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The renormalized expectation value of the stress-energy tensor ( T„)""of a quantum field in an

arbitrary quantum state near the future horizon of a rotating (Kerr) black hole is derived in two

very different ways: One derivation (restricted for simplicity to a massless scalar field) makes use of
traditional techniques of quantum field theory in curved spacetime, augmented by a variant of the

"g formalism" for handling superradiant modes. The other derivation (valid for any quantum field)

uses the equivalence principle to infer, from ( T„,)""in flat spacetime, what must be ( T„„)"'"near

the hole s horizon. The two derivations give the same result —a result in accord with a previous

conjecture by Zurek and Thorne: (T„„)"",in any quantum state, is equal to that, (T„,) "
which zero-angular-momentum observers (ZAMO's) would compute from their own physical mea-

surements near the horizon, plus a vacuum-polarization contribution T„"""",which is the negative

of the stress-energy of a rigidly rotating thermal reservoir with angular velocity equal to that of the

horizon QH, and (red-shifted) temperature equal to that of the Hawking temperature TH. A discus-

sion of the conditions of validity for equivalence-principle arguments reveals that curvature-

coupling effects (of which the equivalence principle is unaware) should produce fractional correc-

tions of order a:—(surface gravity of hole) &((distance to horizon) to T„'" ";and since gravitation-

al blue-shifts cause the largest components of T„'"~" in the proper reference frame of the ZAMO's

to be of O(ct ), curvature-coupling effects in T„"'„' " and thence in (T„)""are of O(a ) in the

ZAMO frame. It is shown, by a quantum-field-theory derivation of the density matrix, that in the

Hartle-Hawking vacuum the near-horizon ZAMO's see a thermal reservoir with angular velocity

QH and temperature TH whose thermal stress-energy (T„„)~ gets renormalized away by
T„"'„' ", annulling the O(a ) and O(a ') pieces of (T„„)"",and leaving only the O(a ) vacuum-

polarization, curvature-coupling contributions. This translates into (TI )""=(Tt&)"'"=0on the

future horizon in the Hartle-Hawking vacuum, where 1 and P denote components on the horizon

generator 1"and on the generator of rotations t) ray. In quantum states representing a black hole in

the real Universe (with both evaporation and accretion occurring), the Auxes of red-shifted energy

and angular momentum across the future horizon, per unit solid angle sin8d8dg, are shown to

equal the corresponding accretion cruxes into the hole's atmosphere from the external universe

minus the cruxes evaporated by the hole. As a consequence, the hole's horizon evolves in accord
with standard expectations. As an aside it is shown that the Hartle-Hawking vacuum state

~

H ) is

singular at and outside the velocity-of-light surface SL, i.e., at sufficiently large radii that the rest

frame of its thermal reservoir is moving at or faster than the speed of light. Its renormalized stress-

energy tensor is divergent there, and its Hadamard function does not have the correct behavior. To
make

~
H ) be well behaved (and have the properties described above), one must prevent its rotating

thermal reservoir from reaching out to 4L, e.g. , by placing a perfectly rejecting mirror around the
hole just inside SL, .

I. INTRODUCTION AND SUMMARY

Hawking' has shown that a rotating black hole formed
by gravitational collapse in the distant past must spon-
taneously emit particles as though it were a rotating
thermal reservoir with angular velocity equal to that,
QH, of the hole's horizon, and with temperature
T~ ——A~/2~k&, where ~ is the hole's "surface gravity, " A'

is Planck's constant, and kz is Boltzmann's constant.
This startling result became more understandable when
Unruh and Israel showed that the horizon of a rotating
hole is, in fact, surrounded by a rotating thermal
atmosphere —an atmosphere held in from immediate es-
cape by the hole's spacetime curvature and by an
angular-momentum barrier; the Hawking radiation can
be interpreted as a slow leakage of this atmosphere into
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surrounding space. The atmosphere is completely real,
from the viewpoint of static observers who live at con-
stant radius just above the hole's horizon, but freely fal-
ling observers near the horizon do not see or feel it. This
difference between static and freely falling viewpoints is
completely analogous, Unruh has shown, to the fact that
in Aat, empty spacetime where freely falling observers see
and feel no quanta, observers with constant acceleration
a see and feel themselves bathed by a thermal reservoir
analogous to the hole's atmosphere, with temperature
equal to Ra /2~kii.

The importance of the hole's atmosphere for enforcing
the second law of thermodynamics in black-hole process-
es was made clear by Unruh and Wald using a thought
experiment that entailed lowering a box deep into the at-
mosphere, there opening and emptying or filling it, and
then raising it back up. Were it not for the buoyant pres-
sure of the atmosphere and its statistical properties, such
a thought experiment could violate the second law. The
reason for this was elucidated by Zurek and Thorne, '

who showed that the entropy of a black hole can be inter-
preted statistical mechanically as the logarithm of the
number of ways that the hole's atmosphere, with a given
macroscopic structure (renormalized mass and angular
momentum as functions of height), could differ micro-
scopically from a perfect thermal reservoir. This inter-
pretation of the entropy permitted Zurek and Thorne '

to show that the second law of thermodynamics for pro-
cesses involving black holes is nothing but a special case
of the ordinary second law of thermodynamics for pro-
cesses involving a thermal reservoir.

Zurek and Thorne derived these statistical mechanical
results not only for nonrotating black holes, but also for
rotating, charged black holes that evolve slowly due to
exchange of quanta with the external universe (evapora-
tion and accretion). However, their derivation relied on a
key property (to be described below) of the renormalized
expectation value of the stress-energy tensor (T„,)"'"
near the hole's horizon —a property that has been proved
in the past only for nonrotating black holes. One of the
main purposes of this paper is to prove this key property
of ( T„)""for rotating, uncharged holes. The generali-
zation to charged holes should be straightforward but
will not be attempted here. A second main purpose is to
show, by example, that the equivalence principle if used
carefully is just as valid in the domain of quantum field
theory in curved spacetime as in the domain of classical
physics. A third main purpose is to develop formal tech-
niques for analyzing negative-energy states (such as the
Hartle-Hawking vacuum) of superradiant modes of boson
fields near a rotating black hole.

The key aspect of (T„)"",which Zurek and Thorne
needed (see above) and we shall prove, is the following.
(This property was first conjectured, albeit in less physi-
cal language, in the case of nonrotating holes by
Christensen and Fulling; and it was proved for the non-
rotating case by Candelas. ) Consider, just above the
horizon of an evaporating, accreting, rotating black hole,
the family of zero-angular-momentum observers
(ZAMO's; the analog for a rotating hole of a nonrotating
hole's static observers). ' Particle detectors carried by

these ZAMO's detect (according to a trivial generaliza-
tion to Kerr spacetime of Unruh's Schwarzschild argu-
ment) "Boulware particles" relative to the "Boulware
vacuum"

i
B)." As is well known, the ZAMO's will

infer from their detectors' measurements that the hole's
atmosphere is nearly, but not precisely, in a thermal
state. By those measurements they can determine, in
principle, the expectation value of the mean number of
(Boulware) particles in each single-particle quantum state
of the atmosphere; and from those expectation values
they can compute a corresponding expectation value for
the stress-energy tensor of the atmosphere ( T„)
They can also compute the value T„'" that the stress-
energy tensor would have if the atmosphere were precise-
ly thermal, with a temperature equal to the Hawking
temperature (appropriately blue-shifted to their location
and motion), and with an angular velocity equal to that of
the horizon and thus also equal to their own angular ve-
locity (i.e., if the atmosphere were in the "Hartle-
Hawking" vacuum state

i
H )). Then the actual, renor-

malized stress-energy tensor, i.e., the stress-energy which
produces spacetime curvature by means of Einstein's
equations and which therefore causes the evolution of the
hole's horizon, is equal, aside from "curvature-coupling"
corrections, to the difFerence of their measured stress-
energy tensor ( T„) and the perfectly thermal
stress-energy tensor T„'":

( T )ren ( T )zAMO+ Tvac pol
PV PV pv (l. la)

yvac pol yth ~i Tvacpol i
pv pv + ' pv 'curvature-coupling corrections

(1.1b)

We shall regard T„"' "as the stress-energy tensor associ-
ated with vacuum polarization.

This discussion of the key result of this paper can be
translated into more technical and less physical language
as follows: Since ZAMQ's measure Boulware particles
relative to the Boulware vacuum, if the state of the atmo-
sphere is

i
4 ), then

(1.2)

(1.3)

The renormalized stress-energy tensor in the Hartle-
Hawking state, as inferred from Eqs. (1.1) and
( T )ZAMO Tth isPV pv~

where f'„ is the stress-energy-tensor operator; its expec-
tation values without superscripts are the formal, un-
renormalized expectation values; and the difference of
two, such expectation values in two different states is, of
course, finite and well defined. ' Since an atmosphere
that is precisely thermal as seen by ZAMO's has

~

4) =
~

H ) and (T& ) =T&" (cf. Appendix C and Sec. IV
for proofs and discussions), the stress-energy difference in
the Hartle-Hawking and Boulware states must be
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( 0 $ren ~ Tvac pol ~

pv 1
) ='Tpv '

'curvature-coupling corrections i

(1.4)

and, correspondingly, the renormalized stress-energy ten-
sor in any other state is

Tvac po1 ~+ ( pv 'curvature-coupling corrections '

(1.5)

Iri the proper reference frame of the ZAMO's the coin-
ponents of the curvature-coupling corrections remain
finite as one approaches the horizon. This has two conse-
quences: (i) the corrections give zero contribution to the
fiuxes ( T&& )"" and ( T&& )"" of energy and angular
momentum across the horizon; and (ii) the corrections
are sensitive to spacetime curvature and thus cannot be
inferred from the equivalence principle (hence the name
"curvature-coupling" corrections). For an evolving hole
(one with a nonzero fiux of energy and/or angu-
lar momentum across the horizon) the diff'erence

(T, ) —T„'" is divergent, in the proper reference
frame of the ZAMO's, as one approaches the horizon.
This divergence, which arises from the divergence of the
ZAMO acceleration, has two important consequences: (i)
it causes the difference (T„) —T„'" to be a local
quantity, insensitive to spacetime curvature and thus
computable from the equivalence principle; and (ii) it en-
ables that difference to produce the finite horizon fluxes
( T&&

)""and ( T&&)"" of energy and angular momentum
which drive the horizon's evolution.

Thus, if all one is interested in are the (ZAMO-frame-)
divergent parts of the renormalized stress-energy tensor
near the horizon, i.e., the parts that drive the horizon's
evolution, one need not compute the curvature-coupling
corrections and one can derive the ( T„)""of the hole's
atmosphere directly from the equivalence principle. This
will be the case in the present paper. On the other hand,
at distances above the horizon of order 1/(hole's surface
gravity tt) the curvature-coupling corrections are of the
same magnitude as the thermal contributions to vacuum
polarization, so expression (1.5) is useless without a
knowledge of them. Very far from the hole, where space-
time is flat and ZAMO's are inertial observers, standard
flat-space quantum field theory guarantees that
( T„)""= ( T„) without any renormalization.
And at any location, if the hole's atmosphere is perfectly
thermal as measured by the ZAMO's (i.e., if the hole is
in the "Hartle-Hawking vacuum state"

~

H ) ), the
curvature-coupling corrections are all that survive in
( T„)""[Eq. (1.4)j. Frolov and Zel'nikov' have given a
review of computations of the curvature-coupling correc-
tions; see also the more recent calculations reported in
Ref. 14.

In Sec. II of this paper we shall use the equivalence
principle to derive, from well-known properties of
( T„)""in fiat spacetime, the form (1.1) of the renormal-
ized stress-energy tensor near the horizon of a black hole
that is rotating, evaporating, and accreting. Then from

Eq. (1.1) we shall derive expressions for the finite values
of the energy fiux ( T&&

)""and angular momentum fiux
( T&&)""on the future horizon. These expressions (when
multiplied by radius squared to convert them to flux per
unit solid angle) will coincide, as functions of angular po-
sition 0, with the corresponding expressions derived by
Hawking' for the energy and angular momentum flux
into the atmosphere of a rotating, evaporating black
hole —augmented by obvious contributions from accre-
tion. From this we shall infer, via the semiclassical Ein-
stein equations applied at the horizon, that the horizon of
an evaporating black hole evolves in accord with stan-
dard expectations' (which are a direct consequence of
( Tp,v)ren 0)

7

In Sec. III we shall give an alternative derivation of Eq.
(1.1) based on quantum field theory in curved spacetime.
Regrettably, there will be one gap in our derivation: We
shall have to assume, without proof, that in the Hartle-
Hawking vacuum state the renormalized stress-energy
tensor is regular on the hole's future horizon. For simpli-
city the derivation will be confined to massless scalar
quanta.

It may increase the reader's confidence in the
equivalence-principle derivation of ( T„)""to know that
it was carried out before the quantum-field-theory deriva-
tion and gave the correct result [Eq. (1.1) and, in more
explicit form, Eqs. (2.50) below].

In our formal, quantum-field theory derivation of
( T„„)""special attention must be paid to superradiant
modes of the scalar field. The proper manner of handling
these modes has been, until now, somewhat murky and
controversial Because distant observers and near-
horizon ZAMO's measure opposite signs of frequency for
a superradiant mode, one must make a (not totally obvi-
ous) choice of convention for the sign of the frequency
when quantizing the mode. Moreover, because the total
ZAMO-measured energy in the mode is negative in some
states of interest and positive in others, one is forced, in
one case or the other, to deal with a Fock space that has
negative numbers of quanta and/or an indefinite metric.
In Appendix A we sort out these complexities with the
aid of a variant of the "g formalism" for handling spaces
of indefinite metric.

In Sec. IV we use the results of our formal quantum-
field-theory calculations to elucidate several important
properties of the Hartle-Hawking state

~

M ): We show
unequivocally that the mean rest frame of

~

H )'s thermal
quanta rotates rigidly with the angular velocity of the
horizon, and not (as has sometimes been suggested)
differentially with the angular velocity of the Carter
tetrad' or differentially with the angular velocity of the
ZAMO's. ' We then go on to elucidate the nature of a
singular behavior of

~

H ) that has been found by Kay
and Wald For ease of calculation we specialize to a
hole that rotates arbitrarily slowly, so the surface S'z out-
side which

~

H)'s thermal reservoir moves faster than
the velocity of light (the "velocity-of-light surface"), is far
from the horizon where spacetime is fiat. For such a hole
we show that the renormalized stress-energy tensor (as
computed from our formalism) diverges as one ap-
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proaches $1 froin its inside, and is infinite outside SL;
and we show that the Hadamard elementary function de-
rived from our formalism is also ill behaved everywhere
outside Si . It seems reasonable to expect that, similarly,
for a rapidly rotating hole the stress-energy tensor and
Hadamard function of

~

H ) will be singular at and out-
side the velocity-of-light surface SL.

These results cast a pall over our formal derivations of
the properties of

~

H ). However, we go on in Sec. IV to
argue that, if one places a perfectly reflecting mirror
around the hole, just inside $1, thereby preventing

H)'s thermal reservoir from reaching out to $1, the
state

~

H) will become well behaved. Moreover, we
show that this "modified, " nonsingular state, which we
denote

~
H~) in Sec. IV, has the same properties as we

derived formally for
~

H ): it appears perfectly thermal to
ZAMO's and its renormalized stress-energy tensor van-
ishes aside from "curvature coupling corrections"
(which, however, are infiuenced by the presence of the
mirror).

These conclusions dictate that in the equivalence-
principle analysis of Sec. II we should think of the
Hartle-Hawking state of a rotating hole as actually the
state

~
H~ ), made nonsingular by surrounding the hole

with a mirror.
Throughout this paper we shall use the notation and

sign conventions of Misner, Thorne, and %'heeler'
(MTW), except that in addition to setting to unity the
speed of light c and Newton's gravitation constant 6, we
shall also set to unity Plane k's constant A and
Boltzrnann's constant kz. In large measure our formal
quantum-field-theory calculations will follow the notation
and conventions of Ref. 2D, while our physical descrip-
tions of the results and our equivalence principle argu-
ments will be couched in the language of Ref. 6.

II. DERIVATION BASED ON THE EQUIVALENCE
PRINCIPLE

across the hole's future horizon. In those expressions, by
virtue of our equivalence-principle derivation, we will use
for the field's superradiant in modes (superradiant modes
that originate at past null infinity) the unusual viewpoint
of negative frequency as measured at infinity. In Sec.
IID we will transform the superradiant in-mode contri-
butions into the more usual viewpoint of positive frequen-
cy as measured at infinity, thereby obtaining our final
formula —Eqs. (2.50) and (2.51)—for the fiuxes of renor-
malized energy and angular momentum across the future
horizon. In Sec. IIE we will show that these horizon
fluxes are equal to the fluxes of energy and angular
momentum into the hole's atmosphere from the external
universe (including the negative contribution from eva-
poration), and that consequently the horizon evolves in
accord with standard expectations. '

A. Renormalized stress-energy tensor in fiat spacetime

Let T, Z, x, y be the Lorentz coordinates of an inertial
reference frame in flat spacetime. In these coordinates
the metric has the standard form

ds = —dT +dZ +dx +dy (2.1)

A family of uniformly accelerated observers (Rindler ob-
servers) moves through this fiat spacetime along world
lines

Z =z cosh~t, T=z sinh~t . (2.2)

Here z is a new spatial coordinate which is constant along
the Rindler world lines; t is a new time coordinate which
varies along them; and ~ is an arbitrary constant (tlie
"surface gravity of the Rindler horizon") which can be
altered by altering the normalization of t In term. s of
these new coordinates the fiat metric (2.1) takes the stan-
dard Rindler form '

In this section we shall use an equivalence-principle ar-
gument to derive expression (1.1) for the renormalized
stress-energy tensor of an arbitrary field 0 near the hor-
izon of a rotating (Kerr) black hole. The first step (Sec.
IIA) will be to express the renormalized stress-energy
tensor for the field 4 in flat spacetime in terms of mea-
surements made by a family of uniformly accelerating ob-
servers ("Rindler observers"). The next step (Sec. II 8 1)
will be to argue (by the equivalence principle) that, if the
field near the hole's horizon is in "the same physical
state" as the field in flat spacetime, then its renormalized
stress-energy tensor must be expressible in terms of
ZAMO measurements by the same formula as is used,
with Rindler measurements, in Hat spacetime. The mean-
ing of "the same physical state" will be clarified in Sec.
II 8 2. The final step (Sec. II 8 3) will be to
discuss, in order of magnitude, the curvature-coupling
corrections to the resulting renormalized stress-energy
tensor ( T )"". Having thereby derived the rather for-
mal expression (1.1) for ( T„)"",we will deduce from it,
in Sec. II C, the more explicit expressions (2.44) for the
cruxes of renormalized energy and angular momentum

= —a dt +dz +dx +dy (2.3)

Here the "lapse function" (also called the "red-shift func-
tion") a is

a=zz (2.4)

and the Rindler horizon is located at a =z =D.
The Rindler observers are at rest in the Rindler coordi-

nate system, and the basis vectors of their proper refer-
ence frames are

& a
ac)t ' (2.5)

where the latin index j runs over the spatial coordinates
x, y, z. Correspondingly, a Rindler observer measures a
particle with four-momentum p to have energy ("locally
measured energy")

= —p «e~ (2.6)

which is related to the particle's "red-shifted energy" I (a
quantity conserved along the world line of a freely falling
particle) by
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aZ= —P =AC'l oc (2.7)
sure no quanta at all; (ii) the renormalized stress-energy
tensor vanishes

~z~ && Il, e/)M, z/k„, e/k I, (2.8a)

with lower face at z=zl arbitrarily close to the horizon
so that

zl /z2 « 1 (2.8b)

Rindler observers, when quantizing any field 4, find it
natural to choose basis states that are eigenfunctions of
red-shifted energy with eigenvalues 8, and of x and y
components of momentum with eigenvalues k~ and ky.
If the field's quanta have rest mass p, then the z com-
ponent of their momenta will be k, =+(g /a —(Lt

—k, —k )' . In our equivalence-principle arguments,
when dealing with a Inode of given p, 8, k„, k we shall
restrict attention to heights so small that
e)„——Z/a » I)M, k„, k» I; arid correspondingly we shall be
able to regard the quanta, when measured by the Rindler
observers, as essentially massless and as propagating very
nearly vertically. More specifically, we shall restrict at-
tention to a box with upper face at z =z2 such that

(2.12)

and (iii) the Rindler observers measure the field to be pre-
cisely thermally excited, with locally measured tempera-
ture Tl„equal to the Rindler observers' acceleration
a =~/a divided by 2m —corresponding to a red-shifted
temperature

a
TH cx Tloc cx 2' 277

' (2.13)

th (1+e H)+1 "~ HPn— (2.14)

(where the upper and lower signs correspond to boson
and fermion fields), and with density matrix for 1 and $

modes, '

which is the same as the Hawking temperature of a black
hole with surface gravity ~. Thermal excitation means
that the two (1 and $) modes with quantum numbers
I= I Z, k„, k» I, from the Rindler observers' viewpoint,
are in mixed states with a probability of containing n

quanta

and with arbitrarily large lateral dimensions; and inside
that box the modes of fixed e, k, k which propagate up-
ward (f mode) and downward ($ mode) will have the
form

P(r(r)r = g I
"r &P„) (nr I

nI
(2.15)

~=const)&e e ' e'~/' ""(K'eik x ik y
I

~1 —cons ~e e e e
(2.9) (Here

~

nrt & is the state of mode I1 containing nrt quan-
ta, and similarly for

~

nr" &.) The mean number of quanta
in the modes is, correspondingly,

Here I—:I Z, k„, k I, and the z dependence is such as to
produce k, =B(phase)/Bz =+@/a.

For pedagogical reasons (to be encountered in subse-
quent sections), we shall restrict attention to wave-packet
modes that have the form (2.9) everywhere inside the box
at some arbitrary time to, but that are cut off (%'~0 at
time to) just outside the box, at z &z2 and at z &z, . We
shall use these wave-packet modes to quantize the field
inside the box, for times t near to; and accordingly we
shall impose on 8 the usual periodic boundary condition
[cf. Eq. (2.9)]

+i(W/K)ln(KZ l ) +i {Z/K)ln(Kz2 )
e ' =e (2.10)

i.e.,

8=2m.X
ln(z2/z, )

(2.11)

where N is an integer. Although our analysis will be re-
stricted to the interior of the box and to times t near to,
because to is arbitrary and because the bottom face of the
box is arbitrarily near the horizon, our analysis will per-
mit us to discuss all aspects of the field in any region of
spacetime near the horizon.

Suppose, now, that the field 4 is in its Minkowski vac-
uum state

~

M &. This has several consequences (deriv-
able by standard Oat-spacetime quantum-field-theory
techniques ' ' ): (i) freely falling (inertial) observers mea-

( M
~

& rt
~

M & = tr(p (~)r)r Art ) = ( M
~

'8' ri
~

M &

tr P (M)I~ I nrth ~~TH—
e 0+1

(2.16)

From the wave functions (2.9) for modes I, the Rindler
observers can compute the stress-energy tensor T„~ and
T„~ which those modes would produce if they each con-
tained precisely one quantum and if there were no correc-
tions due to vacuum polarization:

k k
TI( fat'j, )

Ar) ~ 'ln(z2/z i ) e
(2.17a)

Here Az is the area of the box's base and top,
'ln(z2/z, ) is the time required for a quantum to pass

through the box, from top to bottom or bottom to top,
and k& are the components of the four-momentum of one
quantum in the Rindler observers' rest frame:

ko 6l c 8/(x k l k k~ ky

k3 ——k, =+ko .
(2.17b)

Correspondingly, if the modes I are in the Minkowski
vacuum state so their mean number of quanta are nI",
then the Rindler observers will infer for them, before re-
normalization, an expectation value for the stress-energy
tensor
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(2.18)
2

ds = a—dt + dr +p d8 +m (dP —
comdt)

(2.22)

In order that the renormalized stress-energy tensor van-
ish in the Minkowski vacuum, it must be that vacuum
polarization, from the Rindler observers viewpoint, con-
tributes to the stress-energy tensor an amount equal to
the negative of (2.18), i.e., the negative of that in a perfect
thermal bath:

where o'. , p, 6, m, and co are functions of r and 0 which
are given in standard references, e.g. , Eqs. (33.2) and
(33.3) of MTW' and Eqs. (3.5) and (3.6) of Ref. 6 (cited
henceforth as BHMP, which stands for "Black Holes:
The Membrane Paradigm" ). Far from the black hole,

TIvac pol
( TI I n rh+ TI In rh

)pv pv I pv I (2.19)
a~ 1, p /b, ~1, p~r, m~r sin8, co~0,

Next let the fields in Bat spacetime be in an arbitrary
state. Denote by (ntt ) and (nI ) the expectation value,
in this state, for the number of quanta in the modes I as
measured by the Rindler observers, and correspondingly
denote by

(2.20)

the Rindler-observer-measured stress-energy tensor for
the modes I. Since the contribution of vacuum polariza-
tion to the stress-energy tensor is independent of the state
of the fields, T„'" "must still be the negative of that of a
perfect thermal bath [Eq. (2.19)]; and correspondingly,
the renormalized stress-energy tensor associated with the
modes I must have the form

( T )reo ( T )Ro+ TIvacpol
pv I )Mv I pv

(2.21)

That the renormalized stress-energy tensor actually does
have this form has been proved directly, via formal
quantum-field-theory calculations, for massless fields of
spins 0, —,', 1, and —,'in the "Fulling vacuum state"

~

I' )
(the state where Rindler observers see no quanta at all).
[We note in passing that for the Fulling vacuum and oth-
er states that are singular on the horizon, modes with
k —E/a and/or k —e/a contribute significantly to
( Tz )"'"=QI ( T& )I'" at every height z, even arbitrari-
ly small z, and correspondingly one must use in evaluat-
ing ( T„)""more accurate (spin-dependent) expressions
than (2.17) for the stress-energy carried by individual
quanta. ' By contrast, for states that are regular on the
future or past horizon (the kinds of states that will be of
concern in this paper), (T„„)""will be kept finite (in
well-behaved, e.g., inertial, reference frames) by the fact
that modes of suKciently high k or k will be seen by
Rindler observers as perfectly thermalized, and thus will
not contribute to ( T„)"".This means that, for regular
states, when one is sufticiently close to the horizon all the
modes that contribute to ( T„)""are well approximated
by expressions (2.17).]

B.Renormalized stress-energy tensor
just outside the horizon of a rotating

black hole

l. Equivalence-principle analysis

Turn, now, to the spacetime around a slowly evolving,
rotating, uncharged (Kerr) black hole with mass M and
angular momentum J =Ma. The Kerr metric for such a
hole takes the form

(2.23)

so the metric becomes that of flat spacetime in spherical,
inertial coordinates. The horizon of the black hole is lo-
cated at a—:(lapse function) =0. As the hole slowly
evolves due to evaporation and accretion, the mass M
and angular momentum J =Ma, which appear in the
metric functions, slowly change. One objective of this pa-
per is to obtain from ( T„)""expressions for those slow
changes [Eqs. (2.55) and (2.50) below].

Our analysis will rely heavily on the Rindler approxi-
mation to the Kerr metric. We shall sketch only briefly
how the Rindler approximation comes about; for greater
detail see Sec. VIC1 of 9HMP. The Rindler approxi-
mation is valid only very close to the horizon, i.e., at
values of the lapse function a &&1. There we can replace
the radial coordinate r by proper radial distance z above
the horizon. When we do so, the lapse function assumes
the standard Rindler form (2.4):

a=i~z+O(ir z ), (2.24)

where ir is the hole's surface gravity (denoted gH in
BHMP), and the value of l~ is fixed uniquely by the
demand that t become proper time far from the hole
[Eqs. (2.22) and (2.23)]. Similarly, the relevant metric
coeNcients take the form

co =QH +0(a'), p = pH(8)+ O(a'),
m=mH(8)+O(a ) .

(2.25)

The quantity QH is the angular velocity of the horizon
and is independent of 0. In coordinates that rotate with
the horizon,

P=P —AHt, (2.26)

the Kerr metric (2.22) then takes on the simple form

ds = adt +dz +pH d8 +—mH dItp (2.27)

aside from fractional corrections of order n, which we
shall ignore.

In the neighborhood of some angular location (80,$0)
we can introduce local Cartesian coordinates

(2.28)

and can rewrite the metric (2.27) in the Rindler form

(2.29)

The zero-angular-momentum observers (ZAMO's
called FIDO's in BHMP) reside at fixed r and 8, but they
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move with angular velocity dgldt =co, where co is the
metric function appearing in Eq. (2.22). By virtue of Eq.
(2.25), very near the horizon the ZAMO's orbit rigidly
with the horizon, aside from fractional errors of order o.
which we ignore. In other words, the near-horizon
ZAMO's reside at constant r, 8, P and correspondingly,
in the Rindler approximation, at constant z, x, y. Thus,
the ZAMO's become uniformly accelerated, Rindler ob-
servers in the Rindler approximation.

The equivalence principle states that, aside from cer-
tain delicacies to be discussed below, the laws of physics
in any locally uniform gravitational field in curved space-
time should take on the same form as they do in a uni-
formly accelerated reference frame in Aat spacetime.
Specialized to the present situation, this implies that the
laws of physics as studied by ZAMO's just above the hor-
izon of a rotating black hole should be the same as the
laws of physics as studied by Rindler observers in Hat
spacetime. To the extent that the delicacies discussed
below do not interfere, this means in particular that the
renormalized stress-energy tensor of the modes I just
above the horizon of a black hole should be expressible in
the same form (2.21) as in flat spacetime:

( T )ren ( T )zAMO+ TI vac pal
pv I pv I pv

=T„',"(&n,') n,'")+—T„",(&n) ) —n,'") . (2.30)

2. "Same-state" delicacies

By "'same-state" delicacies we mean the following: It is
essential, when applying the equivalence principle, to be
sure that the physical systems being studied —one in
curved spacetime and the other in Aat spacetime —are in
"the same physical state. " This is as true in classical
physics as in quantum. In classical physics, for example,
if we study the motions of two freely falling particles, one

Here, as in Hat spacetime, the mode I is to be a wave-
packet mode, confined at time t =to to the interior of a
box of the form (2.8) with periodic boundary conditions
(2.10) and wave function (2.9), and with T„t and T„~
given by Eqs. (2.17). Moreover, as in flat spacetime, the
mode is an eigenstate of red-shifted energy:

Z—= —p (8/Bt ), -=a X(locally measured energy e&„);

(2.31)

(nI ) and (nI") are the expectation values for the num-
ber of quanta in modes I1 and I f as measured by the
ZAMO's, and nl" is the mean number of quanta that
modes I1' and I 1 would have if they were perfectly
thermalized [Eq. (2.16)]. Correspondingly, as in flat
spacetime so also near the horizon of a rotating hole, in a
state where the ZAMO's measure all fields to be perfectly
thermalized (a state that turns out ' ' to be the Hartle-
Hawking vacuum

~

H); see Appendix C), (T„,)1'"
will vanish —at least to the order of accuracy of our
equivalence-principle analysis.

There are two delicacies that could invalidate or cause
errors in our equivalence-principle analysis: "same-state"
delicacies and "curvature-coupling" delicacies.

in a locally uniform gravitational field in curved space-
time and the other in an accelerated reference frame in
Aat spacetime, we will see the same motions only if both
particles are free of electric charge —or, in the charged
case, only if the electric and magnetic fields felt by the
particles are the same.

A well-known example of violation of the "same-state"
restriction in quantum physics is the fact that an observer
on the surface of an isolated, zero-temperature neutron
star will not detect any quanta, whereas a uniformly ac-
celerated observer in fiat, empty spacetime (Minkowski
vacuum) will detect a precise thermal bath of quanta.
The reason the equivalence principle fails is that the
states of the fields are different in the two cases: the
"Minkowski vacuum"

~

M ) in flat spacetime is not the
same as (does not correspond, for equivalence principle
purposes, to) the "Boulware vacuum""

~

8) around an
isolated, cold neutron star.

Perhaps the best way to identify the "same states" in
quantum-mechanical equivalence-principle arguments is
by first identifying corresponding modes I of the relevant
fields (as we have done above by introducing identical
boxes and quantizing inside them in the same manner),
and by then demanding that the accelerated observers in
curved spacetime and in Aat spacetime see the same num-
bers of quanta in corresponding modes. This method of
handling the "same-state" delicacies is embedded in our
equivalence-principle derivation of ( T„)I'" (above),
since our answer is expressed in terms of the mean num-
ber of quanta (nit ), (n) ) that the accelerated observers
measure in the corresponding modes I 1', I l.

As one can infer from the work of Unruh, Israel, and
Gibbons and Perry and as we shall show explicitly in
Appendix C, near the horizon of a rotating black hole it
is the Hartle-Hawking vacuum state

~

H ) that is "the
same as" the Minkowski vacuum state

~

M ) of fiat space-
time. In each of these states the near-horizon accelerated
observers (ZAMO's and Rindler observers) measure all
modes to be perfectly thermalized with the same, Hawk-
ing temperature; and correspondingly

~

H ) and

~
M) are characterized by the same, thermal, density

operators (2.15). [Wald has pointed out to us an alterna-
tive way to see that

~

H ) is "the same state" as
~

M ),
aside from curvature coupling effects. This way relies on
the Kay-Wald theorem' that in any globally hyperbolic
spacetime which has a Killing field with a bifurcate Kil-
ling horizon, there can be at most one quasifree (i.e.,
"generalized vacuum") state which is invariant under the
isometry generated by that Killing field and is regular
everywhere, including the entire past and future hor-
izons. Since all such spacetimes are geometrically identi-
cal near their horizons, except for curvature efFects, their
unique, regular quasifree states must be identical near
their horizons, — except for curvature-coupling effects.
Kerr (with the interiors of the inner Cauchy horizons re-
moved, and with a perfectly reAecting mirror inserted
around the outer horizons so as to make

~

H ) regular, cf.
the end of Sec. IV) presumably is such a spacetime, as is
Minkowski; and their unique, regular quasifree states are

~

H) and
~

M). In this sense,
~

H) and
~

M) are the
"same states" up to curvature-coupling effects. ]
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3. "Curvature-coupling" delicacies

"Curvature coupling" is a more dif5cult and subtle is-
sue than "same state. " For an extensive classical discus-
sion see, e.g. , Chapter 16 of MTW. ' Curvature coupling
leads to fractional errors of order (size of system being
studied) /(radius of curvature of spacetime) . In our
equivalence-principle derivation of ( T„)I'" the size of
the system is the vertical sizq of the "box" in which we
resolve the fields into normal modes, which is of order
the height z above the horizon at which ( T„)""is being
evaluated. For comparison, the radius of curvature of
spacetime is of order the horizon radius rH, which in turn
(if we ignore for pedagogical simplicity the physically un-
realistic limit of an "extreme Kerr" hole where it~0) is
of order ~ '. Thus, curvature coupling effects should
produce fractional corrections of order (z/Iv. ') =a to
the stress-energy tensor associated with vacuum polariza-
tion T„,""p". Equations (2.19) and (2.17) show that, in
the proper reference frame of the ZAMO's, the dom-
inant part of T "" " (the vertical energy fiux) diverges

p, v

as a (one factor of a ' for the gravitational blue-shift
of energy; the other a ' for the blue-shift of the "per unit
proper time" in the fiux). Correspondingly, the
curvature-coupling corrections to T&&" ""are of order
o, g a =o; in the ZAMO's reference frame

( Tpp )curvature-coupling corrections

[For a proof of this from the full formalism of quantum
field theory see Eq. (3.49) and associated discussion. ]

Near the horizon these curvature-coupling corrections
are unimportant, except in special states where the
ZAMO-measured stress-energy ( T&p )I is perfectly
thermal and thus is precisely canceled by the O(a ) and
O(a ') parts of the vacuum polarization. [Most notable
among these special states is the Hartle-Hawking vacuum
state

~

H ), for which all modes are perfectly thermal and
I vac pol( Tpy ) ( Tpy )curvature-coupiing corrections ]

from the horizon, where a-1, the curvature-coupling
effects are always (in any state) of the same
order as the equivalence-principle e6'ects; so the equiva-
lence principle becomes useless. For summaries of ex-
tensive calculations of the renormalized stress-energy
tensor in the Hartle-Hawking vacuum, ( T„,)"'"

vac pol ~ ~=(T„v )curvature-coupiing corrections, at a variety of distances
from a black hole see Refs. 13 and 14.

In the above discussion we have glossed over an embar-
rassing aspect of the curvature-coupling issue: In many
realistic situations it is only modes with slow angular
variations, i.e., with just a few nodes going all the way
around the hole (

~ k„) & rH ',
~ k»

~

& rH
' where rH -v

is the horizon radius) that deviate significantly from per-
fect thermality and that thus contribute significantly to(T„)""near the horizon. The reason is that quanta
with many transverse nodes and with F- TH -K have
great difhculty penetrating the "angular momentum bar-
rier" that surrounds the black hole. The lateral wave-
lengths of these modes (2m. /k„—2m'/k -rH) remain un-
changed as they near the horizon, by contrast with their
radial (vertical) wavelengths which become shorter and
shorter, ~ca. In order to treat such modes, the box in

which we do the quantization that underlies our
equivalence-principle argument must have a transverse
size comparable to the size of the hole.

At erst sight one might expect this to make the
curvature-coupling corrections to T„"'p" be of order
the equivalence-principle contributions (2.30) and thereby
invalidate our equivalence-principle argument. That our
argument almost certainly remains valid can be seen from
the fact that the dominant, equivalence-principle-derived
contributions to T "" p" diverge as O(a ) and

jQV

O(a ') precisely because of the compression (blue-shift)
of vertical wavelengths near the horizon. Lateral
wavelengths are irrelevant to that divergence, so there
is no reason to expect lateral e6'ects to promote

tip )curvature-coupling corrections
or O(a ).

In the next section we shall bring the ( T„)t'"of Eq.
(2.30) into a more explicit and useful form. As an aid in
doing so—and with the justification of the above
discussion —we shall expand our quantization box la-
terally so it completely encircles the hole; i.e., so it is a
spheroidal shell at z, &z & z2.

C. Explicit form of ( T„„)""for massless
Aelds in near-horizon viewpoint

Every massless field (scalar, neutrino, electromagnetic,
gravitational) near a Kerr black hole can be described by
a Teukolsky function O'. When quantizing the Geld glo-
bally (not just in our quantization box) it is conventional
to break 4' into normal modes characterized byI=

I I, m, It, eI, where l and m are spheroidal harmomc
indices, It =+s is a helicity index (with s the field s spin),
and e is the angular frequency measured by observers at
rest far from the hole. Since observers far from the hole
are at rest with respect to the tt angular coordinate while
near-horizon ZAMO's are at rest with respect to

Qtt t [Eq. (2.26)],—the relation

e
—iet irnP e

—izt imP (2.33)

tells us that the angular frequency e measured far from
the hole is related to that 8 measured near the horizon by

(2.34)

One has a choice of sign convention (henceforth called
viewpoint; cf. Appendix A) for the modes I: One can in-
sist that e & 0 (quantization from viewpoint of distant ob-
servers), in which case for modes with 0 & e & m QH ("su-
perradiant modes" ) Z is negative. Alternatively, one can
insist that Z & 0 (quantization from viewpoint of near-
horizon observers), in which case for modes with
0 & F & —m QH (the superradiant modes in the near-
horizon viewpoint) e is negative. Classically the two
viewpoints are related, for superradiant modes, by

(where the overbar denotes complex conjuga-
tion); and for nonsuperradiant modes, by tp ~'p (no
change). The corresponding quantum-mechanical rela-
tionship is discussed in Sec. II 0 below, and in Appendix
A. Our equivalence-principle analysis (quantization in
near-horizon box; last section and this one) is based on
the near-horizon viewpoint, Z~O for all modes. In Sec.
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up mode in mode

' mode r mode

II D below we shall translate our results into the distant-
observer viewpoint, e&0. (Note: for terminological sim-
plicity we use the phrase "superradiant modes" whether
4 is bosonic or fermionic —even though in the fermionic
case the "superradiant modes" do not exhibit superradi-
ance. )

For each I = {i, m, h, ZJ there are two very special, or-
thogonal, global modes of 4; see Fig. 1, Sec. III A, and
Appendix B: the up mode (denoted qi in Sec. III and Ap-
pendix B), which propagates up from the horizon and, at
height z-(size of hole), is partially transmitted to future
null infinity and partially reflected back down to the hor-
izon; and the in mode (denoted vi in Sec. III and Appen-
dix B), which propagates in from past null infinity and is
partially transmitted to the horizon and partially
reAected back to future null infinity. If, as we shall in
this section, one uses the same viewpoint (here Z~O) for
all modes, then the probability

~
Ai

~

of refiection for
the up mode with quantum numbers I is the same as the
probability of reAection for the in mode with the same
quantum numbers (a consequence of the conservation of
the Wronskian of the modes, as in elementary quantum-
mechanical scattering theory).

When we quantize the field 4 inside our near-horizon
box, each mode will be characterized by the same quan-
tum numbers I = {i,m, h, ZI as for global modes. (The
quantum numbers l, m replace the k, k„ that we used

when the quantization box was Hat rather than a
spheroidal shell; and h was suppressed in our previous
discussion. ) For each I there are two wave-packet modes
T and l, which are confined to the box's interior at time
to, entering and leaving it at earlier and later times.
These modes are constructable as linear superpositions of
up and in modes with a range of values of e that is very
sharply peaked about the value for the t or $ mode
(AZ-(time At that packet spends in box)

K[ln(z&/z, )] ' ((~). Figure 1 shows the propagation
of the l and 1' modes and the in and up modes in a Pen-
rose conformal diagram. From that diagram it is clear
that the t' modes must be composed solely of up modes,
while the $ modes must be a linear combination of up
modes and in modes. (Figure 1 makes it clear that the set
of all 1 and J, modes, including those that are in the box
at time to and also those in the box at times to —ht,
to —2ht, . . . ; to+At, to+2ht, . . . cannot form a com-
plete, globally orthogonal set of modes in terms of which
to do global quantization. For example, the {Il', toI
mode will have nonzero scalar product with the {Ig,
to+nbtI mode, where nest is the time required for the
{I1, to [ mode to rise out of the box, backscatter off the
spacetime curvature and centrifugal barrier, and reenter
the box. Thus, the 1 and 1 modes, while powerful for
quantization inside our box at and near an arbitrary fixed
time to, and hence anywhere near the horizon, are not
powerful for global quantization. )

For a real, astrophysical black hole (one formed in the
past by gravitational collapse) the up modes are precisely
thermally populated, ' (ni) =ni", while the mean num-
ber of quanta in the in modes, (ni") (accreting quanta)
depends on the hole's astrophysical environment and thus
may be regarded as arbitrary.

Since the f modes are composed solely of up modes,
they like up must be perfectly thermally populated. This
guarantees that they contribute nothing to ( T„,)"" in-
side our box [Eq. (2.30)], and thus can be ignored. By
contrast, since the l modes are a superposition of up
modes and in modes, and since the probability of a quan-
tum in the Iin mode being transmitted and thereby
entering an I $ mode is 1 —

~
Ai ~, and the probability of

a quantum in the I up mode being rejected and thereby
entering an I J, mode is

~
Ai ~, the mean number of

quanta in the locally downward propagating mode I l is

(n) ) =(ni")(1—
( Ai )

)+ni"
~

Ai
~

(2.35)

The renormalized number of quanta in an I l mode is
thus

FIG. 1. Penrose spacetime diagrams depicting the propaga-
tion and backscatter of the up and in modes of a field outside a
black hole, and also the f and t, wave-packet modes that are
constructable from them. The stippled region is the world tube
of the interior of the box which is used in defining the f and $
modes. The horizontal line marked to identifies the interior of
that box at time t= to. 2 denotes past null infinity, 2+ future
null infinity, & the hole's past horizon, and &+ its future hor-
izon.

& "i ) ni~=(&ni") ni~)(1 —
l
~i

l

(2.36)

(T„„)i'"=T„i((ni")—ni")(1 —
~

Ai
~

) . (2.37)

When our, box was Aat, the stress-energy tensor associ-
ated with one quantum T„'t"i ' had the form [Eq. (2.17)]

This relation, together with (nit ) =ni" and Eq. (2.30) im-
plies that the renormalized stress-energy tensor associat-
ed with modes I inside our quantization box is
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TI(.worl)
k kP V

A, ~-'in(z, /z, )

where k„was the wave vector of the mode —or,
equivalently, the four-momentum of one quantum. By
switching to a spheroidal box we induce two changes: (i)
the probability of ending a quantum in a horizontal area
dA is changed from dA/Ait to

I hSi (O, ae')
I dA/AH,

with AH the horizon area and i, Si (O, ae) the "spin-
weighted spheroidal harmonic" that carries the angular
dependence of tii; and (ii) the modes I are changed from
eigenfunctions ofp and p with eigenvalues k and k to
eigenfunctions of P&

——(angular momentum) with eigen-
value k& ——m. Correspondingly the T„'t'"~' of Eq. (2.17)
is changed to

By taking the limit of expression (2.40) as a~o we ob-
tain the cruxes of energy and angular momentum across
the future horizon. Taking the limit is facilitated by not-
ing that, as o.~0,

a =aeo~l, aez~l, (2.42)

( T )rett li ( 2( T )ren)
a—+0

& T,]&""= lim(a & T,-~ &""),
a~O

(2.43a)

(2.43b)

and similarly

where I is the generator of the future horizon, and that
consequently the components ( Tii )"" and ( Ti& )""
which drive the evolution of the horizon's mass and an-
gular momentum are

I hSi (O, ae)
I k„k,

AH it ln(z2/zi )
(2.38a) & T„&""=hm(a& T,-, &"")=O.

a~0
(2.43c)

ko= —Z/a, k~=e/a for 1' mode,

k, = —e/a for $ mode, k& ——m
(2.38b)

Correspondingly, Eq. (2.40) yields, on the future horizon,

IhSl (O«) I'
(Ti, &"".= y f"~~

'
(&n,")—nr'")

l, m, h AH

(Here and below for simplicity we shall forego any at-
tempt to discuss 0 components of the stress-energy ten-
sor; they are relatively uninteresting since they cannot
inAuence the evolution of the hole's mass or angular
momentum. )

To get the total stress-energy tensor near the future
horizon, we must sum over all modes in the box, g
with I= I e, h, l, m I. The sum on Z can be reexpressed as
an integral by noting that the vertical periodic boundary
conditions (2.11) imply that there are

(2.44a)

& Tie&~".=o .

x(1—
I Ai I') (2.44b)

(2.44c)

x(1—
I A, I')

hsi (O,
(Ti~)"" = —g f dZ (&ni" &

—nr")
l, m, h 0 AH

ln(z2/z, )
dN= dF

277K
(2.39)

D. Conversion of ( T„„)""to viewpoint of distant observers

Trin
PV

I i, Si (O, ae)
I k„k

H

k0= —8/a, kz ———d/o. , k&
——m for in modes .

(2.41b)

Because the modes I are not eigenfunctions of t)/t)O, the
O components of T„'"do not take the simple form (2.41a).
However, from the actual form of the modes [Eq. (3.2)
below for a scalar field] and the general classical expres-
sion for the stress-energy tensor in terms of the field [Eq.
(3.48) below for a scalar field] one can show that

To&s" = T~ii" ——0, T~s'" ——O(a), Tiii'i" —1 . (2.41c)

values of e in the frequency interval dZ. Corresponding-
ly, the total stress-energy tensor takes the form

( T )ten y f TIin(( in) tit)g~ (2 40)
I, m, h

where T„'" denotes the stress-energy tensor associated
with one quantum injected at infinity (J ) into the I in
state, which for IiM, vI = Io, z, PI has the form [Eqs.
(2.37), (2.38), and (2.40)]

~new +old & ~new old

Inew + Iold & ~ new h old

(2.4Sa)

["fhis transformation follows from Eq. (2.33), from the
symmetries of i, Si (O, ae), and from the relation

new
—I

new old (2.45b)

between the Teukolsky functions for this mode in the new

Expressions (2.40) and (2.44) are written from the
viewpoint of a near-horizon ZAMO (Z&0 for all modes;
e &0 for superradiant modes and e ~ 0 for nonsuperradi-
ant modes). Below we shall call this the "old" viewpoint.
Since it is the in modes that contribute to ( T„)"'"and
those modes originate far from the hole (at 2 ), it is
desirable to rewrite (2.44) from the viewpoint of distant
observers (e&0 for all modes) —a "new" viewpoint. For
superradiant modes this entails changes that can be in-
ferred as follows (cf. Appendix A).

Focus attention on a speci6c, superradiant mode. In
the "old" (near-horizon) viewpoint the mode is character-
ized by quantum numbers I,iz ——( l, m, It, Z'), iz with
0 & Z, t~ & —m, i~AH. In the "new" (distant-observer)
viewpoint it is characterized by I„,„=(l,m, h, e)„,„with
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and old viewpoints; cf. the paragraph following Eq.
(2.34).] Note that Eqs. (2.45a) and (2.34) imply

~new=~new+~new+H (~ojd+moidf)'fj)

new (~new —i )~new & Hold (~old 2 ) old & (2.47d)

and comparing with Eqs. (2.46a), (2.47a) and (2.47c), we
infer the relation

= —e,)d) 0 . (2.45c) (2.47e)

Restrict attention, in this paragraph, to one of the super-
radiant modes Il or I1 in our near-horizon box. This
mode is characterized in the old, near-horizon viewpoint,
by creation and annihilation operators a „d, 8,&d

with the
conventional commutation relations, Hamiltonian, and
number operator

[~old old ]+ [ old ~old]+

+1Hold ( ~old T )~old ' ~old ~old~old
(2.46a)

Since the creation of a positive-energy quantum, Z &d & 0,
must correspond to annihilation of a negative-energy
quantum, Z„, = —'F,~d&0 (total energy change'the same
in both viewpoints), the annihilation and creation opera-
tors of the new (negative-energy) viewpoint must be

(2.47a)

[This can also be inferred mathematically from Eq.
(2.45b) and the expressions I'=a, ~d'Poid+&o~d'P„d
=&„, 4„, +Q„,„%'„, for the contribution of this mode
to the field operator V.] Equations (2.47a) and (2.46a) im-

ply the commutation relations

[a„,„,&„,„]+= + 1, [&„,„,a„,„]+=0

(which are unusual in the bosonic case but standard in
the fermionic). For any classical system with well-defined
total red-shifted energy E and total angular momentum
L, when one changes from an "old" frame to a "new"
frame that rotates wi&h angular velocity —Q& relative to
the old, the total energy transforms as

+new Eold ++HL old old( ++HLold /Enid )

[cf. Eq. (2.34)]. Correspondingly, the quantum-
mechanical Harniltonian must transform as

H„,w =So)d( 1+Q~Lo)d /Eo)d ) .

For our mode, since L„d/E &d
——m„d/F, &d, and since

Z,]d+ 0&m, ]d ———e„, , this implies

H„,„/e„,„—H, id /Z, id .

Writing each Hamiltonian in terms of its number opera-
tor,

Here and in the remainder of this paragraph we suppress
the index I; the upper signs refer to the bosonic case and
the lower signs to the fermionic; and [, ]+ denotes a
commutator, while [, ] denotes an anticommutator.
The eigenstates of avoid are I ~

0 & o)d, ~

1 & „d, . . . I in the
bosonic case and I ~

0 &o~d, ~

1 &,id I m the fermionic, with

~old l

0 & 1d
=0

I
ii & old ( ii old )

l

0 &.„1

n!

ii )0 . (2.46b)

between the number operators for the old viewpoint and
the new viewpoint. [An alternative derivation of this re-
lation is given for the bosonic case in Eqs. (8.12) of
BHMP. ] Correspondingly, the eigenstates of n„, are

~

—1&„,„, ~

—2&„, , . . . in the bosonic case and

~
0&„, ,

~

1 &„,„in the fermionic, with

gjn+1I
[n&„,„=~ /n +1/!
h'„,

j
n &„, =n

[
n &„,„, bosonic;

(2.47f)

&„,„ i

—1&„,„=0,

a„, ~0&„, =0,
~

1&„, =a„,„~O&„,

h'„,„~ n &„, =n
~

n &„,„, fermionic;

and with the precise correspondences

~
0&,&d~

~

—1&„, ,
~

1&,id ~

—2&„, , . . . , bosonic,

(2.47g)

~
0&,&d~

~

1 &„,„, ~

1 &„, ~ ~
0&,i, fermionic.

Thus, the Fock spaces constructed by Eqs. (2.47f) are
properly normalized. [Note: Equations (2.46) and (2.47)
are completely analogous in the bosonic case to the trans-
formation of a Cherenkov-radiation calculation from the
rest frame of the medium, where the emitted quanta car-
ry positive energy, to the rest frame of the emitting parti-
cle, where the emitted quanta carry negative energy. ]

The key result that we shall need from this analysis is
the relationship (2.47e) between the number operators of
the new and old viewpoints. This relationship, with the
suppressed indices I 1 or I 1 restored, says

(h'I )„,„=—[(hr ),id+1],
(h'I )„,„=—[(nl ),)d+1] .

(2.48a)

The superradiant I in mode can be analyzed in a similar
fashion, but with these differences: since the in mode
originates at past null infinity, 2, the usual conventions
and viewpoint for its quantization are those of a distant
observer (cf. Appendix A): e„,„~0, [&„,„, a „,„]+——1,
and 8'„, =&„, 8„, . By arguments completely analogous
to the above we then conclude that a,]d

——a „, ,
[a„d,o„d ]+= + 1, and h', }d

——+ Q„de„d. Corresponding-
ly, h, id ———(R'„, +1), which is a symmetric relation be-
tween new and old: h„,„=—(h„d+1). Rewritten with
the indices I in restored this says

One can readily verify that the normalizations

„,„(—1
~

—1 & „,„=1 in the bosonic case and

„,„(0
~
0&„,„=1 in the fermionic produce, as a result of

(2.47e) and (2.47f) and the commutation relations (2.47b),

(2.47h)
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(el")., = —[(tti'").td+1] . (2.48b)

&.,'&„,„=—(& n,').,„+1),
& n,t)„,„=—((n) ).,„+1),
& n,'" &„,„=—( ( n,'" &.„+1);

(2.48c)

(2.48d)

and, in particular, imply that the mean number in a per-
fectly thermalized state of the black-hole atmosphere is
[cf. the old-viewpoint relation (2.16)]

th) [( h) +1]
~.]d~TH —-

e +1

—"id "01+e T
1e +1new 0 —
q

(2.48e)

Note that Eqs. (2.48a) and (2.48b) for the number opera-
tors of the two viewpoints imply analogous relationships
between the mean number of quanta in any state

(nt ) & 0 is the mean number of positive-energy, e &0,
quanta injected into the mode I in by the external
universe. Also, in Eq. (2.49) T„'" has the same form
(2.41) as previously. However, for superradiant modes,
because the signs of 8 and m have been reversed in going
from the near-horizon viewpoint to the distant-observer
viewpoint, the sign of T '" [Eq. (2.41)] has reversed, as
has the sign of ( ( nt" —nt" ), leaving the value of
( T„„)""unchanged.

E. Global conservation of energy and angular momentum

Hawking' has shown that, when a rotating black hole
is evaporating into an external vacuum (i.e., when the
fields around the hole are in the Unruh vacuum state

l
U)), static external observers measure the evaporated

radiation to have a radial Aux of energy and angular
momentum given, in terms of the distant-observer
viewpoint, by

hSi (H, ae)Notice that, although (nt")„, is given in terms of e„, by
the same standard Bose-Einstein mathematical expres-
sion as (nt")„d in terms of e„d [cf. Eqs. (2.47c) and (2.16)],
the numerical value of (nt'")„,„is negative in the bosonic
case and & —,

' in the fermionic (because Z„, ~0), while the
numerical value of (nt )„d is positive in the bosonic case
and & —,

' in the fermionic (because e„d&0).
%'ith the relationship between the old, near-horizon

viewpoint and the new, distant-observer viewpoint now
understood, we can return to the expectation value of the
renormalized stress-energy tensor ( T„)""on the future
horizon &+. In the old viewpoint that ( T„)"'"is given
by expression (2.44). By (i) leaving the nonsuperradiant
modes unchanged in (2.44), (ii) transforming the superra-
diant modes to the new viewpoint using Eqs. {2.45a),
(2.45c), (2.48d), and (2.48e), and (iii) noting that 9

hsi (g, ae)
l

=
I hsi (t9 —«)

l

' we b~'~g Eqs.
(2.40) and (2.44) into the new viewpoint form-s

(2.52a)

hSi (g, ae)

{2.52b)

where nt" is given by Eq. (2.51b). (There is no necessity
to renormalize since far from the hole where these cruxes
are measured spacetime is Aat, the observers are inertial,
and the renormalized stress-energy tensor is equal to the
stress-energy tensor T„measured by the observers. ) For
nonsuperradiant bosonic modes nt" [Eq. (2.5 lb)] is posi-
tive, 1 —

l At
l

is positive, and thus the energy flux T"
is positive. For superradiant bosonic modes nI is nega-
tive, 1 —

l At l
is negative, and thus the energy flux T"

is again positive. For all fermionic modes nt is positive,
1 —

l
At

l

is positive (no superradiance even for "super-
radiant modes"), and thus T" is positive. (We note in
passing that, although the mean occupation number n~"
appearing in the Hawking flux (2.52) has often been la-
beled, for superradiant modes, as "nonthermal, " it in fact
is precisely thermal. It has an unfamiliar form [Eq.
(2.51b) with a negative quantity in the exponent] only be-
cause it is a near-horizon thermal occupation number
[Eq. (2.16)] translated into a distant-observer's
viewpoint. )

If the hole is accreting at the same time as it evapo-
rates, with (nt") quanta in the mode I in, then standard
flat-spacetime quantum field theory {together with the
probability

l
At l

for an accreting quantum in mode I in
to be rejected by the hole's spacetime curvature and cen-
trifugal barrier) implies that Eqs. (2.52) will be modified
to read

( T )ren y I d Ttin(( in) th)

E, m, h

(2.49)

x(1—
l

&I
l

')

(T,~&"'" = —g I de
'

((n,'"& —nth)
l „Si (6t ae)

l

I, m, h ~H

x(1—
l &t

l

')
2~

(2.50b)

Here, in keeping with the new, distant-observer
viewpoint,

(2.51a)Z=e —mQ~, e~O for all modes,

(T„)""= g I de
'

((n,'") n,'")—
l, m, h 0 ~H

(2.51b)th 1

gyT (e —m BI~ )/T~
e "+1 e +1

which in the bosonic case (upper sign) is positive for non-
superradiant modes but negative for superradiant; and

x(1—
l &, l')

2~ ' (2.53a)

T"'= g J "de ', (nth (nt &)—
1, m, h 4mr
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X(1—
f

A, )')
2~

' (2.53b)

The rate at which the mass I and angular momentum J
of the hole change due to this evaporation-plus-accretion
are

= —f T" r sinOdOdg,
dt

(2.54a)

= —f T"&r sinO d O dP,dt
(2.54b)

where the integrals are over a sphere S far from the hole.
We can also compute the evolution of the hole's mass

and angular momentum using flux integrals of ( T~„)""
over the future horizon &+. (It is ( T„)""that goes on
the right-hand side of the Einstein field equations and
thus that produces evolution of the hole. ) Standard anal-
yses [e.g. , Eqs. (6.56) and (6.58) of BHMP together with
lim oan=/] reveal that

= f ((T )""—0 (T )"'")dA (2.55a)

(2.55b)

where the area integration element is

d AH ——( AH /4n)sinO d O dP (2.55c)

[—( Tt~)"'"( AH /4~)]~+ ——( —T"~r )g,. (2.56b)

cf. Eqs. (2.50), (2.53), and (2.34). Thus (as is also guar-
anteed' by the relation' ( T" ). =0), the mass and angu-
lar momentum which characterize the hole's horizon
evolve in accord with the rates at which distant observers
see energy and angular momentum enter and leave the
hole's vicinity.

III. DKRIVATION BASED ON QUANTUM FIELD
THEORY IN CURVED SPACETIME

We now turn to a quantum-field-theory derivation of
Eq. (1.1) for the renormalized stress-energy tensor near
the horizon of a rotating, uncharged black hole. For sim-
plicity we shall confine attention to a conformal massless
scalar field N.

Some prior analyses of quantum fields around rotating
black holes have been bedeviled by problems with the su-

[cf. Eqs. (3.74) and (3.75) of BHMP ]. It is straightfor-
ward to verify that, not only do the rates of evolution,
dM/dt and dJ/dt as computed on the horizon [Eqs.
(2.55)] and far from the hole [Eqs. (2.54)], agree; their in-
tegrands, the cruxes of energy and angular momentum,
also agree as functions of {O,p) when the integration ele-
ments are expressed in terms of solid angle sinO d O d P:

[(& TIt &""—II„(Tt~)"'")(A„/4~)] ~=( —T"'r')g,

(2.56a)

perradiant modes. Especially troublesome is the fact that
the total energy in such a mode has one sign for the Un-
ruh vacuum state

~

U ) and the opposite sign for the
Hartle-Hawking vacuum state

~
H). These troubles will

be dealt with smoothly in our derivation by tile use of a
variant of the "g formalism. " We derive that formalism
from standard quantum field theory in Appendix A.

In Sec. III A and Appendix B we lay out, very careful-
ly, the mathematical foundations for our derivation of
Eq. (1.1). Specifically, in Sec. IIIA we introduce the
wave functions for up modes and in modes of our scalar
field in the region outside the hole's horizon; we express
the field operator in terms of them, their creation and an-
nihilation operators, and the operator g; we define the
Hartle-Hawking state

~

H ), the Unruh state U), and a
state

~

UX) that describes a realistic, accreting and eva-
porating black hole; and we write down the key formulas
for the renormalized stress-energy tensor using point-
splitting regularization. In Appendix 8 we quantize the
scalar field on the complete, analytically extended Kerr
spacetime (including il formalism contributions); and
from that quantization we derive the Hadamard elemen-
tary function that enters into the point-splitting expres-
sions of Section III A for the renormalized stress-energy
tensor.

In Appendix C we derive the density operators that de-
scribe the states

~

H ),
~

U ), and
~

UX ) in the spacetime
region outside a black-hole horizon; and from those den-
sity operators we infer the physical descriptions of these
states in terms of ZAMO measurements.

In Sec. III B we use the tools of Sec. III A and Appen-
dix B to derive the renormalized stress-energy tensor for
the Hartle-Hawking vacuum in the vicinity of the black-
hole horizon. This, then, becomes a foundation for the
derivation in Sec. III C, of the renormalized stress-energy
tensor for the evaporating, accreting state

~

UX). The
result of that derivation is in perfect accord with Eq.
(1.1).

Throughout Sec. III and the Appendixes we carry out
our formal manipulations of the Hartle-Hawking state

~

H ) without surrounding the hole by a mirror (and thus
without removing its singular behavior); and we do so as
though

~

H ) were a regular, well-behaved state. Thus,
our formal manipulations of

~

H ) are not soundly based.
Nevertheless, as we shall argue in Sec. IV, the results of
our formal calculations (the propagator, Hadamard func-
tion, and renormalized stress-energy tensor) are arbitrari-
ly close to the correct results with mirror present, for
events arbitrarily close to the horizon and arbitrarily
close together. Moreover (cf. end of Sec. IV A), nowhere
do our formally derived results for the states

~
U) and

~

UX ) rely on the regularity of
~

H ).

A. Mathematical preliminaries: In and up modes;
states of interest; & T„„)""computed by point splitting

In this section we shall study the properties of a con-
formal massless scalar field @ (special case of the field ~II

in Sec. II, with s =0 and thus with helicity h irrelevant).
We shall denote by UI(t, r, O, P) that solution of the vacu-
um scalar wave equation



2138 VALERY P. FROLOV AND KIP S. THORNE 39

@——,'R N =0 with R = (scalar curvature), (3 1)

which describes an in mode (also sometimes called
"past-null-infinity mode"); and we shall adapt for it the
distant-observer viewpoint, e &0 (cf. Appendix A). More
specifically, vr is the unique solution of the scalar wave
equation with the asymptotic forms

r

e
—'"+' & at S-,

+ —lE?? + l???$ t g+

l&r'e +r'+a2 0 at &,
8+e '"+' & at &+

Here I= [e, l, m I and I, = [ —e, l, —m I. (Note that
switching viewpoints on superradiant modes, from e & 0
and e & 0 to e & 0 and e & 0 or conversely, complex conju-
gates and converts the indices I into the indices I, .)
From these relations it follows that

B+
Ar ———As+ and fAs I

=IAs+I
I

for e&0, Z&0, (3.6e)

B+

Ar, = —As and IAr, I =IAs
r

for e&0, a&0, (3.6f)
Here I=

I e, l, m I, e=e —m QH, P is given by Eq. (2.26),
and u is retarded and v advanced time r3,+= —3,

1
and IAr+

f

= IAr
2 2

u =t —r, v =t+r, dr +& dr (3.3) for e & 0, e & 0 . (3.6g)

[notation of Eqs. (3.5) and Sec. VIIIC3 of BHMP ].
Similarly we shall denote by qr(t, r, 8, P) the solution of
(3.1) for an up mode (also sometimes called "past-
horizon mode" ); and we shall adapt for it the near-
horizon viewpoint, e&0. It is the unique solution with
asymptotic form

S,
X '

V'16~~e &r'+a'

r

0 atJ —,
—EEI? +????P t g+

""+' ~ atm —,
'"+' ~ atm+ .

(3.4)

In these solutions Si ——SI (0, ae) are the spheroidal har-
monics (specialization of hSI of the last section to the
case of zero spin and helicity), which are real and are nor-
malized so that

SIm Sl'm
—,
' j Si Si sin8d9= j dAH =6(i. . (3.5)

H

The "reflection coeScients" Ar— and "transmission
coefficients" Bs appearing in —the asymptotic forms (3.2)
and (3.4) satisfy the following relations, which follow
from conservation of the Wronskian of the solutions, and
which appear unusually complicated because we have
chosen to use different viewpoints for the in and up super-
radiant modes (distant observer, e&0, for in; near hor-
izon, e & 0, for up):

I —
I

As+
I

'= —
I
IIr+

I

C?(x)= X [Ur(x)as+Us(x)gas'r)]
e&0

+ g [es(x)br+or(x)8l"s6]
e&0

(3.7)

with creation and annihilation operators that satisfy the
standard commutation relations [Eq. (87)]

[ter'»r ]=re's [br' "r ]=ar's thers

and with number operators of the standard form [Eq.
(88)]

nr" ——Brar, &r"~——br br .

In Eq. (3.7) and below we use the notations

y =—y„j"d~= y j"
e&0 lm p&0 lm Jm

(3.9)

Note that because, in Sec. II, we adopted near-horizon
conventions for all modes, the reflection probability
denoted

I Ar I
in that section is denoted here

Z& 0).
When quantizing the scalar field 4 we shall adopt for

each superradiant mode the same convention as
viewpoint (cf. Appendixes A and 8): distant-observer
convention and viewpoint for the in mode vr, and near-
horizon convention and viewpoint for the up mode qr.
Correspondingly, we shall expand the field operator N in
the form [Eq. (86) or (816) specialized to the exterior of
the black hole, region I of Fig. 2]

1 —
I As f~= —IBs

I

for e&0, (3.6a)
(3.10)

Br+~r = —~Br ~r+, eBr+=~Br for e&0, e&0,
(3.6b)

Ar+, @Br ——@Br for e&0, a&0,
l 1 1

(3.6c)
6= gC"n '

I
(3.11a)

and q is an operator introduced in Appendixes A and 8
[especially Eqs. (81)] to permit us to deal with the
"Hartle-Hawking state"

I
H ) without changing our con-

ventions:

?

eBr+Ar = —eBr
—Ar+, eBr+ =eBr for a&0, e&0.

1 l 1

(3.6d)

~n or up
Ir

when I is a nonsuperradiant mode,

(3.11b)
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When, as here, the scalar curvature of the background
spacetime vanishes, these Green's functions satisfy the
equation

G~(x, x') = —( —g ) '~25(x, x') . (3.14)

Io& Jo

FIG. 2. Penrose spacetime diagram for the complete, analyti-
cally extended Kerr spacetime (Ref. 11). Region I is identical to
the spacetime outside a black hole; region I' is a "mirror"
universe, isometric to region I. The directions of increase of the
null coordinates u and U at null infinity are depicted, as are the
directions of increase of the null coordinates U+ and V+ on the
horizons & and &+.

~'n or up
II (3.1 1c)

when acting on a state with non-negative numbers of
quanta,

in ~ QP
ng +1 Ill +

(3.11d)

N= Ini" ni"—
1 2

(3.12)

quanta to the in modes I of the Unruh state
~

U), with
the distant-observer viewpoint being taken on the added
quanta (nl")0, since they are in the in modes). We
denote the Green's functions (Feynman propagators) cor-
responding to these states by

when acting on states of superradiant modes with nega-
tive numbers of quanta, nI" ""~(—1. Note that g is
unitary, g =1.

Three states of the quantum field 4 will be of special
interest in our analysis: the "Hartle-Hawking vacuum
state"

~

H), the "Unruh vacuum state"
~
U), and the

state
~

UN ) obtained by adding

~

UN ) = ~ (n'"~)-'"(a,' )"'
( U), (3.15)

and thus, like
~
U), has unit norm; and the correspond-

ing Green's function GU&(x, x') difFers from GU(x, x') by
a homogeneous solution of Eq. (3.1) and can be written in
the form

GU( &
x'x)=G (U,x'x) +i+ nI"UI(x, x'),

e)0
where

(3.16)

There is a one-to-one correspondence between the choice
of the state

~

~ ) and the choice of the boundary condi-
tions that single out the unique solution G(x, x') of Eq.
(3.14). We show this more specifically in the next two
paragraphs.

In this paper we shall define the Hartle-Hawking vac-
uum state

~

H ) as that state with unit norm,
( H

~ @H ) = + 1, for which the Green's function
GH(x, x') [Eq. (3.13)] has the following properties: (i) for
x on the future horizon &+ and x' outside the horizon,
when Fourier analyzed in terms of a future-increasing
affine parameter V on &+, GH contains only positive-
frequency components (e ' with o )0); and (ii) for x
on the past horizon & and x' outside the horizon, when
Fourier analyzed in terms of a future-increasing affine pa-
rameter U on &, GH contains only negative-frequency
components. Similarly, we shall define the Unruh vacu-
um state

~

U ) as that state with unit norm for which the
Green's function GU(x, x') has the following properties:
(i) for x on the past horizon & and x' outside the hor-
izon, when Fourier analyzed in terms of an affine parame-
ter U on &, GU contains only negative-frequency com-
ponents; and (ii) for x at 2 and x' outside the horizon,
when Fourier analyzed in terms of the aSne advanced
time v on 2, GU contains only negative-frequency com-
ponents. Finally, the state

~

UN) is obtained from the
state

~
U) by the creation of N= I nI, nI, . . . I particles

1 2

in the in modes I, , I2, . . . ,

G„(x,x )=i(H
~

AT@(x)~e(x')q
~

H),

GU(x, x')=i(U
~

TN(x)@(x')
~
U),

G ~U( ,xx)=i(UN
~

T4(x)C&(x')
~

UN),

(3.13)

UI(X, X ) =VI(X)VI(X )+UI(X )UI(X ) (3.17)

(For more information about these states see Appendixes
B and C.)

If ~ is one of the states introduced above and G~(x, x')
is the corresponding Green's function, then one can write

where T denotes time ordering of the product, and where
the factors g must be present in GH because the state

~

H ) involves negative numbers of quanta, but it is ab-
sent in GU and GU~ because

~

U) and
~

UN) involve
only positive numbers of quanta; see Eq. (A9g). [The first
q in GH is the standard one that appears in all expecta-
tion values; the second and third g's are dictated by those
in the commutation relation (B4) for the field operators. ]

G~(x, x') =i[S+(X,X')0(x,x')+S~(x', x )8(x', x )],
(3.18a)

where S~(x,x') is the so-called positive-frequency func-
tion

S (x,x')=( ~
~

q@(x)g+(x')@~ ) (3.18b)

(with g replaceable by unity except when
~

~ ) =
~

H )),
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and 8(x,x')=8(t t'—) is +1 if x is to the future of
x'(t & t'), and 0 if x is to the past of x'. In what follows
it is also useful to introduce the so-called Hadamard
function, defined by

GU&(x, x') =GU"(x, x')+2 g nr'"vr(x, x'),
e)0

where vr(x, x') is given by Eq. (3.17) and

(3.23)

G~~'(x, x'):—S(x, x')+S~(x', x) . (3.19)
(x x )=qr(x)qr(x )+qr(x)qr(x ) . (3.24)

It is evident that when the separation between x and x ' is
spacelike then

G~(x, x') =—G~~ '(x,x') . (3.20)

It can be shown from Eqs. (3.19), (B29), (B30),
(B18)—(B20), (3.15), (3.18b), and (3.7) (with p=w=O in
our black-hole spacetime) that the Hadamard functions
for the states

~

M ),
~
U), and

~

UN ) can be written as
follows:

[Note that the coefficient of ur in Grr" is coth(~Z/~), not
coth(me'/~) as one would infer from Eq. (3.4) of Ref. 16.
Reference 16 is in error because of a too cavalier treat-
ment of the in modes. ]

The renormalized expectation value T„,(x) of the
stress-energy tensor for a conformal massless scalar field
in a given state

~

~ ),

Grr (X,X ) = g coth(&Z/K)vr(x, x )
e&0

T„( )=(~
~
T„( )

~

~)"", (3.25)

+ g coth(vrz/x)qr(x, x'),
8&0

(3.21)
may be computed by point-splitting techniques as fol-
lows:

GU'"(x, x')= g ur(x, x')+ X coth(mZ/~)qr(x, x')
e&0 F&0

T~ (x)= lim [T„(x,x') —T„',"(x,x')]
X ~X

(3.26)

(3.22) where

T„(x,x') =D„(x,x')G~~ '(x,x')

(3.27)

Here g "(x,x') is the bivector of parallel transport along
the geodesic connecting x and x'. The explicit expression
for T„'"(x,x') can be found in Eqs. (5.5)—(5.8) of Ref. 30.
We shall not write this expression here; but we stress for
future reference that, in our case where R„=O [and thus
where (i) the CIR issues discussed in Sec. VI of Ref. 30 are
irrelevant, and (ii) the functions H' '" and H'"" of Ref.
30 vanish, cf. Eqs. (6.54) and (6.55) of Ref. 31], T„'"(x,x')
is a linear combination of terms constructed from the
metric g„, the Riemann curvature R„&and its covari-
ant derivatives, and a product o..„o.. of the bivector cr.„
with itself [where o(x,x') = —,'s (x,x') is the biscalar geo-
desic interval between x and x']. It must be stressed also
that each of the terms which enters T„'"contains an even
number of o..„.

B.Renormalized stress-energy tensor
for the Hartle-Hawking vacuum

In preparation for applying the above point-splitting
analysis of T„ to a realistic black hole that is evaporat-
ing and accreting (i.e., to the quantum state

~

UN )), we
shall first apply it to the Hartle-Hawking vacuum state
[a).

For the Hartle-Hawking state it is convenient to con-
sider a special choice of the separated points x and x' for

which the quantities T„"and T„&"vanish. Because of the
symmetries of the Kerr spacetime we can put x =(t =0,
r*, 8, /=0) without loss of generality, and we can then
make the special choice x'=(t =0, r*', 8', /=0). It
should be noted that the two-dimensional surface
X—:{t=0, Q=OJ is invariant under the symmetry trans-
formation t~ t, P~——P; and hence the unique geo-
desic connecting x and x ' (for x ' close to x) must lie in
this surface. If we denote the indices r*, 0 by A and the
indices t, P by X, then we have

o.'"=5 "o.' (3.28)

g„"=6„."6„g„"+5~."5„g~ (3.29)

Equation (3.28) states that the tangent vector to the geo-
desic connecting x and x' lies in the plane tangent to the
surface X; Eq. (3.29) states that any tensor lying in the
plane tangent to X will remain tangent to X after parallel
transport from x to x' along the geodesic, and any tensor
orthogonal to X will remain orthogonal.

Because of the invariance of the Kerr metric under the
simultaneous inversion t ~ —t, P~ —P, those com-
ponents of the metric, the Riemann curvature tensor, and
the curvature tensor's covariant derivatives which con-
tain an odd number of X indices must vanish. This prop-
erty and the fact that only an even number of o.'" enters
the expression for T„"imply, after using Eq. (3.28), that
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(3.30)

Consequently, for our chosen point splitting we have

T~x(x) = T„x(x,x). (3.31)

Next we show that for the special case of the Hartle-
Hawking vacuum the tensor T„x(x,x) [Eq. (3.27)] van-
ishes:

T„x(x)=T„x(x,x) =0 . (3.32)

For this purpose we consider the symmetry transforma-
tion

x:—(t, r', 8, P)~x, —= ( t, r'—, 8, —P) (3.33)

and remark that the Hadamard function GH'(x, x') [Eq.
(3.21}]is invariant under this transformation

GH '(x „x,') =GH '(x, x') . (3.34)

This invariance is a consequence of the following rela-
tions connecting the functions ut(x), qt(x) and
ut'(x) —=ut(x, ), qt'(x)—:qI(x, ):

1/2

Bt+[8(F)qt(x)+8( F)qt (x—)](x)=Xt ut(x)+1 = +
E'

q, (x)= 7; q, (x)+—1

for e)0,
(3.35)

1/2

Bt [8(e)uI(x)+8( —e)ut (x)]

Gtt"(X,X') =GH '(t t', P P', r', r', 8, 8—')—
=G"'(t' t, P' P, r*,r*—, 8, 8'—) .

Next we note that the metric (2.22) is of the form

ds =ggii(x )dx dx +gxy(x }dx dx

(3.36)

(3.37}

and hence I zx ——0. Equations (3.36) and (3.37) imply
that, for x and x' lying in the two-dimensional surface X,

G()G)P(1)

(1) (1) (1)GH". „~——GH .~~ ——GH .„.X ——GH . ~ ~ ——o .

Equations (3.27), (3.29), and (3.38} then imply, for x and
x' lying in X,

T„x(x,x') =0 (3.39)

and hence the relation (3.32) is satisfied at all points x
outside the horizon.

Equations (3.32) and (3.31) imply, in accord with an as-

for Z) 0,
where I=—Ie, 1, mj and I,:—[ —e, 1, —m I. In order to
prove these relations one need only compare the asymp-
totics of uI and qI with Eqs. (3.2) and (3.4), and note that
uI, qt, ut, qt all have, at all radii r, the same t, 8, P1 1

dependences and all satisfy the same radial difFerential
equation. In our proof of Eq. (3.32) we shall need (3.34)
rewritten in the equivalent form

sertion by Zannias and Israel, ' that in the Hartle-
Hawking vacuum, and at any point x outside the horizon,

(H
~
T„x(x)

~

H )""=T„x(x)=0, (3.40)

where A runs over r *, 8 and X runs over t, P. Stated in
words: In the Hartle Ha-wking uacuum the fluxes of red
shifted energy, —T„„and angular momentum, T„&, in
the 3 = r and 3 =0 directions vanish every where out-
side the horizon.

In order to proceed further we must make an unproved
assumption —which, however, we (like Candelas, Chrza-
nowski, and Howard' ) are convinced must be true: We
must assume that T„—:(H

~ T„~H)"'" is regular in the
uicinity of the future horizon &+; i.e., that all its com-
ponents are finite and continuous in any regular basis
(i.e., in any basis whose basis vectors e„are continuous,
finite, and linearly independent throughout a neighbor-
hood of &+). We see no way this assumption can fail,
given the definition of the state

~

H ) [paragraph follow-
ing Eq. (3.14)]; and the assumption is known to be correct
in the case of a nonrotating, Schwarzschild hole.
Moreover, a theorem due to Kay and %'aid ' tells us that
for Kerr (or, more relevantly, for Kerr with a wall insert-
ed around the horizons to hold the field 4 away from the
"velocity of light surface"; cf. the end of Sec. IV), if there
is any quasifree (i.e., "generalized vacuum") state which
is invariant under the isometry generated by (i)/Bt) s-
and which is regular everywhere including the horizons
&+ and &, then that state is unique and is equal to

~

H) as we have defined it [paragraph following Eq.
(3.14)]. In a sense this theorem is the converse of our
unproved assumption: regularity on the horizons implies
our definition of

~

H ), instead of our definition implying
regularity.

Accept, then, our assumption of regularity on the fu-
ture horizon &+. As one approaches &+, the tinie and
radial basis vectors of the ZAMO proper reference frame
both asymptote to a 'I, where E is the horizon generator.
Correspondingly, near &+, the ZAMO basis takes the
form

eo=
1

a Bt

g1/2

p Br

1

pae'

(3.41)

T - =0, Toe
——0, T~~y =O(a),

AA ~ 1 TAA ~ 1 T AA 0H 8 H
ee pe

(3.42)

which are all less than or of order the curvature coupling
corrections to the vacuum polarization [Eq. (2.32)]. This,

where Il, n, ee, e&) is a regular basis and a is the lapse
function [Eq. (2.22)]. This, together with Eq. (3.40) and
our assumption that T„ is regular, implies that the com-
ponents of T„on the ZAMO basis have the magnitudes

TH = —TH 1 T =0 T =O(a)
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together with the fact (proved in Appendix C and Sec.
IV B) that near-horizon ZAMO's measure the field 4, in
the Hartle-Hawking state

~

H), to be precisely thermal,
guarantees that Eq. (1.1) correctly describes the renor-
malized stress-energy tensor of the Hartle-Hawking state.
Moreover, Eqs. (3.42) and (2.43) guarantee that the flux
of energy and angular momentum across the stretched
horizon vanish in the Hartle-Hawking state,

(H
~

Ttt
~

H )""= (H Tt~ ~

H )""=0, (3.43)

and the horizon therefore does not evolve. Finally, Eq.
(3.42) implies that not only is T„regular on the future
horizon &+, it also (as one should expect) is regular on
the past horizon & and on their bifurcation 2-surface
W+ n&-.

proof that the magnitudes of the curvature-coupling
corrections are as given in Eq. (2.32).

In the vicinity of the horizon, where vr has the asymp-
totic form (3.2), expression (3.48) for T '" assumes the
form (2.41a) and (2.41b), which we derived in Sec. II from
the equivalence principle, and expression (3.47) for T„
takes the equivalence-principle-derived form (2.49), aside
from the curvature-coupling corrections. Corresponding-
ly, by taking the limit a~0 of expression (3.47) we ob-
tain for the Auxes of energy and angular momentum
across the future horizon [Eqs. (2.50)]

(3.50)

C. Renormalized stress-energy tensor for the state
~

UN )

We turn, finally, to a proof that in the state
~

UN),
where the in modes contain X quanta, the renormalized
stress-energy tensor has the standard form (1.1).

First we remark that Eqs. (3.21)—(3.23) allow us to
write G&U( x,

x') in the form

GIU(vx, x) =2 y (nr'" nr")Ur(x, x—')+GH"(X,X'),
e&0

(3.44)

where nr" is the number of quanta "accreting" onto the
black hole via the I in mode, and

th (3.45)

is the number of quanta the I in mode would have if it
were perfectly thermalized [Eqs. (2.51b) and (C23)].
Equation (3.44), together with the relation

T„(x) T„„(x)= lim—D„(x,x')[GU'rr(x, x')
X ~X

—G„"'(x,x )] (3.46)

[which follows from Eqs. (3.26) and (3.27)], implies that

T„(x)= g (nJ" nr")T„,'"—(x)+ T„,(x),
e&0

where

(3.47)

Tr ~ (x)=Ur pvr, v+Ur vvr r 3(Urvr) I v 3gI vvi t Urr

(3.48)

TI vac pol ~ TH(T 'curvature-coupling corrections p,v (3.49)

This identification, together with Eqs. (3.42), furnishes a

is the stress-energy tensor associated with each I in quan-
tum.

Equations (3.47) and (3.48) are exact, and are valid at
all locations outside the horizon. Moreover, they agree
with —and constitute a proof of—the general near-zone
expressions (1.1), if we identify T„with the curvature-
coupling corrections to the stress-energy of vacuum po-
larization:

T = —g (n'" n'") —(1— A+
~

)
™' 2~

(3.51)

IV. SINGULAR NATURE OF THE HARTLE-HAWKING
VACUUM STATE AND ITS REPAIR

Throughout this paper, until now, we have performed
forrnal manipulations of the Hartle-Hawking vacuum
state

~

H) as though it were perfectly well-behaved.
However (as Fredenhagen has conjectured and Kay and
Wald have shown, see below), for a rotating black hole

~

H ) is so ill behaved that, strictly speaking, it does not
really exist. In Section IV A we shall explore the bad be-
havior of

~

H ) and shall show that it has no infiuence at
all on this paper's derivations of the properties of the
states

~

U) and
~

UN). Then in Section IVB we shall
discuss methods of removing the bad behavior from

~

H )
and turning it into a "modified, " perfectly respectable
quantum state

~

HM) with all the good properties that
this paper has attributed to

~

H ).

A. Singular properties of
~
H )

for n )0, E =6 —SPY AH )0 . (4.1)

Since any mode of N that is an eigenstate or near-
eigenstate of dIBt and BIB/ with eigenvalues e and m
will be expandable in terms of in and up modes with that
sam. e e and m, any such mode will have its quanta distri-
buted in accord with the thermal probability distribution

Consider a rotating black hole surrounded by a confor-
mal scalar field 4& that is in the state

~

H ); and, by con-
trast with Sec. III and the Appendixes, adopt (temporari-
ly) the near-horizon viewpoint on all superradiant modes.
Then, as is shown in Appendix C, the Geld 4 is character-
ized by a thermal probability distribution for ZAMO-
measured quanta: For any I up or Iin mode the proba-
bility of containing n ZAMO-measured quanta is given
by Eq. (C19b), (C20b), or (C21b) [with the change to
near-horizon viewpoint, Z~—Z, n ~ (n + 1 )]:—

h = ( 1 —e
F/ T&

)e
—n z/TH—

p'n —pn—
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e„,=(y/a)( e—mA) . (4.2a)

Here y is the time-dilation factor associated with the
observer's velocity relative to the ZAMO's:

(4.1). Each of these quanta, when measured by an ob-
server who orbits t;he hole with angular velocity Q at a
radius and latitude where the lapse function is a, will ex-
hibit a locally measured energy

stress-energy tensor takes its standard Oat-spacetime
form: we must simply remove from each mode the contri-
butions of the one-half quantum of zero-point energy.
Within our formalism this can be verified, and the renor-
malized stress-energy tensor can be derived by noting
that the Boulware vacuum state

~

8 ) coincides with the
Minkowski vacuum far from the hole and thus has van-
ishing renormalized stress-energy tensor; and, therefore,

y=(1 —u ) 'i, u=a '(0 —cu)m; (4.2b)

cf. Eq. (2.22). Comparison of Eqs. (4.1) and (4.2a) shows
that the observer will see the field's quanta to be aniso-
tropically distributed (i.e., will see p„ to depend not only
on the locally measured energy e~„of the quanta but also
on their angular momentum), unless the observer has an-
gular velocity 0 equal to that of the horizon, QH. More-
over, when Q =AH, the probability distribution s form

loc loc i loc loc

which can be expressed as follows [cf. Eqs. (3.26), (3.27),
(3.21), (3.19), and (B28)]:

TH y Ttin(x)nth
I

(4.5a)

where the sum is over the values of I in the range (4.4b),
nI" is the mean thermal occupation number in the
distant-observer viewpoint

y=(1 —v ) ', u=a '(AH —ro)m,
(4.3) nth 1

I (e—rnAH )!TH
e —1

(4.5b)

[(e2 k2)1/2m]eikz imeP eici1
i ~ 2 m (4.4a)

and we shall switch back to the distant-observer
viewpoint so that I= [e, k, m I runs over the ranges

0 & e & + ~ (continuous),

—e&k &+e (continuous),

—oo & m & + ~ (integer) .

(4.4b)

Because we are studying the field W in a region where
spacetime is arbitrarily Rat, the renormalization of the

is that of an isotropic, thermal reservoir with locally mea-
sured temperature T„,. Thus, in the reference frame of
an observer who orbits the hole with the same angular ve-

locity QH as the horizon, the state
~

H ) displays the isotro
pic, perfectly thermal distribution of quanta (4.3) with lo-
cally measured temperature T„,=(y/a)TH. This is a
precise version of the statement that "the quanta in the
state

~

H ) constitute a perfect thermal bath that rotates
rigidly with and is in thermodynamic equilibrium with
the horizon. "

This description of the quanta in
~

H ) suggests (in ac-
cord with a conjecture by Fredenhagen ) that something
pathological must happen at and outside the hole's
"velocity-of-light surface" —i.e., at radii where, in order
to corotate with the horizon, an observer must have
U ) 1 and thus Inust move on a spacelike world line. In
the remainder of this section we shall investigate that
pathology for a black hole which rotates arbitrarily slow-
ly. Slow rotation will simplify our analysis since it places
the velocity-of-light surface at arbitrarily large radii
where (i) spacetime is arbitrarily Rat, and (ii) the up
modes make an arbitrarily small contribution to the field
4 and thus can be ignored.

To simplify further our investigation we shall convert
the only modes that contribute (the in modes) from
spheroidal to cylindrical coordinates, where they take the
form

and T„'"(x)is given by Eq. (3.48).
Inside the velocity-of-light surface, i.e., at m less than

1/QH so the velocity of the reservoir's mean rest frame
U=eQ~ is less than unity, one can verify that modes
with k +.(m /m) & e (which are forbidden in the classi-
cal, geometric optics limit) contribute negligibly to the re-
normalized stress-energy tensor: their contributions are
strongly suppressed by the Bessel function J in UI. The
sup err adiant modes all lie in this suppressed regime
and thus contribute negligibly. As a result, inside the
velocity-of-light surface the renormalized stress-energy
tensor (4.5), as measured in the hole's asymptotic rest
frame, is the standard one for a thermal reservoir with
temperature T=yTH [Eq. (4.3)] and with velocity v:

2

To~: v'Y (3 Ta)a 4~ 2 4

7T2TH ( 1+ 2) 2( T )4
44 3p

2

(4.6)

Note that as one moves outward toward the velocity-of-
light surface, this stress-energy tensor diverges as y .

Outside the velocity-of-light surface, where U ) 1, the
contributions of the superradiant modes are not negligi-
ble. In fact, in the infinite region of phase space

1/2
(mQH)

k + (6'(mOH (4.7)

the geometric optics approximation is valid (because of
the first inequality), the modes are all superradiant (be-
cause of the second inequality), and nt" is & —1 [Eq.
(4.5b)]; and, as a result, this region of phase space carries
an infinite, negative, renormalized energy density Too
[Eq. (4.5)]. That this conclusion makes no physical sense
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G~ '(x, x') —Gi'i '(x, x') =2 g nt"Ul(x, x')
I

(4.8)

is nonsingular for all x, x ', (iv) for x and x ' inside the
velocity-of-light surface expression (4.8) is nonsingular
because the Bessel function in vI suppresses all superradi-
ant contributions and the exponent in nI" suppresses all
large-momentum contributions; (v) but for x and x' out-
side the velocity-of-light circle the same superradiant
modes which produce the negatively infinite renormal-
ized energy density also produce singular behaviors in
Eq. (4.8).

One might worry that these pathologies of the Hartle-
Hawking state will invalidate our derivations of the prop-
erties of the states

~

U) and
~

UN ) (Sec. III and Appen-
dixes B and C). Not so. In those derivations there is only
one apparent reliance on the state

~

H ), and that reliance
is illusory: In Eq. (3.44) GU'~(x, x') is expressed in terms
of G~'(x, x'); this expression is then used to derive
T„, (x) in terms of T„(x) [Eq. (3.47)]; and the vanishing
of the relevant components of T„,(x) on the horizon is
then invoked. In fact, each of these steps is valid if one
merely defines G~~'(x, x') by Eq. (3.21) (which is non-
singular in the vicinity of the horizon), and defines T„, in
terms of this G~' by expressions (3.26) and (3.27). It is
not necessary to invoke any connection between the
singular state

~

H ) and these G~ ' and T„„. Thus, our
analyses of

~

U ) and
~

UN ) are immune to the defects of
[H).

is an indication that, not only does the state
~

H ) become
singular as one approaches the velocity of light surface
from inside; at least as described by our formalism, it
remains singular everywhere outside that surface.

Kay and Wald' recently have used algebraic quantum
field theory to prove (with a higher level of rigor than
that to which we aspire in this paper) that in the globally
hyperbolic region IU I'UIIU II' of Kerr spacetime there
is at most one quasifree (i.e., "generalized vacuum") state
which is invariant under the isometry generated by
(BIBt ) e &

and which is regular everywhere, in the sense
that its Hadamard function is well-behaved; and, more-
over, that if this state exists, it is the state

~

H ) as we
have defined it [paragraph following Eq. (3.14)]. Kay and
Wald have gone on to show that, in fact, Kerr spacetime
possesses no such quasifree states.

The failure of the state
~

H ), as we define and analyze
it, to satisfy the properties demanded by Kay and Wald is
caused by a pathology of its Hadamard function
G~~ "(x,x') at and outside the velocity-of-light surface. At
least this is so for a slowly rotating Kerr spacetime. One
can verify this by noting that (i) all well-behaved Ha-
damard functions must have the same standard singulari-
ty structure (one confined to points x and x' that lie on
each others' light cones); (ii) the Boulware vacuum

~

8 )
far from the horizon, being coincident with the Min-
kowski vacuum, must have a well-behaved Hadamard
function; (iii) therefore, Gz)'(x, x') will be well-behaved if
and only if [cf. Eqs. (3.21), (3.18a), (B28), and (3.17)]

B.The modified Hartle-Hawking state
~
H~ )

Although the state
~

H ) is singular, one can modify it
(in a variety of ways) to make it well behaved, while re-
taining its key defining property of having a Feynman
propagator with positive (aKne-parameter) frequencies
on &+ and negative frequencies on &, and while re-
taining its key equivalence-principle property of appear-
ing perfectly thermal to near-horizon ZAMO's. In this
section we shall explore such modified states

~
H~ ).

The first step in the modification of
~

H ) is to modify
the spacetime in which the quantum field 4 lives in such
a way that (a) the modification is bounded away from the
horizon, i.e., near the horizon the modified spacetime
remains precisely Kerr, and (b) the ZAMO-measured ve-
locity U of the thermal atmosphere is everywhere less
than the speed of light.

The nicest such modification, conceptually, is to place
a stationary, axisymmetric, perfectly reflecting "mirror"
around the black hole, somewhere inside the velocity-of-
light surface. Then, so far as the field N is concerned, the
modified spacetime terminates at that mirror (with a
boundary condition %=0 there). Equally satisfactory in
principle is a modification of the metric coefficients
outside some radius ro so as to keep

~

U
~

=
~

a '(Q —oi)m
~

& 1 everywhere. For example, the
functions a, p, 5, and s appearing in the metric (2.22)
might be kept in precisely Kerr form, while ~ might be
altered outside ro, including co~A as r~~ so that
"infinity" rotates with the same angular velocity as the
horizon and there is no superradiance.

For any such modified spacetime we define the Hartle-
Hawking state

~
HM ) in precisely the same way as

~

H )
was defined for Kerr: It is the state whose Green's func-
tion (Feynman propagator) Gtt (x,x') in the modified

M

spacetime has the standard positive- and negative-
frequency behavior on the future and past horizons [para-
graph following Eq. (3.14)]. The Kay-Wald uniqueness
theorem tells us there is at most one such state

~
HM );

and our condition (b) that
~

v
~

& 1 everywhere, plus the
discussion of the last subsection, strongly suggests that
there will be precisely one. We shall assume so.

Because the spacetime was modified only in a region
bounded away from the horizon, for events x and x' that
are arbitrarily close to the horizon and arbitrarily close to
each other, the propagator GIt (x,x') and corresponding
Hadamard function G&

' (x,x') are arbitrarily insensitive
M

to the detailed method of modification. More specifically,
they are the same, aside from tiny di6'erences that should
be no larger than curvature-coupling eff'ects, whether the
modification is achieved by means of a mirror, or by
changing ~ outside the radius ro, or by any other method
satisfying conditions (a) and (b) above. Moreover, these
G~ and G~' can di6'er only by curvature-coupling-

M M

magnitude terms from the propagator G~(x, x') and Ha-
damard function GIt"(x,x') of Eqs. (B30), (3.18), and
(3.21), which we derived by formal manipulations of the
unmodified, singular state

~

H). This is because that
Git (x,x '

) satisfies the same boundary conditions as
Gtt (x,x') on the horizon, and it satisfies the same

M



39 RENORMALIZED STRESS-ENERGY TENSOR NEAR THE. . . 2I45

—8/Tyy M
pH = g (1—e )exp( —n, z/T„) .

e&0
(4 9)

As in Appendix C, so also here, this density operator has
the interpretation that near-horizon ZAMO's measure all
modes to be perfectly thermally populated.

In summary, arbitrarily near the horizon and for
events x and x' that are arbitrarily close to each other,
the modified state

~
H~ ) is an arbitrarily good surrogate

for the singular state
~

H ). Elsewhere (Secs. III.1.2 and
III.1.3 of Ref. 20) one of the authors constructs the state

~
HM ) explicitly and studies its properties, for the case of

a Kerr hole surrounded by a perfectly rejecting mirror at
a 8- and P-independent radius r =r0.
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APPENDIX A: CONVENTIONS AND VIEWPOINTS
ON SUPERRADIANT MODES

In quantum-field-theory calculations around a Kerr
black hole, the superradiant (SR) modes often cause com-
putational headaches. In this appendix we attempt to
elucidate those headaches and we indicate methods to
circumvent or avoid them. We do this by introducing
with some care the concepts of con Uentions and

differential equation (3.14) throughout the region that is
common to the modified and unmodified spacetimes.
This guarantees that the renormalized stress-energy ten-
sor in the state

~
H~ ), like that computed from our for-

mally derived GH', must vanish aside from curvature-
coupling terms.

That
~
H~ ) appears perfectly thermal to near-horizon

ZAMO's (and thus can replace
~

H) in the equivalence-
principle analysis of Sec. II) one can see by constructing
its density matrix p~ in the manner of Appendix C. For

M

this purpose introduce into the modified spacetime a
complete, orthonormal basis Iut (x)I of solutions to

4=0. For simplicity adopt the near-horizon conven-
tions and viewpoint. Insist that ut (x) be an eigenstate of
(8/Bt)& with eigenfrequency E and an eigenstate of 8/BP
with eigenvalue m so that I = IZ, m, . . . ]. As in
unmodified Kerr, so also here, because the ZAMO's see
these modes to osci11ate sinusoidally with respect to their
own proper time, the quanta measured by the ZAMO's
particle detectors are these modes' quanta; cf. the fourth
paragraph of Sec. I. Denoting by &t the annihilation
operator associated with the mode uI and by
R'I =aI al the number operator, we obtain, by a calcu-
lation completely analogous to that in Appendix C,

Uieupoints, which one can adopt when setting up the
computational formalism, and by distinguishing two types
of quantum states in which a SR mode can find itself.

Throughout our discussion we shall restrict attention
to a specific mode of a massless scalar field —i.e., a mode
characterized by specific values of the quantum numbers
l,

~

m ~, ~

e
~

and by specific boundary conditions such as
"up in region I of the extended Kerr spacetime" (Fig. 2)
(in which case the mode is qt) or "out in region I"' (in
which case it is tol) or "1 in box of Sec. II." (Only the
moduli, not the signs, of e and m enter into the choice of
the mode because the signs —which are the same for e
and m since the mode is SR—depend on one's choice of
Uiewpoint; see below ).

%'e shall define the. two types of quantum states for our
chosen SR mode as follows: For an energy eigenstate the
type is determined by the sign of the state's total
"energy-at-infinity, "E =(n+ —,')e (where n is the state' s

number of quanta). Specifically, the state is said to be a

positive-E state (J state) if E„~O,
negative-E state (& state) if E &0 .

(Ala)

(A lb)

(The shorthand phrases "2 state" and "A state" are
motivated by the fact that classically a positive-E wave
packet made of SR modes can exist near 2+ and 2 but
not near &+ and &, while a negative-E„SR wave
packet can exist near &+ and & but not near 2+ and
J .) Any pure state which is a superposition of J states
(& states) will be called a 2 state (& state). Similarly,
any mixed state which is a mixture of 2 states (& states)
will be called a J state (& state). As an example, for any
SR in mode

~

UÃ ) is a 2 state (positive-E „state), while

~

H ) is a & state (negative-E state); see Appendix C for
proofs, and see the paragraphs following Eq. (3.11d) for
the definitions of

~

UN ) and
~

H ).
When setting up the quantum-field-theory formalism

for our chosen mode, we can adopt one of two Uiempoints.

As examples, in Sec. III and Appendixes A and 8 we
adopt the J viewpoint for the in mode Ut and the &
viewpoint for the up mode qr, and in Sec. II we adopt the
& viewpoint for the 1' and $ modes in our near-horizon
box —and then in Sec. II D we transform those modes to
the J viewpoint.

As we have seen in Sec. IID, the number operator 8'

for a SR mode is not always expressed in terms of the
creation and annihilation operators f, f in the familiar
way 6'=f tf. There may be a sign reversal, 8'=+f tf,
which goes hand-in-hand with a sign reversal in the com-
mutation relations for f and f ". Correspondingly, we
identify two diFerent choices of conuention that can be
made when setting up the quantum-field-theory formal-
ism for a SR mode:

distant-observer viewpoint ( J viewpoint):

e ~ 0 (and thus Z & 0); (A2a)

near-horizon viewpoint (& viewpoint):

F&0 (and th'us @~0) . (A2b)
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distant-observer convention ( J convention):

[f,f ]=sgn(E), & =sgn(e)f f; (A3a)

notation for the mode's Fock space

~

n )„, =
~

—n —1),id for integers n; (A4e)

near-horizon convention (& convention):

[f,f ]=sgn(e), 8'=sgn(e)f f . (A3b)

new = ~old ~ Inew = + laid ~ new = ~ old (A4a)

Further define new annihilation and creation operators
by

Because, for any SR mode, e and Z have opposite signs,
these two conventions are the opposite of each other. As
an example, in Sec. III and Appendixes B and C we adopt
the J convention (distant-observer convention) for the in
inodes uI, arid the & convention (near-horizon conven-
tion) for the up modes ql', cf. Eq. (3.8) and associated dis-
cussion. As another example, in Sec. II we adopt the &
convention for the 1 and the J, modes.

When the type of state being studied, the viewpoint,
and the convention all agree (all J or all &), quantum
field theory takes on its standard form. However, it oc-
casionally is useful to work with states, viewpoints, and
conventions that disagree; examples are encountered in
Sec. II D and Appendix C of this paper. In the
remainder of this appendix we shall derive the transfor-
mation laws that take quantum field theory from its stan-
dard form for agreeing states, viewpoints, and conven-
tions to its nonstandard forms appropriate for states,
viewpoints, and/or conventions that disagree. First we
shall study the transformation of viewpoint with conven-
tion and state-type held fixed. Then we shall discuss the
peculiarities that arise when the state-type and conven-
tion disagree. Finally, motivated by this discussion, we
shall study the transformation of convention with
viewpoint and state-type held fixed.

The transformation of uiewpoint with conuention and
state type held fix-ed is straightforward. In Sec. IID we
derived that transformation for a specific case:
viewpoint transformed to J viewpoint holding the con-
vention and state-type fixed as &. The derivation in the
general case (arbitrary, but fixed convention, arbitrary
but fixed state-type, arbitrary initial viewpoint) is essen-
tially identical to the derivation in Sec. II D, and it pro-
duces essentially the same conclusions: Use the subscript
"old" to denote quantities defined in the "old" viewpoint
and "new" to denote those in the "new" viewpoint. Then
define new quantum numbers for the chosen SR mode by

if n»d runs over the nonnegative integers 0, 1, 2, . . . with

fo~d ~
0)»d ——0, then n„, runs over the negative integers

—1, —2, —3, . . . with f „,„~ —I) =0, and conversely.
These definitions maintain the commutation relations for
f and f t with R':

[f,R']=f, [f,R']= f in—both new and old (A4f)

[cf. Eqs. (A3)]; they maintain the eigenrelations

R'
~

n ) =n
~

n ) in both new and old; (A4g)

and they maintain the standard forms for the Hamiltoni-
ans of the mode

@„=(R+
2 )e, H~ ——(R'+

2 )e in both new and old.

Here H is the Hamiltonian in the reference frame of a
distant observer (which has eigenvalues E ), and H~ is
that in the reference frame of a near-horizon observer
(which has eigenvalues E).

We turn next to a comparison of states and conuentions:
For a Fock space of positive-E states (J states), each
state

~

n ) has E =(n+ ,')e&0—, and thus ne)0. By
contrast, for a Fock space of & states, each state

~

n )
has E= ( n + —,

'
)e ~ 0 [i.e., ( n + ,' )c & 0] a—nd thus n Z ~ 0. If

we regard the sign of zero to be positive, we can summa-
rize this by

sgn(n)=sgn(e) for 2 states,

sgn(n)=sgn(e) for & states,

and correspondingly

sgn(n) = + 1

if the states and viewpoint agree,

sgn(n) = —1

(A5a)

(A5b)

(A6a)

(A6b)

if the states and viewpoint disagree. Combining relations
(A5) with expressions (A3) for R' we see that

R'=sgn(n)f f (A7a)

if the states and convention agree, i.e., if both are J or
both are &, and

fnew
=—fold ~ fnew:f aid (A4b) R'= —sgn(n)f tf (A7b)

[fnew& f new]= [foid~ f old] (A4c)

this definition produces a reversal of the sign of the com-
mutation relation

sgn((n —1
~

n —I))= +gs(n(n
~

n )) (A8a)

if the states and convention disagree. This, when com-
bined with sgn((n —1

~

n —1))=sgn((n
~
f f ~

n))
[which follows from Eqs. (A4f) and (A4g)], implies

in accord with Eqs. (A3); and it goes hand in hand with
the definition of a new number operator [Eqs. (A3)]
which is related to the old by

if states and convention agree,

sgn(( n —1
~

n —1 ) ) = —sgn( ( n
~

n ) ) (A8b)
R„,„=—(R„~+1) . (A4d)

Equation (A4d) in turn goes hand-in-hand with the new
if states and convention disagree. Thus, if the states and
convention agree, then all the states in the Pock space
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can have positive-definite norm and the formalism takes
on the standard form; but if the states and convention
disagree, then some states have negative norm, i.e., the
Fock space has an indefinite metric, and one must adopt a
formalism designed to deal with spaces of indefinite
metric.

In this paper we adopt for this purpose a variant of the
i) formalism. (In our variant the operator 7) will live in
the space with indefinite metric, whereas in Ref. 35 g
lives in a space of positive-definite metric. ) Our ii formal-
ism is constructed so as to give, when the convention and
states disagree, precisely the same values for all matrix
elements (and thence for all expectation values and physi-
cal predictions) as one would get using reversed conven-
tions and the standard formalism.

More specifically, the transformation of convention with
vieivpoint and state type he-ld fixed proceeds as follows:
Let the "old" convention agree with the states to be stud-
ied (both J or both &), and transform to the "new" con-
vention which disagrees with the states. Then there will
be a one-to-one correspondence between states

I

qi &„,„in
the new Fock space (of indefinite metric) and those

I
qI &,id in the old Fock space (of positive-definite metric)

(A9a)

In particular, we shall choose the phases of the new Fock
basis states such that

n „, ~ n (A9b)

Because of the dift'erence in metric, the inner products of
corresponding states are not the same in the two spaces,
„, ((I'

I
'p&„, &»d(@

I
+&,id. However, there exists an

operator g such that

(A9c)

new~ p]d then gP new'9~ p1d (A9h)

f»d I
n & ld +

I
n

I I
n 1& ld

f.'id I
n &»d=v'

I
n+1I

I
n+1&.id

(A9k)

[which follow from the standard ladder-type commuta-
tion relations (A4f)), implies that

f„,„ I

n &„,„=—sgn(n)&
I

n
I I

n —1&„,„,
(A91)f t,„I

n &„,„=+sgn(n)v'
I

n +1
I I

n +1&„,„.
The correspondence (A9j) also implies that if

~ ~ ~P,id
——P(f»d, f,id) is a polynomial or power series in f„d

and f,id, then the corresponding operator in the new
space is

Since the formalism takes the standard form in the old
convention, observables in the old convention are de-
scribed by self-adjoint operators, P,]d

——P . Correspond-
ingly observables in the new convention are described by
operators that satisfy rtP„, rt=P„, . Note that the
convention-independent and viewpoint-independent rela-
tions (A8b), together with (A9d), imply

~A.t
'9fnew l= fnew& lf new I= fnew (A9i)

These, together with (A9h), imply that we should choose
either f& w foid and f „,w—f,id, or fnew~ f,id

—andnew p ~ new
~pf „,w~f, id. Because changes of viewpoint map f into f

[Eq. (A4b)], our choice should be viewpoint dependent-
or, equivalently [cf. Eqs. (A6)], it should depend on
sgn(n ). We shall make the explicit choice

—sg n(n)f„,„~f »,d+sgn(n)f „,„~f»d . (A9j)

This correspondence, together with the correspondence
(A9b) between bases and the standard relations

Specifically, with the choice of norm „,„(0I 0&„, =+1
[if sgn( n ) & 0] or „,„(—1

I

—1 &„, = + 1 [if sgn( n ) & 0],
Eqs. (A9b), (Agb) and (A7b) imply

P„, =P( —sgn(n)f„, „,+sgn(n)f „,„)
Pold .

P(fold&f old) (A9m)

( 1) new

so that, in particular,

il=( —1) "'" with R'„,„= f„,„f„, if sgn(n) &—0,
(A9d)

with R'„,„=+f„,„f„,„ if sgn(n) & 0,

Equations (A7) are a special case of this:

R„,„=—sgn(n)f „,„f„,„
~R,id

——+sgn( n )f idf »d . (A9n)

.. (n I~In'&.. =.id(n In' &.Id +~- . (A9e)

Notice that g is both unitary and Hermitian. The
correspondence (A9a) between states dictates a
correspondence between operators in the new and old
spaces

Pnew Pold iff P.. I
+&- P.id I

+ &old

for all
I
qi&, (A9f)

which in turn implies

(A9g)

This, together with the definition of the adjoint P
of an operator P ((@

I
P

I
(p&=(ql

I
P

I
4&&' for

all
I

0'&,
I

@& ) and the unitarity of ii, implies that

Another special case is the field operator. In the old con-
vention, which agrees with the state type, it has the stan-
dard form

—tet +imPg ~ e+tet —imgg t
p1d e e J p]d J

for J states and 2 convention,
(A9o)—igt +imP g g +inst —imtti g g

o1d - & ]d & old

for & states and & convention.

Here "-"means "is made up of terms proportional to,"
and "8c" means "plus a term proportional to." From
Eqs. (A9m) we read off the corresponding new expres-
sions
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&'„,„-—sgn(n)e '"e+' f„, &, sgn(n)e+'"e ' ~f „,„ for 2 states and & convention,

@„, ——sgn(n)e ' 'e+' ~f„, & sgn(n}e+' 'e ™f„, for & states and 2 convention.
(A9p}

In Appendix C we use this q formalism to derive an ex-
pression for the negative-E state (&-type state) IH)
and its density operator pH in the in modes' J conven-
tion.

In this paper we never meet a situation that requires
simultaneous study of 2 states and & states, but one can
imagine such situations —e.g. , a black hole in the state
(1/v 2)(

I
H ) +

I
U) ). The i) formalism is readily adapt-

ed to deal with such situations: One works with a Fock
space that is the direct sum of the space of 2 states and
the space of & states; and in the basis [. . . ,

I

—2)
I

—1),
I
0),

I
1),. . . ] one defines i) by

@n ) =
I

n ) if
I

n )'s type (2 or JV) agrees
4=0 . (82)

Then the bilinear form

where the product is over all SR modes i.
As a mathematical convenience we shall build our for-

malism in the complete analytically extended Kerr space-
time of Fig. 2 rather than in the true black-hole space-
time. This is justified because outside the surface of the
material that collapsed (long ago) to form the black hole,
and outside and on the hole's future horizon, the space-
time of the black hole is identical to region I of the ex-
tended spacetime.

Let the scalar field @ satisfy the, equation [Eq. (3.1)
with vanishing scalar curvature R]

with the chosen convention,

@n ) = [ expression (A9d) ] I
n ) if it disagrees.

B(tIs„@i}=I (@,@2,—@2+i,)dX (83)

This, in fact, is done in the present paper —not to permit
the analysis of superpositions of J' states and & states,
but rather to permit the analysis of separate J states
(IB), I

U), IUiti)) and & states (IB), IH)) using a
single choice of convention and viewpoint.

APPENDIX B:GENERAL FORMULAS
FOR QUANTIZATION OF A MASSLESS SCALAR
FIELD IN THE EXTENDED KERR SPACETIME

Here we collect the main formulas concerning the
quantization of a massless scalar field in the extended
Kerr spacetime (Fig. 2), with the modifications dictated
by our desire to use for each mode a single choice of con-
vention and viewpoint regardless of the type of state be-
ing studied; see Appendix A. From the outset we shall
insist that for each superradiant (SR) mode our chosen
convention and viewpoint agree. Correspondingly, that
portion of the Fock space of SR mode i with non-negative
numbers of quanta [sgn(n; ) & 0 in the notation of Appen-
dix A] will have state type in agreement with the conven-
tion and viewpoint, while that portion with negative
numbers [sgn(n, . ) &0] will have state type in disagreement
with the convention and viewpoint; cf„Eqs. (A6). This
means that the operator g, used to deal with states that
disagree with mode i's convention [Eq. (A10)] is

is conserved; i.e., for any two solutions 4, and Nz of Eq.
(82) its value does not depend on the particular choice of
the total Cauchy surface X (which reaches from spacelike
infinity I in region I' of Fig. 2 to I in region I). Here,
as in Ref. 20, the sign of dX is taken opposite to that
used in MTW. ' The canonical commutation relations for
the quantized field 4 can be written in the form

[B(@„4),iiB(4~, mls)i)] =iB(@„cs2), (84)

where @,and 4~ are arbitrary solutions of (82). The fac-
tors of q are required here in order to mesh with the for-
malism of Appendix A—more specifically, in order to
guarantee that Eqs. (87) follow from (84)—(86). [These
factors of g arise because 4 is not quite the standard field
operator. Rather, when as here one has chosen a set of
modes whose conventions diff'er in type from the states
being studied, + is that operator for which

&&
I
n@

I
P ) —standard&& I +'standard I

P ) standard

Here "standard" denotes the form of the field operator
and states when one makes the "standard" choice of
modes whose conventions agree with state type; cf. Eq.
(A9g).] If Iu;, uiI is a complete basis in the space of
solutions of Eq. (82) satisfying the normalization condi-
tions

when acting on states
I n; ) with n, & 0,

(8 la)
B(u;,uj)=B(u;, u )=0, B(u, , u )=i5; (85)

(complete, orthonormal basis), then the field operator 4
can be written as

8,. +1i);=( —1) ' (Bib) mls= g (f;u;+rif,"riu; ), (86}

when acting on states
I

n; ) with n; & —1. Here 8', =f;f;
is the number operator for mode i. In our formalism we
shall make extensive use of the operator

(81c)

where the sum is over all modes i, superradiant and non-
superradiant; and the commutation relations (84)—
together with il =1, waif;ri=+f;, and qf, g=+f;
imply that
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[f; f, ]=[f;f rl=o [f; f r]=51 . (87) purpose we consider the discrete symmetry transforma-
tion

The placement of the q's in Eq. (86) is in accord with Eq.
(A9p), and with I rjf;trj= f;—when operating on states

~
n; ) with n; (—1 j. The sign of the last commutation

relation in (87) is in accord with Eqs. (A3) and our in-
sistence that for all SR modes the chosen convention and
viewpoint agree. Equations (A3) also tell us that we must
define the number operator &; for mode i by

(88)

U+ ~—U+, V+ —+ —V+, 8—+8, (813)

wr(U+, V+, 8,$)=ur( —U+, —V+, 8,$) for E&0;

(814)

(refiection through &+fl& of Fig. 2), which trans-
forms region I into I'; and using it we introduce new
functions

Let u = t r* and—u = t + r [Eq. (3.3)] be the retarded
and advanced time coordinates in region I of the extend-
ed Kerr spacetime (Fig. 2). Define in region I new null
coordinates

pr(U+, V+, 8,$)=qr( —U+, —V+, 8,$) for Z&0 .

These functions vanish in region I and obey the normali-
zation conditions

U+ ——exp( —i~u ), V+ ——exp(x.u), (89) B(wr»wr') =B(PI»PI') ='511' (815)

Y, a Y, =—Y,ax Y2 —(ax Y, ) Y2 (810b)

dQ=sin8d8drtr at 2 and J'

d 0= sin 8 d 8 d P at &+ and gj
(810c)

Using this formula one can easily verify that the func-
tions UI and qI introduced in Sec. III, which satisfy the
boundary conditions (3.2) and (3.4) and vanish in region
I', are normalized as follows:

which turn out to be aSne parameters along the geodesic
generators of the past and future horizons, & and
&+. Then analytically continue the coordinates
(U+, V+, P= P QHt, 8—) to—cover the regions I, I', II
and II' of the analytically extended Kerr spacetiine (Fig.
2). If y, is a solution of the wave equation (82), then
denote by the corresponding capital letter the function
Y; =(r +a )'I y; . By setting X=J' U Ithat part of

which touches region Ij U Ithat part of &+ which
touches region I'j U J', the bilinear form B(y„y2) [Eq.
(83)] for any two solutions can then be written as follows:

B(y„y2)= f dV+dA(Yic)v Y2)s-

—f dU+dQ(Y, Brr Y2)~

+ f' dv, dn(Y, a, Y,),
—f dU+dQ( Y, BU Y'2)s, , (810a)

where

+PI (»rtb r~rI] (816)

which is a specific version of Eqs. (86). Correswiondingly,
the creation operators If; j =

I 8 I, b I, &&, b I j and an-
nihilation oPerators If; j = I &I, br, O' I, b I j satisfy the
standard commutation relations (87). In region I where
the solutions wr(x) and pr(x) vanish, Eq. (816) coincides
with Eq. (3.7). The vacuum state

~

B) defined by the
conditions

(817)

is known as the Boulware vacuum. "
In order to introduce the Hartle-Hawking

~
H) and

Unruh
~

U ) vacuum states we need a different complete,
orthonormal basis defined by

with other "products" equal to zero. One can verify that
wr is an out mode (all waves go out to J'+; none go down
the future horizon & ), while pr is a down mode (all
waves go down the future horizon &; none go out to
g»+) 28

The functions UI qr ~I pl form a complete, orthogo-
nal basis in regions I, I', II, II' of the extended Kerr
spacetime. Expanded in terms of this basis the field
operators take the form

4(x)= g [ur(x)&r+ui(x)g& rrI+wr(x)rtr'
e)0

+wr(x)qa rtrI]

+ g [qr(x)br+qr(x) lb r'9+pr(x)br'
8)0

B(ur, ur )=B(qr, qr ) =i511,
511:5(E e'—)5ti 5—

(811)

(812)

vr =CI uI +sr wI vI =cl wr +sI ul

4:crqr+srpr 4 =—crpr+srqr—

For any other pair of vr UI ql qr t
vanishes. For the in mode UI the viewpoint and conven-
tion are both chosen to be distant-observer ( J'); for the up
mode qI the viewpoint and convention are chosen to be
near-horizon (&).

Because the functions UI and qI vanish in the region I',
in order to get a complete basis in the extended spacetime
we must introduce additional basis functions. For this

where

sr —= [exp(2~1&
I
«)—ll '"

cr = [1—exp( —2m.
~

Z
~
/a)]

cr sr =1, sr/cr =exp( —m. ~Z
~

/~) .

(820)

From the normalization conditions (811) and (815) for
the I ur, qr, wr, pr j basis one can verify that
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B(vr~ Vr)=B(vr~ vr')=B(Ar~ ~r )

=8(lr, A, r )=ibrr (821)

(other products vanish), so this new basis is indeed ortho
normal.

The functions [vr, vr I vanish at & (Fig. 2), and the
functions [A,r, Xr I are of positive frequency at & with
respect to any future-increasing afBne parameter U, e.g.,
U= —U+. The functions IA,r, kr J, and Ivr, vr (for non-
SR modes, Z&0, e&0); vr, vr (for SR modes K&0,
e&0)I are of positive frequency at &+ with respect to
any future-increasing aKne parameter V, e.g., V= V+.
To prove these positive-frequency properties of the func-
tions vr, vr, A,r, A,r one can exploit the fact that for any
real number u, the function

basis appropriate to the Unruh vacuum state
~
U), i.e.,

that
~

U ) will be given by

Pr
~

U&=a r ~

U) =ar
~

U) =ar
~

U&=0. (826)

Pr i
H) =/3r

i
H) =0 for e&0, e&0,

/3 r ~

H ) =/3 r ~

H ) =0 for e & 0, Z & 0, (827)

Analogously, because the functions Ivr, vr (for e&0,
Z&0); vr, vr (for e&0, K&0); A,r, A,r (for 'F&0)I have
similar asymptotic properties to the Feynman propagator
GH for the Hartle-Hawking vacuum (only one sign of fre-
quency on & and only one sign on &+), it is reasonable
to expect that this is the basis appropriate to the Hartle-
Hawking vacuum state

~
H), i.e., that

~

H) will be given
by

F(X)—=e ' '" 8(X)+e e ' '"' '0( —X) (822)

4(x)= g [ur(x)&r+ur(x)'q& r'g+wr(x)a r
e&0

+wr(x)gW rtg]

+ y [~ (r)x~+r~ (r)xi irzi+~r(x)& 'r

Z&0

)ger'g]

if, instead, we use vr, vr, A.r, A,r, then 4 has the form

+x)= g [vr(x)/3r+vr(x~'9/3rr/+vr(x)/3r
e&0

+vr(x)g/3 rtr/]

(823)

for real X coincides with the boundary value of a function
X ' which, for any real o., is analytic in the lower half
complex-X plane; and hence this function F(X), when
Fourier analyzed in X, contains only positive-frequency
components.

If we us ~r ~r ~r ~r as our basis, then we shall write
4 in the form

Se(x, x')= g ur(x)ur(x')+ g qr(x)qr(x'» (828)
e&0 Z&0

SU(x, x )= y ur(x)ur(x )
e&0

A straightforward computation reveals that these equa-
tions for

~

U ) and
~

H ) are, indeed, correct: The first
step in the computation is to derive the following expres-
sions for the "positive-frequency functions" Se(x, x'),
SU(x, x'), and SH(x, x') by (i) inserting expansions (816),
(823), and (824) into Eqs. (3.18b); (ii) making use of Eqs.
(817), (826), and (827) for

~

B ),
~

U ), and
~

H ); (iii) us-
ing the fact (to be proved in Appendix C) that

~

8 ) and

~
U) contain non-negative numbers of quanta in all SR

modes and thus q behaves as unity when acting on them,
while

~

H ) contains non-negative numbers of SR ar and
a'r quanta but negative numbers of SR /3r and /3r quanta
so for SR modes r/arr/~ H )

=+intr

~

H ), r/a r @H)
=+
= —Prt

~

H ); and (iv) restricting attention to points x
and x' that lie in region I (which corresponds to the exte-
rior of a black hole). The resulting expressions are

+ g [~r(x)&r+4(x)r/et rr/+4(x@r
z&0

+Xr'(x)par'tg] .

+ g [Ar(x)Ar(x')+Ar(x)A, r(x')],
F&0

(824)
SH(x, x') = g [vr(x)vr(x')+ vr(x)v r(x')]

(829)

By comparing the expansions (816), (823) and (824) for
4 and using the transformation of bases (818), (819) we
see that

&r =crbr srr//r r 'g ter=—erb r srr//r rr/ (825a)

/3r =crar sr'~ r~6~ /3r =era r srgd rr/. (825b)

These transformations guarantee that the sets of creation
and annihilation operators [a r, a r, a r, a r, ter, a r, ar,
a j ] and [P r", /3 r, a r, a r, /3r, /3 r, ar, iz r I, like [a r, a r,
b r b r rti a r br b r I, satisfy the standard commuta-
tion relations (87).

Because the functions [ur, wr, A,r, A,r J have similar
asymptotic properties to the Feynman propagator GU for
the Unruh vacuum [only one sign of frequency on &
and only one sign on 2; cf. paragraphs following Eqs.
(3.14) and (821)], it is reasonable to expect that this is the

e&0, e&0

[vr (x )vr (x ) +v r (x )vr (x '
) ]

e&0, 8~0

+ g [&r(x)&r(x')+Ar(x)A, r(x')] . (830)
F&0

The next step is to verify that the propagators GU(x, x')
and GH(x, x') constructed from these SU and SH via Eq.
(3.18a) satisfy the defining properties for the Unruh and
Hartle-Hawking vacuum states [paragraph following Eq.
(3.14)]. Thus,

~

U) and
~

H) are, indeed, given by Eqs.
(826) and (827). It is also straightforward to read off the
boundary conditions for the Feynman propagator
Ge(x, x') [Eqs. (3.18a) and (828)] associated with the
Boulware vacuum

~

B ) [Eq. (817)]: (i) for x on the past
horizon & and x ' outside the horizon, when Fourier
analyzed on & not in terms of a future-increasing affine
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parameter U but rather in terms of the nonaffine ad-
vanced Killing time parameter u, G~ contains only
negative-frequency components; and (ii) for x at 2 and
x outside the horizon, when Fourier analyzed at 2 in
terms of the a%ne, advanced, Killing time parameter v,

Ge contains only negative-frequency components.

APPENDIX C: DENSITY MATRICES AND ZAMO
MEASUREMENTS FOR VARIOUS STATES

OUTSIDE A BLACK HOLE

In this appendix we shall prove that the states
I
U),

I
UN ), and

I
H ), which were defined mathematically in

Sec. III [paragraph following Eq. (3.14)] and were shown
in Appendix 8 to satisfy Eqs. (B17), (B26), and (3.15), can
be characterized by ZAMO measurements in the manner
of Sec. II..

Our proof will rely on an intimate connection between
ZAMO measurements outside a real black hole and the in
modes. vI and up modes qr of the extended Kerr space-
time: In the extended spacetime vI and qr are confined
to region I, which coincides with the spacetime of the
black hole; and there they form a complete set. More-
over, along any ZAMO world line (which has angular ve-

locity a)), these modes are sinusoidal functions of proper
time r, (vI and qI ) o: exp[ i a '(e—mco)r]—, and they are
also eigenfunctions of the ZAMO-measured angular
momentum (with eigenvalue m) and ZAMO-measured
red-shifted energy (with eigenvalue e). Correspondingly,
the quanta measured by ZAMO's using physical particle
detectors (which see vI and qI oscillate sinusoidally) are
those associated with the modes vr, qr, i.e., those created
and annihilated by & I, br, ~1, and bi.

The states
I
U),

I
UN), and

I
H), as defined in the

extended Kerr spacetime, are pure; but as viewed by
ZAMO's outside a black hole they are rriixed. This
shows up mathematically as follows: Let F be an observ-
able confined to the exterior of the black hole. Then in
the language of the extended Kerr spacetime, F is expres-
sible in terms of the creatio~ and annihilation operators
& I, Qz of. the region-I in modes and those b I, bl of the
region-I up modes, F=F(aJ, a I, bJ, b I). Denote by

{ I
A')] an orthonormal basis for all states of all the

region-I inodes, and by { I

JV') I an orthonormal basis for
all states of all the region-I' modes; and split the operator
il up into a part that acts in the space of I I

A') j and a
part that acts in { I

JV') I, g~git '. Then orthonormality
says that &IVI g I

At) =5~~, &JV'
I g I

A, ') =5~~ [cf.
Eq. (A9e)], and it implies that

Iw) Iw')&w
I
&wIq'q

is the identity operator in the space of all states of all
modes. It is straightforward using this identity operator
and these bases to show that, because P acts only in the
space of { I

JV) I, the expectation value

& P )~
——

& ~
I
riP

I
o) (Cl)

where

is the density operator p~ for the state
I
~ ) and where the

trace has the form

tr(Fp~)= g—& IVI riPp~@ JV) . (C2c)

I
U ) = ff R I U))1

I
B )

e)0

where

R
) U)1 =C) U)I exp(e b Ib(b) (b) —me/K

(C3)

(C4)

C(U)I are normalization constants, and the Boulware vac-
uum state

I
B ) is defined by Eq. (B17). Because [as Eqs.

(C3) and (C4) show]
I
U) is a J state (positive E„)in the

superradiant in modes, and an & state (negative E ) in
the superradiant up modes, it has the same state type as
conventions, and the factors of i) all behave as unity (are
irrelevant) in calculations with

I
U).

To verify expressions (C3) and (C4) for
I
U) we must

show that this
I

U ) is annihilated by aI, it I, aI, a I [Eqs.
(B26)]. Since

I
B ) is annihilated by aI, a I [Eqs. (B17)],

this
I
U) is as well. Annihilation by aI, aI can be

shown using the expressions (825a) for ar, a I, and using

Be =e (B+oC'), (C5a)

which is valid for any operator C commuting with k and
8 provided the operators D and B obey the commuta-
tion relations

[8,B ]=o. , [8, B ]= [B t, 9 t]=(), (Csb)

'Note the following features of Eqs. (C2): (i) The density
operator p~, like F, lives in the space of { I

JV) I, i.e., in
the space of all states of the region-I modes, and thus de-
scribes the state

I
~ ) from the viewpoint of observers

who are confined to the exterior of the black hole. (ii)
The trace (C2c) is taken over the space of black-hole-
exterior states { I

JV) I. (iii) The one factor of g in the ex-
pectation value (Cl) for a pure state becomes two factors
of it in the trace (C2c) for a mixed state. (iv) By contrast
with the standard, g-free, formalism, the trace is sensitive
to the order of F and p+. tr(Fp+)+tr(p+F ) [Eq. (C2a)].

Our objective is to prove that the density matrices pU,
pU)v, and pH, as derived by Eq. (C2b) from the pure states

I
U),

I
UN), and

I
H) of Sec. III and Appendix B,

have the forms dictated by the physical descriptions of
Sec. II: pU is that density matrix for which the ZAMO-
measured up modes are perfectly thermalized and the in
modes are perfectly empty; pU~ is that for which the up
are thermalized and the in contain X=n~", nI", . . . quan-

1 2

ta; and pH is that in which all modes are thermalized
(that of a rotating, thermal atmosphere).

We begin our proof by showing that the Unruh vacu-
um can be written as

can be rewritten as

& l )~
——tr(Fp~) = tr(p~gF ii ), (C2a)

where cr is a c-number constant.
Using Eqs. (C3) and (3.15) we can also write
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Pv= +Pv H Pv
z&0

Pvx = g P"'v'rr II P" v%'
e&0 p)0

(C7)

(C8)

where the density operators for the I in and I up modes,
written first in abstract terms and then in terms of proba-
bilities p~ ~;„,p ~ot'„ to contain n quanta, are

p v'" ——.exp( —a rdr): i

Iin
P(U)n ~n, 0 &

(C9a)

(C9b)

p v"~ pvP'=(1 =—e )exp( —6' rN/TH ), (Cloa)

Igu I~u th
( 1

H
)

" H . (Cl()b)
in in

PvÃ= —:(~r ) e"p(
(n !11

)/

Iin
P(UX)n ~n niri ~

(Cl la)

(Cl lb)

In Eqs. (C9a) and (Cl la)::denotes normal ordering with
resPect to the ar, a r oPerators, and in Eq. (Cloa) 6' rr' is
the number operator for the I up mode, n I~——b Ib~.

The density operator p tv''=p vg for the I up mode is
perfectly thermal, with the Hawking red-shifted tempera-
ture TH =~/2~; and because this mode is described in the
near-horizon viewpoint, its thermality is that of emission
from a blackbody horizon that rotates with angular ve-
locity QH relative to distant observers; cf. Sec. IV. The
density operator p U" is that of a perfectly empty I in
mode; and p~ ~~) is that of an I in mode containing exact-
ly nr" quanta. Thus, pU and pU~ have precisely the forms
corresponding to the physically realistic black holes dis-
cussed in Sec. II: a hole evaporating into vacuum (the
state

~

U&), and an evaporating, accreting hole (the state

The Hartle-Hawking state
~

H & would be extremely
troublesome computationally if we had not introduced
the g formalism. If one were to try to make calculations
for this state in the same way as was done for the states

i
U & and

~

UN & without the i) formalism, one would get
[in view of Eq. (827)]

~H&= ~P',„"'„~ N,"„~P,'„'„~8&,
d&0 e)0, e&0 e&0,e(0

(C12)

nin

~
UN&=ff[( '"t) '

( ) ']+A' ' ~8&, (C6)
l 1

Z&0

where again the state type and conventions agree so g is
irrelevant.

The density operators pU and pU& associated with the
states

~

U& and
~

UN & can be derived straightforwardly
from Eqs. (C2b), (C3), and (C6), using for g ~

A'&
I the

Pock basis generated by applying [a r, b r I to the
Boulware vacuum of region I' and for [ ~

JV& ) the Fock
basis generated by applying ta r, b rj to the Boulware
vacuum of region I. The results, which can also be de-
rived efficiently using functional methods (for details see
Ref. 20), are

where

+ (H)r =+ (v)r =C(v)rexp( b rb r )(b) (b) (&) —mY/~

g' (a) a
~~ (H)I C(H)rexp(e ~ I~ I )

—~Z/It;

(C13)

(C14)

But for the superradiant in modes (e&0, Z(0) the state
R Irr'~r

~

8 & is not normalizable, so this is not a physically
acceptable expression for

~

H &. This difficulty —which
was noted in different language a decade ago by Beken-
stein and Meisels —arises from the fact that in the state

~

H & a superradiant in mode, being perfectly thermal-
ized, has positive total red-shifted energy E as mea-
sured by near-horizon ZAMO's, and this corresponds to
negative total red-shifted energy E as measured by dis-
tant observers. Since, by applying aI, ar, & I, a I to

~

8 & one can construct only states with positive E„,not
negative E, it is impossible to express

~

H & by the ac-
tion of these operators on

~

8 &.

From the material presented in Appendix A it should
be clear that, if we had adopted the near-horizon conven-
tions and viewpoint [Z& 0 in Eq. (816)] for all in and out
modes vr, wl just as we did for all up and down modes qI,
pI, then we would have encountered no difhculties in
computing

~

H & by ii-free techniques. Indeed, long ago
Israel evaluated

~

H & and pH in just this manner with
no difficulty [though, because his work was carried out
simultaneously with and independently of that of Hartle
and Hawking, he used the notation

~

0(1~)& instead of
~

H & and called this the "Kruskal vacuum state" instead
of the "Hartle-Hawking vacuum state" ].

Unfortunately, although the near-horizon conventions
and viewpoint would permit the evaluation of

~

H & and

pH by standard techniques, they would produce
difficulties with

~

U&,
~

UN &, pv, and pv&,
' cf. Appendix

A. This has motivated us to stick with our distant-
observer conventions and viewpoint for the in and out
modes —at the price of adopting the q formalism for
dealing with

~

H & and pH.
Returning to the ii formalism, we shall construct

~

H &

by adding and removing quanta from the vacuum state
i
8 & which is defined by

b

(no quanta in up and down niodes),

ar ~8&=ar ~8&=0 for e&0, e&0

(C15a)

(C15b)

(no quanta in nonsuperradiant in and out modes),

ar
~

8 &=a r ~

8 &=0 for e(0, e&0 (C15c)

( —1 quanta in superradiant in and out modes). In this
state, the state

~

H &, and any other state obtained by re-
moving quanta from or adding quanta to

i
8 &, i) acts

nontrivially (differs from unity) only on operators associ-
ated with the superradiant in and out modes:
gd ril= —d r, ga r ri= —a r for I with e&0, e(0 [Eqs.
(A9i)].

By the arguments given in Appendix 8, the state
~

H &

is the unique state satisfying Eq. (827). It is straightfor-
ward to verify, by a calculation completely analogous to
that for

~

U& [paragraph following Eq. (C4)], that this

i
H & is given by
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IH&= II + ia)t II + iaIt II ~in)t IB&
z&0 e&0, 8&0 e&0, 8&0

(C16)

where P ia) and A ia) are defined by Eqs. (C13) and
(C14), and

P (a)sR C(a) exp(e 1T
~

r
~ /lcd Q ) (C17)

This state is readily normalized, by contrast with (C12),
since for the superradiant in and out modes it is
e "~~~ ~ & 1 that appears in the exponential [Eq. (C17)]
rather than e '&1 [Eq. (C14)]. Notice that P Ia))t
creates quanta with Z&0 in the up and down modes,
R Ia))t creates quanta with F& 0 'in the nonsuperradiant in
and out modes, and R~H'~z removes quanta with 8&0 in
the superradiant in and out modes; thus, all pieces of

~

H ) correspond to creation of positive near-horizon en-

ergy E
The density operator pa associated with the state

~

H )
can be derived by functional methods or, more directly,
from Eqs. (C2b) and (C16) using for t ~

JV') I the Fock
basis generated by applying I & t (for e & 0, Z & 0), & t (for
e& 0, Z & 0), b t I to the state

~

8 ) of region I' [Eqs. (C15)
with only primed operators kept], and using for t ~

JV) I

the Fock basis generated by applying t a t (for e & 0,
Z&0), at (for e&0, K&0), b t I to the state

~

8 ) of region
I. The result is

p =II) "' Il p
'" ll

Z&0 4&0, e&0 8&0, e&0

where the density operators for the I up modes, the non-
superradiant I in NSR modes, and the superradiant
I in SR modes —and the corresponding probabilities for
them to contain n quanta —are

linsR th (1 e H)e H

for n & —1, 8&0 . (C21b)

In Eq. (C21a) t) t" is the ri operator for the I in SR mode,
8 )"+1

t) t ——( —1),and P projects onto states containing
negatiue numbers of quanta.

Each of the Hartle-Hawking density operators
(C19)—(C21) is perfectly therma/: Each describes a mix-
ture in which the probability for its mode to be in the en-
ergy eigenstate with near-horizon red-shifted energy
Et Z(nt+———,

'
) is

P(Et ) =const X exp( Et /T—a ), T~ ——K!2~ .

(C22)

(The I in SR thermal density operator only looks unfami-
liar because it is that of a near-horizon thermal state writ-
ten using the distant-observer viewpoint. ) These density
operators verify (in accord with Israel's conclusions) that
near-horizon ZAMO's see the field 4 to be perfectly
thermally excited when it is in the mathematically
defined Hartle-Hawking vacuum state

~

H )—a con-
clusion that we used as our physical definition of

~

H ) in
Sec. II. For further discussion see Sec. IV 8.

We note, for completeness, that the thermal density
submatrix (C21a) predicts a mean number of (e & 0, Z' & 0)
quanta, in the superradiant I in mode, given by

( nin ) tr( fi in@tin sR)

—e/T~ —nZ/THp(at„——p„'"=(1—e ")e for n &0, e&0;
(C20b)

p a'" = —(1—e )exp( —& 't"&/Ta)rit"P, (C21a)

p a"~ pU"t' (1—e==)exp( —fi' tW/Ta ), (CI9a) n= —1

tin SR
e/TH

e

th=nr (C23)

I (

Stion

Pn for n )0;

colin

NsR
( I e )exp( fi. in+/T

—4/T

(C19b)

(C20a)

which (although it is negative) is the standard thermal oc-
cupation number for a rotating black-hole atmosphere as
described in the distant-observer viewpoint; cf. Eq. (2.51).
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