy of the solution.
The lapse function a and the shift vector P determine the
evolution of the coordinate system off the initial spacelike
slice. Since we consider only the initial-value problem in
this paper, a and P will not enter our analysis. The sys-
tern we consider is assumed to be periodically identified
in the spatial coordinate z. Thus, all variables must be
periodic with period equal to the identification length J .

This metric is well suited to the study of plane gravita-
tional waves. As a solution to the vacuum Einstein equa-
tions, it produces spacetirnes which belong to the Gowdy
T family of models, ' ' although in a very different
gauge. Using the form (2.1), a numerical code has been
built' ' and used to solve problems in cosmic nucleosyn-
thesis, ' inAationary cosmology, and the evolution of
nonlinear gravitational waves. ' In this study we take a
somewhat different approach, using the York' formalism
to decompose the metric and momentum variables into
their freely specifiable and constrained pieces. As we
shall demonstrate, this provides an excellent framework
for,carrying out parameter-space studies of the solutions
to the equations. In this paper we consider only the
initial-value problem in vacuum; the evolution equations
and the extension of this work to the case of sources will
be presented in later papers.

In the "3+1"split, the initial-value equations in vacu-
um become the Harniltonian constraint

Einstein field. The momentum constraint can be inter-
preted as guaranteeing that there is no net momentum.
Notice that when h = 1, our three-space is a Oat, isotropi-
cally expanding three-torus. Thus h —1 can be con-
sidered the perturbation away from this solution. The
momentum constraint (2.3) is automatically satisfied
when h —1=0; at first order it sets a total derivative to
zero. It becomes interesting only at second perturbation
order. The condition it imposes is identical to the re-
quirements of linearization stability. ' For these per-
turbations from a Oat torus, the condition arises simply as
a requirement of periodicity. Our system, even in the full
nonlinear regime, must satisfy this periodicity require-
ment, which is thus the nonlinear manifestation of linear-
ization stability. This will become more apparent as we
proceed.

The York procedure for solving the constraint equa-
tions (2.2) and (2.3) begins by defining a conformal three-
metric y;. ,

yIJ O' yIJ ~ (2.4)

where gr is called the conformal factor. Quantities with a
circumflex ( ) are conformally transformed. Next, form
the trace-free part of the extrinsic curvature

J E J 3 y J trE

and define its conformal transformation

(2.5)

A "=P' A" (2.6)

We will treat trK as a conformal invariant, trk=y '~k,"= trK. The tensor A, . is then split so that

A 'i= A 'J+(lw )'J (2.7)

by= ,'p[k —A; A 'Jp +—2y(trK)2], — (2.8)

where b, =y 'JB;8 . The moinentum constraint splits
into two conditions on A 'J:

where A ', is the transverse-traceless part, and Iw is a ten-
sor formed from a vector potential w and is the longitudi-
nal part of A; . For the particular case of vacuum, and
assuming that our models have no z Killing vectors, i.e.,
that they are really inhomogeneous in the z direction,
then w=0 (Ref. 3).

The conformally transformed Hamiltonian constraint
is then

R+(trK ) K,zK'J=0-
and the momentum constraint

DJ(K"—y'JtrK)=0 .

(2.2)

(2.3)

D A 'J=O
J

with

trA, =y'JA„"=0,

(2.9a)

(2.9b)

Here, y,- is the three-metric of the spacelike slice, K,J- is
the extrinsic curvature, and trK—:y'JK;J is its trace.
Lower case Latin letters denote spatial indices:
i,j=1,2, 3. D. is the covariant derivative in the slice and
R is the Ricci scalar formed from the three-metric. See
York' for further details. The Hamiltonian constraint
amounts to taking into proper account the gravitational
energy density associated with the nonlinearity of the

which must hold since A ~J is transverse and traceless. In
addition, there is an equation for the vector potential w
which has the trivial solution w=0 for the vacuum case
discussed here.

York's prescription for setting the initial data is as fol-
lows. First, specify the free data y;. , trK, and A 'J [sub-
ject to the conditions (2.9)]. Then, solve the Hamiltonian
constraint (2.8) for y and, in the general nonvacuum case,



39 NONLINEAR SOLUTIONS FOR INITIAL DATA IN THE. . . 2157

an equation for w. Finally, recompose the data using
Eqs. (2.4) and (2.5) to obtain a set (y;,K, ) that satisfy
the full (untransformed) constraint equations (2.2) and
(2.3).

In our case, the conformal metric is

y,. =diag( 1,h, 1 ), (2.10)

and y = A . We require that K, . be diagonal; by Eqs.
(2.5)—(2.7), A;J, A;~, and A„;l are also diagonal. This
means that there is one free component of A; which we
take to be

(2.11)

The conformal ( ) and starred (* ) versions of this
transverse-momentum variable are similarly defined, viz. ,

(2.12)

and

g, =A ~
—A~~ (2.13)

h' 1 h'
(2.14a)

or

Note that in this vacuum case q and A 'J=A ~~. The
momentum constraint then is simply the expression of
the demand that A ', be transverse:

where the Einstein equations restrict the constant param-
eters p„pz,and, p3.

p']+pz+p3=1 ~

P] +Pa+Ps

(3.2)

(3.3)

case (F): p, =O, pz=l

(fiat space in expanding Milne-type coordinates) .

(3.4b)

Note that the full 1D problem, such as our perturbed
metric, involves functions of time and the spatial coordi-
nate z, but that the z direction is not the symmetry axis of
our background solutions. Thus gravitational waves
propagating in the z direction can be considered.

The analysis here will consider perturbations from
each of these solutions (3.4). The York variables to be
perturbed in each case are

These solutions fit our metric form (2.1) with the choices
a= 1 and P=O, plus the restriction that p, =p3. There
are two such axisymrnetric Kasner models:

case (C): p, =—', , pz= —
—,
'

(axisymmetric vacuum expanding cosmology) (3.4a)

and

( g z h 3/2)' — & h I/2h 'rt4Z 2 (2.14b) case (C) case (F)

Here, prime (') means 8/Bz. The Hamiltonian constraint
is

h '(P'h )'= —,'P —2 +—', (trK) P
h"

P=t'/ (I+/, +P~)

h =t '(1+h, +h~)

(3.5)

(3.6)

(3.7)

[ ] ~2+ 3( g z )2]y
—8 (2.15)

A = —
—,'t(1+ 3, + A~) ' t '(1+ 3,+—A~) (3.8)

Our strategy for solving these initial-value equations is
as follows. We consider h, g„and trX to be freely
specifiable. In particular, we work exclusively with
spacelike slices having trK = ( trK )( t ) only, the constant
mean curvature slices. Equations (2.14) and (2.15) are
then solved for the rest of the data. Suitable parametriza-
tion of and choices for h and g, allows us to explore the
solution space of the initial-value problem.

III. PERTURBATION EXPANSION

We now carry out a perturbation solution of the initial
value Eqs. (2.14) and (2.15) to second order. By second
order, we mean that we take some analytically known
"background" solution and consider perturbations to
second order in some smallness parameter.

The solutions from which we choose to perturb are the
spatially homogeneous Kasner solutions to the vacuum
field equations. They are usually expressed in terms of
proper time T as

g= —t(1+g, +g~) rt= t '( I+g)+ g~) (3.9)

where A —= A ', =A ~, and g=g, . The meaning of this
perturbation expansion is that quantities with a subscript
1 are first order in some smallness parameter e, while
quantities with a subscript 2 are second order. Note that
we have chosen not to perturb trK; this means that the
initial spacelike slice in both the background and space-
times have the same mean curvature.

In these variables, the Hamiltonian constraint (2.15) to
first order becomes

~ ', +3h', =0 . (3.1 1)

(3.10)

where f(t)=t / [case (C)], f(t)=t [case (F)].
The difFerent explicit powers of t for case (C) and case (F)
arise from the different explicit powers of t in Eqs.
(3.5) —(3.9). The momentum constraint at first order
reads, in both cases,

dz = —dT~+ T 'dh + T 'dy +T 'dz (3.1) In these equations, g& and h, are considered free vari-
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ables, given the restriction of periodicity in the spatial
direction. Because of the periodicity requirement we take

and

h, = g h, ( ) sin(2vrmz /L+5(( )) (3.12)

i), = g il, ( )sin(2mmz/L+5, ( )) . (3.13)

The phase 5, ( ) must be the same function of (m ) for
both hi and rI, [cf. Eq. (3.18) below]. We take the solu-
tion

A, = —3hi (3.14)

2&n

L
+f(t)

2

to the momentum constraint (3.11); this sets the integra-
tion constant to zero as discussed below. Then we substi-
tute Eq. (3.14) into Eq. (3.10) and use Eqs. (3.12) and
(3.13) to find

2

like Killing vector, which is not the case for our cosmo-
logical models (the+at space in expanding coordinates of
course does have a timelike Killing vector, but we explic-
itly demonstrate below that, in this gauge and for pertur-
bations of the form we consider, there are no additional
restrictions arising from the second-order Hamiltonian
constraint), and from the momentum constraint contract-
ed into the Killing vector for spacelike Killing vectors.
Here we have only spatial Killing vectors (),B~, and the
background Killing vector 8, . In fact, our functions de-
pend only on z. Brill obtains the lowest-order (i.e. , the
second-order) constraint arising from the linearization
stability requirement:

f [X~(5g;, )](5ir'~ )d'x =0 .

Here Lz is a Lie differentiation in the Killing direction;
only X,=()/()z is nonzero in our case, and (5g,z ) ~h(
and 5~'~ ~ g, . Brill's result is then identical to our Eq.
(3.18). Notice that Eq. (2.14b) requires that the full (non-
linear) variables satisfy f (h )'i), dz = —ItI(h ~ )il ', dz
=0.

Finally, we can write the second-order Hamiltonian
constraint:

27Tnz

I.
To second order, the momentum constraint reads

(3.15) Qp
= —h i (t (

—
—,
'

( $,h"
, +h 2

—h, h"
, )

+f(t )(p, —2
p', —

—,
' i),——,', i) ', +,'(t, i),

(3.19)
A 2+3h2=3h, h

&

—
—,
' A, h', ——', h', P, . (3.16)

At this level the requirement of periodicity becomes
significant. For periodicity, we have of course

f dz F (z)=0 (3.17)

for arbitrary F where the notation ItI dz means integration

f odz, i.e., integration over the identification length L.
Use the solution (3.14) to the linearized momentum con-
straint to express A, in terms of h, . With this substitu-
tion, all the terms in Eq. (3.16) can be immediately ex-
pressed as perfect differentials except the one involving
h ] g &

~ Periodicity, however, demands that the first-order
-solutions obey

gh;g, dz=o. (3.18)

Thus, h& and g& must be such that h &g& is a perfect
differential, and this must hold for each wave number.
Using the forms (3.12) and (3.13), we see that h, and i),
must have mode terms that are in phase in z for each
mode number, a result which was anticipated to simplify
the first-order solution above. This result, that a certain
second-order combination of first-order perturbations
vanish when periodicity is considered, is the promised
manifestation of linearization stability in this problem.

Brill has given a particularly clear discussion of the
question of linearization stability. Essentially, lineariza-
tion instability, meaning potential difhculty in extending
solutions to the linearized equations to solutions to the
full equations, arises only when the background solution
possesses Killing vectors, i.e., symmetry. The conditions
arise from the Hamiltonian constraint if there is a time-

Equation (3.19) has been simplified, in particular taking
account of the second-order momentum constraint.

Before proceeding, we make a semantic point which
will greatly simplify subsequent eqisations. The impor-
tant point is that we are completely free to set h and g.
They are totally unconstrained in the full equations as we
pose them; they determine the sources for the constrained
variables (t and A. Hence we can a priori set h„=0,
g„=0,n ) 1; the function h to all orders is set by giving
its first nonconstant term, the same for g. This is just a
question of semantics, which, however, simplifies the Eqs.
(3.16) and (3.19).

IV. SOME ANALYTIC SOLUTIONS

In this section we present some analytic solutions to
the field equations derived above. Since we work at a
fixed time t, we can choose t =1. Then the perturbation
equations for the Bat and the cosmological initial data
problems become identical. The two systems differ only
because the value of the zero-order (unperturbed) vari-
ables differs in the two cases, and this difference propa-
gates into the higher-order perturbations.

We first present an analytical second-order solution,
beginning with the momentum constraint. The full non-
linear momentum constraint has the solution

( Ah ' ')= ,' f h ' '—h —' )dzi+ C( t ), (4.1)
0

where g and h are the full nonlinear free variables. The
integrand must be such that f ~hh '~2i) 'dz =0; this
periodicity is the full nonlinear expression of "lineariza-
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tion stability. " The function C(t) is of course constant
on each constant mean curvature slice. On the initial
slice, a choice must be made for C. This constant extends
to the perturbed case the invariance of the metric to con-
stants added in A

&
at one time. The specification of C is a

gauge choice. As we compare the behavior of perturba-
tions of different amplitude, we need a prescription for
this specification. This is essential to specify homogene-
ous modes in the deviation from the background. We
present our choice of C on the initial slice by considering
the momentum constraint order by order. At first order
we have, from Eq. (3.11),

3h, (O, t0)+Ct =0,
——45 h, (0, t0)+ C2 =0 .

(4.4)

(4.5)

Thus,

from the constant ——', [C, +3h, (O, ta)]h, term in Eq.
(4.3). The gauge choice for C&, the integration constant
at first order, affects this constant.

From the results (4.2) and (4.3) we can specify a set of
choices to simplify these equations, and the Hamiltonian
constraint (see below). These choices are

A )
= 3h)+C) +3h)(0 ta) (4.2) A)= —3h], (4.6)

+—', [C, +3h, ( O, t 0)] h, (O, t 0)

—
—,
' f g, h I dz + C2. (4.3)

Note that we have set h2 =0 as discussed above. Regard-
less of our choice setting h2 =0, one can introduce tern1s
in A2 that have the same period as does h „'these arise

where the constant 3h, (O, t0) is included; note that the
choice C& =0 makes 3, vanish at the point z=0. This
solution can then be used to solve Eq. (3.16) for the
second-order perturbation quantity 32.

32= —",h, ——",h, (0, t0) ——,'[C, +3h, (0, ta)]h,

22= —",h f ,' —f—rt,hIdz . (4.7)

More explicit solution of these equations requires a
definite specification of the forn1 of g& and h, . We note
that although these additive constant choices (4.4) and
(4.5) can be made on the initial slice, maintenance of
these choices will amount to dictating the shift vector, a
subject we will not pursue in this paper.

Because of the form of the equation for A, together
with the linear form r)=o(1+g, ) for rI, where o =+1
for the Rat case and o. = —j. for the cosmology, the
lowest-order terms for 3 can be evaluated directly from
the full momentum constraint equation (4.1):

—'(h )'( 1+rI &
)dz + g 0h2 0 3

= ————h ~ (h )'q dz+A h

(4.8a)

(4.8b)

= ————r]i+ 'h o. h g 'dz+ 3 (4.8c)

q, +(—,
' ——

—,'h, + —',h', ) o.f (1+—', h, )g', dz+ AD
0

(4.8d)

LHS=Q,"—PQ(t) . (4.9)

The quantities on the right-hand side are now 32, which
arises from a nonlinear combination of g& and h&, and
other quadratic combinations of q] and h &. Since we deal
with solutions on a finite [0,1.]z axis, each variable has a
discrete Fourier series. Thus each of these quadratic

Notice from Eqs. (3.8) that 3 =(o /3)(1+ 2, + A2), and
the unperturbed value 2 =o /3, so the constant AD must
be chosen as AO =2o. to give the correct zero-order limit.
Eq. (4.8d) is then a solution to the momentum constraint
to second order in a form that is often more convenient
than summing Eqs. (4.6) and (4.7).

We now turn to a consideration of the second-order
Hamiltonian constraint. The solution of Eq. (3.19) is
straightforward. The equation is rewritten so that on the
left-hand side (LHS) only the linear operator appears:

terms on the right-hand side can be expanded in a
Fourier series and

RHS= g (RHS)i
I=O

2mlz 2~lz(RHS), =a, sin +5„+b,cos +5«L L

(4.10)

(RHS)I

+f(t)L

(4.1 1)

More detail requires a specification of the particular
problem. For a first example we consider

where 5&, and 5I, are phases. The solution to Eq. (3.19) is
then, trivially,
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h =1+a sinnz,

g=o.(l+b sinnz)

(4.12a)

(4.12b)

h =1+a sinnz, g=cr(1+b sin3nz) .

We solve for A from Eq. (4.8c). Because

(4.19)

with n chosen such that n =2+i/I. where I is some in-
teger. Direct integration of Eq. (4.8a) with Eq. (4.12)
leads to the full solution

rt'=o 3nb cos3nz =cr3nb (1—4sin nz)cosnz,

we must evaluate two integrals:

oA= —,'(1+3,+32+ . . )

3 3 6 sin nz

3h / A+ —+—q (i)

=0. 1+a sinnz 3nb 1 —4sin nz cosnz dz+ Ap

+ —[(1+a sinnz) —(1+a sinnz) i ]
2 b —3/2
15 a

+ —,'(1+a sinnz ) (4.13)

Expanding out the remaining h to second order, one
finds, for this case,

30=1,

=O.I)+0.I2+ A 0,
where (using x =a sinnz )

Ii = I (1+x) dx
a 0

[(1+a sinnz) —1]
2 3b 5/2

5 a

(4.20)

(4.21)

A
&

= —3a sinnz, (4 14) and

5 2 ba=3 —a — sin nz .
4 4

As a further check, the results A, and A2 in Eq. (4.14)
are consistent with the first- and second-order equations
(4.6) and (4.7). This solution for 2 is discussed further in
Sec. V (cf. Tables I and II and Fig. 2 below).

To solve for P, we cannot give an explicit solution but
must do the perturbation expansion. We obtain the first-
order correction to P from Eq. (3.10):

[P", f(t)P, ]=+ ,'an —si—nnz+f(t )( —,'a sinnz ,'b sinnz )——

an +f(t) ——— sinnz,1 a b

2 2
(4.15)

where we inserted the forms for h, g„and A, . Hence P,
is proportional to sinnz; pi =j sinnz with

'[an +f—(t)(a l2 —b /2)]
n +f(t) (4.16)

The second-order computation is similar but of course
more complicated [from Eq. (3.19)]. We see that the
second-order source for $2 consists of terms ~ cos nz and
terms ~sin nz, which yields

an j+e
2f (t)

1 e —jan cos2nz
4n +f (t)

(4.17)

where

e =—,
' (a —ja )n

+f (t)[ ',j + —,', (lla +2b ba)—+—', (a b—j)] . —

(4.18)

This solution for P is discussed in Sec. V (cf. Tables V and
VI and Fig. 3 below).

The only other analytical exact solution we present in-
volves data for h and g with different wave numbers. We
take

12b 1+x x dx
a

I —,'[(1+a sinnz) i —1]

—
—,
' [(1+a sinnz ) —1 ]

+—', [(1+a sinnz) —1]I . (4.22)

Now

From Eqs. (4.20), (4.21), and (4.22) we can reconstruct A;
recall that we must set Ap=2o. . Even though the in-
tegrated forms of Eqs. (4.21) and (4.22) have inverse
powers of a, they do in fact have finite limits (tending to
zero) for a ~0. The forms of the integrals with their lim-
its show that the integral in Eq. (4.21) is proportional to
a; the integral in Eq. (4.22) is proportional to a; and

30=1 Ai = —3a sinnz
(4.23)

A2= —", a sin nz ', ba sin nz(1 ————', sin nz) .

The first-order P perturbation is, from Eq. (3.10),

n a j4+f(t )a/8 . (blS)f (t)
sinnz + sin3nz .

n +f (t) 9n +f (t)

(4.24)

Because of its complexity, we will not give the explicit
second order for P2', the general form is given by Eq.
(4.17). Notice that we are in any case completely able to
integrate the Hamiltonian constraint, explicitly demon-
strating that there is no linearization instability arising
from that equation. This solution is further discussed in
Sec. V. see also Tables III, IV, VII, and VIII below.

The linearization stability condition from the momen-
tum constraint Eq. (3.18) is, as we have noted, only the
lowest-order version of this condition. The full periodici-
ty requirement for 2 is that

I (h )'rj, dz = f(h i )'q, dz =0 . (4.25)
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f(h ~ )'21 dz= It)(h ~ il )'dz —fh il 'dz ' (4.26) V. NUMERICAL SOLUTIONS AND CODE TESTS

but because these are closed-loop integrals, the first term
on the right vanishes identically, and full periodicity can
be restated:

fh ~i)', dz=O. (4.27)

One way of expressing this condition is similar to Eqs.
(3.12) and (3.13):

h = g(h ) si n( 2nmz /L+5~ ~),

sin(2irmz /L +5~ i ),
(4.28a)

(4.28b)

h = 1+a sin2irnl, z /L

and to then expand h by the binomial expansion. (Per-
force ~a

~

(1 or the metric is singular. ) The expansion of
h ~ will contain all powers of sin2m nhz /L From.

Gradshteyn and Rhyzik, we have

where the 5~
~

are the same function of m in each case.
Another approach, of use if g and h are taken as single-
mode quantities, is to write (at time t = 1)

Here we present the numerical techniques used to solve
the momentum and Hamiltonian constraint equations.
In both cases, the numerical solutions are compared to
analytic solutions in the full nonperturbative regime.
Calibrating the code against such test-bed calculations is
critical to making it a reliable tool for exploring the pa-
rameter space of the initial-value equations.

The numerical grid is shown in Fig. 1. The z direction
is covered with two sets of coordinates: ZAk at zone
faces and ZBk at zone centers, where k=1,2, . . . , km.
Note that the zoning need not be uniform; however, the
examples we present here all use uniform zoning. We im-
pose periodic boundary conditions by identifying quanti-
ties at k = 1 and km —1 and at k =2 and km, and by car-
rying dummy zones as shown in Fig. 1. Note that Z=0
has been chosen to lie at ZB2 and z =L at ZBk . Thus in
the range [O,L] there are km —1 nodes ZBk, including
the godes ZB2 and ZBk~, and km —2 zones DZBk. The
quantities A, h, ri, and p are defined at zone center ZBk.

The momentum constraint is straightforward to solve
since it is linear in the variable A. From Eq. (4.1) we
have

1
sin "x=

22n

n —1 2n
g (

—1)" "2
k cos2(n —k)x+

k=0

2n

(4.29a)

A = ——'h h ' h'ildz+h C(t)
2 0

where

C(t)=(Ah ), o, .

(5.1)

(5.2)

2n —1
sln2n

—lx — y ( 1)n+k —i
22n —2 k=0

Xsin(2n —2k —1)x . (4.29b)

2m
'g tx: slnpnI, z

L (4.30a)

where p is an even positive integer, and when

Hence the expansion of h contains cosines of all even
multiples of 2irnhz/L, and the sines of all odd multiples
of 2vrnhz/L. We wish Eq. (4.27) to hold, which is now a
simple question of the orthogonality of trigonometric
functions. We see that the full version of linearization
stability fails, in the single-mode case, if

be defined at ZBk we have
ZBkS=J', udz,

which becomes

(5.4)

On the initial slice, the value of the integration constant
C(t ) is set by our choice of the free data h and the bound-
ary condition for A at Z=O. On subsequent slices the
value of h(z=0) will come from the evolution equation
for h, and A (z=0) will come from a condition imposing
periodicity on the shift vector.

The integral in Eq. (5.1) is solved by converting it into
a sum and finding the area under the curve using a tra-
pezoidal rule. Letting the integrand

(5.3)

2%
'g ~x: cospnI, z

L
(4.30b)

k

( u DZ AJ. +u/, DZA, )

J —3

(5.5)

where p is an odd positive integer.
These conditions reduce to the linearization stability

condition of Eqs. (3.12) and (3.13) in the lowest-order lim-
it where they refer only to the p =1 case. We had to take
care in our numerical solutions that these conditions
were obeyed in their full nonlinear form. The deviation
from periodicity in A arising from violating these condi-
tions beyond the lowest order [Eq. (4.25)] arose predict-
ably in our numerical work at order a~b, where a is the
amplitude of the deviation of h from unity, b is the devia-
tion of g from unity, and p is the order that enters Eqs.
(4.30a) and (4.30b).

z=Q
DZAg

z=L
I 1

I I
I I

I I

ZAI ZAP ZAg ZAk

I

I

ZAk, I ZAkm I ZAkrn

ZBI Z8~ ZBk ZBk ZBkITI I ZBg

DZBk

FIG. 1. The numerical grid. Nodes at k =1 and km —1 and
at k=2 and km are identified to produce periodic boundary
conditions. The quantities A, h, rI, and P are defined at ZB&.
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Amplitude a
of free data

0.001
0.01
0.1

0.5
0.8
0.9

error«ne»,

3X 10
3X 10
3 x1O-'
1x1O-42�x�-'
101x-'

error«m «~

6x10-'
6X 10
6x10-'
1x10-'
6x10-'
7x10-'

TABLE I. Error indicators for solving the momentum con-
straint for A using 128 nodes. In this case the free data h and q
have equal amplitudes and wavelengths kz =A.-=L. This prob-

7l

lem has an analytic solution, Eq. (4.13), which was used to form
the error indicators.

Amplitude a
of free data

0.001
0.01
0.1

0.5
0.8
0.9

zone, abs

3x10 '
3X10
3x10 '
2x10-'
1x10 '
5x10 '

error«m «~

6x10 '
6 x10-'
6x 1O-'
2x10 '
3 x1O-4
4x10 "

TABLE III. Error indicators for solving the momentum con-
straint for A using 128 nodes. Here the free data h and g have
equal amplitudes but unequal wavelengths A, z =3k,-=L. The

7l

analytic solution (4.23) was used to form the error indicators.

for k =3, . . . , km; we define Jz=0. We verify periodici-
ty of this scheme by checking to see that Jk =Sz. We
then use Eq. (5.1) to get

Ak =hk ( ——,'2k+C) . (5.6)

To quantify the comparison between numerical and an-
alytic solutions we monitor two error indicators. In the
first, we calculate the absolute error in each zone for
some function f and then take the maximum over the
grid:

errOrzone, abs maXover grid ~fcomputed, k fanalytic, k ~
(5.7)

We also look at a relative cumulative error over the grid
using

2
l /2

computed, k analytic, k I

gIId
errOrcum, rel

g 2
& analytic, k

gIId

(5.8)

These errors are to be compared with the expected trun-
cation errors.

To test the algorithm (5.6) we choose free data in the
form used to derive the perturbative and full analytic
solutions in Sec. IV for the case of a Oat-space back-
ground (o = 1). As a first example we use free data in the
form given by Eq. (4.12), in which h, and i), both have
wavelengths equal to the size of the grid I. and equal am-
plitudes a =b that vary in the range [0.001,0.9]. The re-
sults of solving for 3 numerically using a grid covered by
128 nodes and 1280 nodes are shown in Tables I and II,
respectively, where the full analytic solution (4.13) has
been used to compute the error indicators. We also con-

sider the case of different wavelengths in h l and q, using
Eq. (4.19) with wavelengths Ak =3K, =L and equal am-

plitudes a =b. The comparison of the analytic solution,
given by Eqs. (4.20) —(4.22), with the computed solution is
shown in Table III for a grid with 128 nodes and in Table
IV for 1280nodes. -

The error indicators given in Tables I—IV behave as
expected. For example, the truncation errors scale
—(b,z); thus the error indicators should decrease
—(Az ) as the resolution of the grid increases. This can
be seen from a comparison between Tables I and II and
between Tables III and IV where the sizes of the errors
drop by a factor —10 as the number of zones increases
by a factor of 10. Also, note that the values of the error
indicators increase within each table as the amplitude of
the free data increases. This is due to the fact that 3
steepens and changes in shape as the input amplitude is
increased, producing an asymmetric profile with a narrow
pulse on one side of the grid; this can be seen in Figs.
2(a) —2(e). This steepening and narrowing of the profile
leads to an effective lowering of the resolution in that re-
gion of the grid. Finally, the errors for the case of un-
equal wavelengths are slightly larger than those for the
case of equal wavelengths. This is due to the presence of
shorter wavelengths, which also effectively lowers the
resolution.

We turn now to the nonlinear Hamiltonian constraint.
The existence and uniqueness of a positive bounded solu-
tion to this equation have been demonstrated by
O'Murchadha and York. In finding this solution we
follow a strategy based on that developed by Evans. The
first step is to linearize the equation about some solution

The resulting linear equation is solved using an opti-
mized incomplete Cholesky conjugate-gradient (ICCG)

TABLE II. Free data h and g have equal amplitudes and
wavelengths A, q =A.„-=L(same as Table I) but for 1280 nodes. TABLE IV. Same as Table III but for 1280 nodes.

Amplitude a
of free data

0.001
0.01
0.1

0.5
0.8
0.9

errOrzone ab$

3 x10-'
3x 1O-'
3X10
1X�1-'
O2�x-6
1X 10

errorcum, ref

6x10-'
6x10-'
6x10 '
1x10 '
6x10 '
7x10 '

Amplitude a
of free data

0.001
0.01
0.1

0.5
0.8
0.9

errorzone

2x1O-'
3X10
3X10
2X 10
1x10-'
5 x1O-'

el 10 curn, re]

2X 10
6x1O-'
6x10 '
2X 10
3X 10
4x1O-'
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~
' I s s I s ' I T"'~

-- - - I - - - - r -- - - I-. . . ~ - - - . I . . - ~ - --

0.38-

0.3340

0.36-

0.3335 0.34-

0.3330— 0.32

0.30-

0.3325-

0
I

20
~ . I

40 60 80 100
zone

120
OT28 . . . ~. . . . I. . . . ~. . . . I. . . . s. . . . I -. . . s. . . . I. . . . s. . . . I. . . . ~ . ~ . ~ I

0 20 40 60 80 100 120
zone

(c)
0,60- ~ -. I . . -. ~ ~ '

~ T I ~ --I . . s ~ . I-. . . ~ . ~ --
~

2Il d

(d)

0.50

1.0;

0.40

0.30
0.5 .-

0.20

0
s . . I . . . ~ . . . I . . ~ . . . I. . . ~ . . I. . . s. . . I. . . . ~ . . I

20 40 60 80 100 120
zone

0.0 .
-

0
~. . . . I . . ~. . . I. . . ~. . . I. . . ~. . . I. . . s. . . . l. . . ~. . . I.

20 40 60 80 100 120
zone

(e)

15;
ana

comp

10 '-

5-

0 4

0
~. . . . I. . . - ~. . . . I. . . . ~. . . I. . . . s. . . -l. . . . s-. . . l . . -. ~. . . . I

20 40 60 80 1 00 1 20
zone

FIG. 2. Perturbative, exact analytic, and code solutions for 3 for the case of free data with equal amplitudes and wavelengths
XI, =A,-=I. See Eqs. (4.12)—(4.18) and Sec. V. The numerical grid has 128 nodes, and every fourth value of the code solution is plot-
ted.
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matrix solver, which has been showy to converge rapid-
ly. ' The solution thus obtained is used as the new
value of Po, and this cycle is repeated until successive
iterations produce convergence to a solution. To guard
against blunders, this solution is then checked to see if it
solves the full nonlinear equation.

With the definitions

E =8Spo —4BQO . (5.13b)

~k+i+hk
(5.14)

To discretize Eq. (5.12) we note that A, 2), h, and p lie at
zone center ZBk. writing

and

m= —
—,'h",

B =—'(trK)'h,
(5.9a)

we get
(5.9b)

1
)k D g [Fkfk+1 (Fk ++k —1)kk ++k —leak —1]DZAk

S= —
—,', (2) +33 )Il

the Hamiltonian constraint (2.15) becomes

(5.9c) (5.15)

Discretizing the right-hand side of Eq. (5.12) at ZBk and
using Eq. (5.15) then gives

(P'h )'=M/+BE +Sf

Linearizing about some solution Po,

(5.10)
Gk +k%k+1 Hkkk+Fk —ilk —1

where

(5.16)

4=40+&0

Eq. (5.10) becomes

(P'll )'=DP+E,

(5.11)

(5.12)

and

Hk =Fk+Fk &+DkDZAk

Gk =EkDZAk .

(5.17a)

(5.17b)

where

D =M+5Bpo 7SQO— (5.13a)

Applying periodic boundary conditions, Eq. (5.16) can be
written as a banded symmetric matrix equation with two
off-diagonal terms:

F
F3

F3

~ ~

Fkm —3 Hkm —2 Fkm —2 (t'km —2

G3

Gk -2

(5.18)

Fkm —1 Fk -2 ~km —1 0km —1

Equation (5.18) can now be solved using an ICCG solver
optimized for the computer in use, here a Cray X/MP.

Our procedure works as follows. Begin by choosing an
initial guess solution Po. For these initial-value problems,
we choose $0 to be a constant in the range [1,10]. The
larger values of $0 are necessary to obtain a positive-
definite solution for large perturbations in the free data;
the solutions would otherwise converge to the negative
image of the positive-definite solution. (This property is
indicated in the reAection symmetry of the Hamiltonian
constraint equation, which remains invariant under the
change of sign P~ —P. ) Using Po, solve Eq. (5.18) for P;
this process usually converges to better than 1 part in
10' in approximately 2—3 iterations. Now set the new P
equal to $0 and repeat. In all cases tried, this process
converges, i.e., &Po=P, to 10 ' after about 5 —10 itera-

tions. Finally, we make a direct comparison of the left-
hand side [(P'h )'] and the right-hand side
(M/+BE +Sf ) of the full nonlinear Hamiltonian
constraint (5.10). The maximum deviation (LHS —RHS)
was monitored and found to be less than 10 ' in all
cases. Note that this deviation is an estimate of the error
in the solution to the difference equation. We must still
find analytic test-bed solutions to the Hamiltonian con-
straint in order to check the effects of truncation error.

In the first- and second-order perturbative regimes we
can use the analytic solutions derived in Sec. IV for com-
parison with the numerical results. For the case of free
data in the form (4.12) with equal amplitudes a =b and
wavelengths k& =A, =I., the conformal factor can be
written to second order p = 1+p, + lti2 using Eqs.
(4.16)—(4.18). Comparing the analytic solution to second
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TABLE V. Error indicators for solving the Hamiltonian con-
straint for P using 128 nodes. In this case the free data h and g
have equal amplitudes and wavelengths A,z =A,-=I.. These re-
suits correspond to the same solution for which A errors appear
in Table I. The second-order analytic solution (4.16)—(4.18) was
used to form the error indicators.

TABLE VII. Same as Table V but for the case in which the
free data have equal amplitudes but dift'erent wavelengths
A,&=3k-=L. These 128 node results correspond to the same

rI

solution for which 2 errors appear in Table III. The first-order
analytic result, Eq. (4.24), and its second-order extension were
used to form the error indicators.

Amplitude a
of free data

0.001
0.01
0.1

errOrzone»s

2X 10
5X10
9X 10

error, „mrel

1x10-'
3x10 '
5 x10-'

Amplitude a
of free data

0.001
0.01
0.1

errOrzone, abs

1x10 '
5 x10-'
9X10

el rOrcum, rel

9X10
3x10 '
5X10

order with the code solution produces the error indica-
tors shown in Table V for a grid with 128 nodes and in
Table VI for 16 nodes. Similarly, the case of equal ampli-
tudes and difFerent wavelengths A, z =3k =1. produces
the results in Table VII for 128 nodes and in Table VIII
for 16 nodes.

The error indicators in Tables V—VIII behave as ex-
pected. Increasing the amplitude of the free data
effectively lowers the resolution of the calculation; this
effect is seen in both the absolute and relative errors
within each of the Tables V —VIII for the cases a =0.001
and a =0.01. The substantial increase in error between
a =0.01 and a =0. 1 is due to the fact that this marks the
transition out of the second-order regime; cf. Figs. 3(b)
and 3(c). In addition, the errors should decrease by a fac-
tor —10 as the number of nodes goes from 16 to 128,
since we are using centered difFerences with truncation
errors that scale —(b,z) . This is observed in the case
a =0.001. However, we see only a factor —10 decrease
for a =0.01. This is due to the fact that the analytic
solution for P to second order has leading error terms
-h, —10 for a =0.01. Since the numerical errors are
also —10, the eff'ect of the scaling —(hz) is mostly
lost. Similarly, the case a =0.001 has leading error terms
in the analytic solution —h

&

—10 . Increasing the num-
ber of nodes from 128 to 1280 cannot be expected to im-
prove the errors; we have verified that this is in fact what
happens.

We also need a test of the Hamiltonian constraint in
the nonperturbative regime. To find such a solution we
use a technique suggested by Evans. The idea is to give
values for h, A, . and P and use these to solve the Hamil-
tonian constraint analytically for g. This produces a con-
sistent analytic solution for P. Now use these values of h,
A, and g and solve the Hamiltonian constraint for P nu-
merically. Comparison between the computed and ana-
lytic values of P then yields a test of the code.

To implement this procedure we choose

h =ho=const; (5.19)

the momentum constraint then requires

A = AD=const . (5.20)

With these values and the choice

P =$0+b sinnz, (5.21)

where n =2m.m /I. and m is some integer, the Hamiltoni-
an constraint becomes an algebraic equation for g. The
solution is

16(bn sinnz)($0+b sinnz)

1/2

+ (P +b sinnz)' —3A (5.22)

trK =200,
and let b vary in the range [0.01,9]. The large value of
trK is the result of satisfying g ~0. The Hamiltonian
constraint is solved for P and this value is compared with
the analytic solution (5.21).

We consider two cases, m =1 and m =3. Tables IX
and X contain the error indicators for the case m = 1 us-
ing 128 and 16 nodes, respectively. The case m =3 is
shown in Tables XI and XII using 128 and 16 nodes, re-
spectively. As expected, increasing the amplitude of the

Note that Eq. (5.22) imposes a constraint on ho, Ao, Po,
n, b, and trE, since g )0.

Now use the above solutions for h, A, and q and solve
numerically for P. We choose

$0=10, ho= 1, 30=1,
and

TABLE VI. Same as Table V but for 16 nodes. TABLE VIII. Same as Table VII but for 16 nodes.

Amplitude a
of free data

0.001
0.01
0.1

zone, abs

2X 10
3X10
7x10 '

errorcum, ref

1X 10
2x10-'
4x10 '

Amplitude a
of free data

0.001
0.01
0.1

errOrzone, abs

1X 10
3X 10
7x10-4

error, „m«&

9X 10
2X 10
4x10-'
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1.0002

(a)
1.015-
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(b)
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1.0000
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0.990-
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I

60 60 100 120
zone

0.965 .
0

I I ~ I I I . ~ ~ . . . I. . . ~ . ~ . . I
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zone

1.12-

(c)
~f g-r-g--v-]'e---~. . ry. --- ~

(d)
1 70 ' ' e '

~
' ' e ' i ' ' s ' ' ' '

g
' ~ ' '

y ~ '
g

' ' ' ' ~

1.10- 1.60-

1.06-
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1.06-

1.04-
1.40-

1.02- 1.30-

~ . . 4 . ~ I I I ~ . t . . ~ I
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zone 0
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zone

3.5;

3.0:-

2.5-

2.0 .

0
I

20 40
I I

60 60
zone

I

100 120

FIG. 3. Perturbative and code solutions for P for the equal-amplitude —equal-wavelength case of Fig. 2. Note that there is no ana-
lytic solution for P beyond the second order, Eqs. (4.16)—(4.18) in this case.
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(a) TABLE X. Same as Table IX but for 16 nodes.
6--

Amplitude 6 of
P perturbation

0.01
0.1

1.0
5.0
8.0
9.0

errors, „e,b,

1x 10
1x10-"
2x10-'
1x10-'
7 x10-'
1 x 10-4

el I Ol curn, rel

1x10-"
1x10-"
1x10-"
4x10-'
2 x10-'
2X10

1 —. r—.

0 20 40 60 BO 100 120
zone

(b)

perturbation e6'ectively lowers the resolution, leading to
an increase in error. Comparing, for instance, Tables IX
and X shows that the errors scale -(hz), although for
smaller amplitudes the scaling diminishes. The b =0.01
case represents a —10 ' relative term in the right-hand
side of Eq. (5.22). The accuracy of solution indicated by
Tables IX—XII represents —1 part in 10' of the desired
solution. The saturation of error at small b is evidence
for an insu%ciently tight criterion for convergence in the
Hamiltonian solution. We performed experiments in
which the Hamiltonian convergence was relax d t —1

10
xe o-

part in 10 . In that case, the error residuals saturated at
values —10 larger than those given in Tables IX—XII
and were essentially identical between 16 and 128 zone
calculations for

~
b

~

& 1.

0.5

0.0

—0.5
I. . . . ~. . . . I. . . . &. . . l. . . . . . . . . . . . . . . . . . sI. . . . I. . . . I. . . I . . I. . . I

20 40 60 80 100 120
zone

FIG. 5. Code solutions for P for the cases of Fig. 4 on the ac-
tual scale in (a) and normalized so that P, =o=0 in (b). The solu-
tions increase in amplitude corresponding to the amplitudes of
the perturbation in Figs. 4(aj —4(e).

TABLE IX. Error indicators for solving the Hamiltonian
constraint for ItI using 128 nodes. These results use the analytic
solution given in Eqs. (5.19)—(5.22) with $0= 10, ho = 1, Ao=
trK =200, and I= 1.

VI. SOME PARAMETER-SPACE RUNS

In this sect~on we present some results of varying the
amplitudes and wavelengths of the free data for the case
of standing waves with a Oat-space "background. " Fur-
ther examples of initial data sets, including traveling
pulses localized in z on both cosmological and Aat "back-
grounds, "are given in Ref. 31.

The first case we consider has free data in the form
(4.12& wiwith equal amplitudes a =b and wavelengths
A,

&
=k =1.. The results of varying the amplitude

through the values a =0.001, 0.05, 0.2, 0.5, and 0.9 and
solving the momentum constraint for A using 128 nodes
are shown in Figs. 2(a) —2(e). The linear regime is sh's s own
in ig. (a), where the code results match the first-order
solution. Figure 2(b) shows the second-order regime in
which the code results match the second-order solution,
and both of these deviate from the first-order solution.
The nonlinear effects continue to build in Figs. 2(c)—2(e),
which show the code and exact analytic solutions deviat-
ing more and more from the second-order case. The re-

TABLE XI. Same as Table IX but for the case m =3.

Amplitude b of
ItI perturbation

0.01
0.1

1.0
5.0
8.0
9.0

error„„,,b,

Sx 10-"
Sx 10-"
SX10
4x 10-'
1X10
2x10-6

error,
„

7 x10-"
7x10-"
7x10 "
6x10-"
2x10-'
3X 10

Amplitude b of
P perturbation

0.01
0.1

1.0
5.0
8.0
9.0

error„„,,b,

2�x1-"
02�x-"
2�x1-'
01x�-'
8X10
2X10

curn, re&

1x10-"
1x10 "
1x 10-"
4x10-'
2X 10
4x 10-'
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FICx. 6. A(z) is shown for equally spaced values of a in the
range [0.001,0.8] (vertical axis) on a grid with 128 nodes (hor-
izontal axis). (a) solves the full nonperturbative problem, (b)
solves the second order, and (c) solves the linearized problem.
For a fuller discussion see Sec. VI.

FIG. 7. Same as Fig. 6 but for P. The full nonperturbative
solution is shown in (a), the second-order solution in (b), and the
linear in (c). See Sec. VI.

TABLE XII. Same as Table XI but for 16 nodes.

Amplitude b of
P perturbation

0.01
0.1

1.0
5.0
8.0
9.0

error«„,»s

1X10-'
1X 10
2X10-'

- 7X10
3 X10-'
2X 10

errorcum, ref

8X 10
8X 10-"
9X 10-'
3 X10-'
1X10
9X10-'

suits of solving the Hamiltonian constraint for P are
shown in Figs. 3(a)—3(e). Again, the first- and second-
order regimes are shown in Figs. 3(a) and 3(b), respective-
ly. Beyond second-order .there is no analytic solution for
P, and so only the code and second-order results are plot-
ted in Figs. 3(c)—3(e).

The momentum variable A shows a distinct trend to-

ward building up a sharp asymmetric profile. That this is
a strong nonlinear effect can be seen from the deviation of
the solution from the second-order expression. Such a re-
sult may seem surprising at first, since the momentum
constraint (2.14) is linear in A. However, this equation is
nonlinear in its source through the free data h. The
dramatic change in shape of 2 as the amplitude of h in-
creases is thus a response to nonlinearity in the source.
The conformal factor P also shows a trend toward an
asymmetric peaked profile, although it remains much less
distorted than A. This behavior is due to the fact that
the Hamiltonian constraint (2.15), while highly nonlinear
in P itself, is basically a Poisson-like equation. Such
equations tend to produce relatively smooth responses to
sharp sources, as is the case with potential due to a 5-
function source such as a point charge. Note that the
level of P, given by $2=(t k, increases with the amplitude
of the free data. The level of A is constrained to remain
constant by our boundary condition choice that 3, 0 be
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equal to the background value of A for all choices of the
free data.

We also consider the case in which the free data have
equal amplitudes but different wavelengths 4A, I, =5k, =L.
The results of solving for A are shown in Figs. 4(a) —4(e),
where the amplitude of the free data takes the values
a=0.05, 0.2, 0.5, 0.7, and 0.8. Here, only the second-
order and code solutions are shown. The full analytic
solution for A, while obtainable in principle, is very
unwieldy in this case. Since we have already tested the
code extensively (see Sec. V), we are confident in consid-
ering only the numerical solution here. Code solutions
for P are shown in Fig. 5(a) on the actual scale and in Fig.
5(b) normalized so that P, o=0.

Note that the solutions are dominated by the 4X=L
signal in h; this is expected from the momentum con-
straint (2.14b) in which we see that the behavior of h

dominates the source. For large values of a some of the
peaks actually turn over and become valleys. Higher
modes also become visible as the nonlinear effects in-
crease. The curves for P again are smoother. They in-
crease in overall amplitude, steepness, and level as the
amplitude of the free data increases.

The results of these parameter space runs are shown as
color images in Figs. 6 and 7. Each separate image is
made up of 50 separate, 128-node runs with a varying iIi
the range [0.001,0.8] at equally spaced values. The z axis
runs along the horizontal (long) direction of each image
and a increases upward along the vertical (short) direc-
tion. Figure 6 shows the value of 3 in colors ranging
from purple (low value) to red (high value);'all three im-
ages in Fig. 6 are on the same color scale, given by the
color bar at the bottom of the figure. Figure 7 does the
same for P. The color maps were chosen carefully to
bring out as much information in the images as possible.
In both Figs. 6 and 7 the top image (a) gives the results of
solving the full nonperturbed equation, (b) gives the re-
sults of solving the equations to second order, and (c)

gives the results of solving to first order.
These images provide a wealth of information about

the solutions to the momentum and Hamiltonian con-
straints and a good means of assessing the effects of non-
linearity. For example, the bottom part of each panel in
Figs. 6 and 7 is the same (first-order regime) while the
middle parts of (a) and (b) are the same (second-order re-
gime). The upper portions differ considerably, since this
is where the nonlinear effects are the strongest. The clear
symmetry of the sinusoidal oscillations in 3 in the first-
order solutions [Fig. 6(c)] gives way to differences in
shape and strength among the peaks in the second-order
regime [cf. Figs. 4(a) and 4(b) with Fig. 6(b)]. The full
nonperturbative solution for A shows qualitatively
different behavior [Figs. 4(c)—4(e) and Fig. 6(a)]. Similar-
ly, the sinusoidal oscillations in P about a fixed level at
first order [Fig. 7(c)] develop a rise in level at second or-
der [Fig. 7(b)] and distinctly asymmetrical profiles in the
nonperturbative regime [Fig. 5 and Fig. 7(a)]. Figure 7
shows the rise in level of the second-order solution, which
outstrips that of the nonperturbative solution for large
values of a. Direct visual comparison of the images in
Figs. 6 and 7 clearly demonstrates the differences in solu-
tions to the initial-value equatio'ns in the perturbative and
full nonlinear regimes.
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