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Making inflation work: Damping of density perturbations due to Planck energy cutoff
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In this paper we propose an alternative method for the computation of classical density perturba-
tions from a quantum field in an inAationary scenario. We compute the power spectrum of density
perturbations directly from vacuum Auctuations of the "time-time" component of the energy-
momentum tensor. We compute the inhornogeneous part of~ the correlation function
(0~ T o(x, t) T 0(y, t) ~0) for a massless minimally coupled scalar field in de Sitter space. The Fourier
transform of this two-point function leads to the scale-invariant spectrum of perturbations, but is ul-

traviolet divergent. This expression can be made finite by introducing an (ad hot.") small-distance
cutoff' in the proper length. We argue that this cutoff'should be of the order of the Planck length,
and show that, in such a case, the density Auctuations have the acceptable magnitude (-10 ) for
the case of primordial inflation. Thus the inflationary scenario can be made to work without any
fine-tuning.

I. INTRODUCTION AND SUMMARY

A Friedmann universe with power-law expansion for
the scale factor [S(t) = t", n ( 1] fails to explain the ori-
gin of galaxies on two major counts. First, it does not
have any natural seeds for the origin of density inhomo-
geneities. Second, the scales on which the inhomo-
geneities exist today would all have originated outside the
"physical horizon" [which is (S/S) '] in the early
Universe; it is difficult to imagine physical processes
which can give rise to such coherence.

An inflationary model can solve both these problems.
The quantum fluctuations of the scalar field which drive
inflation can provide the seeds for density perturbations.
The second difficulty is circumvented because, during the
phase of exponential expansion the Hubble radius
remains constant, but the proper wavelengths grow ex-
ponentially. Thus the galactic scales can originate from
inside the horizon at the early epochs.

Given any model for inflation it is therefore possible to
compute the spectrum and amplitude of the density per-
turbations. Such calculations have been done by several
people' with the following result. Inflation leads to a
(desirable) "scale inuariant" s-pectrum; but generically the
amplitude of perturbation is too large (by a factor
10 —10 ). This amplitude can be brought down only if
the inflationary potential is fine-tuned in a very unnatural
way. This makes inflation aesthetically unappealing.

In this paper we suggest a possible way out of this
problem. We show that correct values for the amplitude
can be obtained if the divergent expressions in field
theory are regularized using a cuto6' at Planck energy.
This key idea has been suggested by one of us (T.P.) in a
recent Letter. Here we clarify and elaborate on this
idea. In particular, we present the major aspects of this
idea without actually relying on any specific model for
quantum gravity.

Another issue of concern in inflation is the method by
which classical density perturbations are computed from

quantum-mechanical operators. Let us briefly review the
conventional approach (as proposed in Refs. 1 —4), and,
what we believe to be, its unsatisfactory features.

It is natural that if inflation occurs at the grand-
unified-theory (GUT) scale or earlier, the driving scalar
field should be described by a quantum field theory. A
self-consistent treatment would then require that the
space-time metric be also quantized. Not having such a
theory, one is compelled to describe the system by semi-
classical equations which treat gravity classically and
matter quantum mechanically. Such a semiclassical
description of gravity has a long history and, in a way,
formed part of the subject "quantum field theo'ry in
curved space time. " It is usually believed, at least in the
days before the invention of infiation, that the source for
semiclassical gravity is the expectation Ualue of T;k. Ac-
cording to this viewpoint semiclassical gravity is de-
scribed by the equations

(2)

where
~ g) denotes the quantum state of the field, 8 is the

Hamiltonian governing the evolution of P, and G;k stands
for (R,"—

—,
'
g,.k R ). Here (1) is the semiclassical Einstein's

equation and (2) is the Schrodinger-picture evolution
equation for the quantum state of the field P.

This viewpoint, however, leads to difficulties in the
inflationary scenario. It is usual to assume that the quan-
tum field driving the inflation is in the vacuum state in
the de Sitter space-time; but the expectation value
(0~ Ti(x, t) ~0) is homogeneous (i.e., independent of x) be-
cause of the translational invariance of the vacuum state
~0). Thus, we will never get an x-dependent (5p/p) out
of this prescription. We must abandon the rule that
(0~ T;k ~0) is the source for semiclassical gravity.

Once we abandon it, we are at a loss to select another
unique "source. " (The proper approach will be to start
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with the Wheeler-DeWitt equation in quantum gravity
and consider its semiclassical limit. Unfortunately, there
are several subtleties involved in this approach. ) We
need to proceed in a somewhat intuitive manner. The
conventional view has been the following.

We define a classical field P, (ix, t) as consisting of a
homogeneous part and a perturbation:

P„(x,t)=P,(t)+5/(x, t) . (3)

Defining 5$(x, t) is trickier. We first define the power
spectrum of the scalar field by

P(k, t)= f d xe ' '*(OIP(y+x, t)P(y, t)IO& (5)

and construct 5$(x, t) as the Fourier transform of
&P(x, t) In t. his manner, 5$(x, t) is made to carry infor-
mation about the inhomogeneities. This classical field
Pd(x, t) is then used to construct a classical energy-
momentum tensor T;k (which is no longer homogeneous).
From this T;k a nonzero density perturbation can be ob-
tained. This, essentially, is the conventional approach.

It is clear that the information regarding the spatial
dependence can be smuggled in only through the expecta-
tion values of the two-point functions. But then, it is
much more rational and meaningful to use the two-point
function made from T;k itself. The quantity
(OIT o(x+l, t)T 0(x, t)IO& clearly carries information
about the vacuum Auctuations in the energy density. The
power spectrum of the density Auctuations is given
directly by the Fourier transform of this correlation func-
tion:

Ipk(t)l'= fd'y e '" "(O-IT''o(x+y, t)T'o(x, t)IO& . (6)

Thus we can calculate our spectrum directly from
(OIT oT OIO&. This approach is straightforward and
physically meaningful. Moreover it eliminates the need
to define an intermediate P,i(x, t) in an ad hoc inanner.

An independent support for the physical relevance of
(/IT'k(x+1, t)T' (x, t)IQ& comes from the study of the
response of a hypothetical particle detector. It turns out
that the simplest kind of detector, which attempts to
measure the energy density by coupling linearly to T'k of
a quantum field, will respond to the two-point function
(OIT'kT' IO& and not to the expectation value (T'k &.

Thus a detector will respond both to the mean value of
T'k and to the fluctuations. In particular, even if the
mean value of T'& is zero, as in the vacuum state, the
detector will respond to the Auctuations. From an
operational point of view, then, the two-point function
appears to be a more fundamental measure of T'z than
the expectation value.

The major trouble with our definition (6) is that the ex-
pression on the right-hand side is divergent. We feel that
one should honestly "own up" this divergence and at-
tempt to regularize it by some physical criterion. This is
what we plan to do in the following.

Since $0(t) cannot be defined as (OIQ(x, t)IO& (which van-
ishes), it is defined as the (regularized) rms value:

(4)

As far as we are aware, this idea of defining Ipk(t)I
directly in terms of T'k has not been discussed in the
literature in any detail. Brandenberger mentions this ap-
proach briefly in an appendix to one of his papers and
notes that the expression is divergent.

In the next section of this paper we will compute the
two-point function for a massless minimally coupled sca-
lar field in de Sitter space. We find that unlike the object
(OI T'k Io& which is homogeneous and divergent, the
two-point function contains a space-dependent part
which is finite.

We then evaluate the Fourier transform of this two-
point function to compute IpkI, and show that the densi-
ty perturbations have a scale-invariant spectrum at the
time of horizon crossing. However, the power spectrum
so obtained is ultraviolet divergent and hence nothing
can be said about the magnitude of the density contrast
until some method of regularization is adopted. We cal-
culate the amplitude of IpkI with such a regularization
and show that it has the acceptable value. This arises be-
cause our cutoff provides an exponential damping for
modes with proper wavelengths smaller than Planck
length. (This is essentially the idea suggested in Ref. 5.)
In the last section we discuss the motivation and the
shortcomings of our approach.

II. COMPUTATIONOF (pIT', (x+1,t)T', (x, t)Ip&
IN DE SITTER SPACE-TIME

In this section we will compute the two-point function
(OIT 0(x+l)T 0(x)IO& for a massless free scalar field in
an external de Sitter universe. (In a realistic infiationary
model, the field will not be free; neither will the space-
time be eternally de Sitter. However as we will argue in
the last section these approximations do not affect the
central result appreciably. ) We will work with the La-
grangian

We quantize the field by expanding the field P(x, t) as

d k
P(x, t)= f [&i,fi, (t)e'"'*+H.c.],

(2n. )

where fi, (t) are the properly normalized positive-
frequency solutions of the equation

k
fi, +3Hfi, + fi,=o .

S'(t)
The explicit form for f& is given by

f„= (1 i8)e', —k = IkI,0
2k'"

(10)

where 8=k l(HS). In the H ~0 limit, fk reduces to the
flat-space positive-frequency mode (2') '~ e ' '. This
choice of mode decomposition defines the vacuum state

for a quantum scalar field operator P(x) in the
inflationary metric

ds2=dt S(t)IdxIi, S—(t)=e
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~0), via the relation ai, ~0) =0. We want to evaluate the
correlation function

We introduce a complete set of states ~g) in (12) so that
the correlation function can be written as

C'1 "I(x+l, x; t)—:(0~ T' (x+1,t) T"i(x,t) i 0), (12) C,.",(x+I,x;t)= y (0~x', (x+i, t)iq)(q~Z "i(x,&)io) .

&'a =d'Ndj, k,'~'I (d'4'd. 4) . (13)

where T'I, is the energy-momentum tensor for the scalar
field: The quantity (O~T'b(y, t)~P) is nonzero only for the

cases when
~ $ ) is either a vacuum state or a two-particle

state. So C'~ I can be expressed as

C'. i(x+l, x;t)=(OiT' (x+1,t)iO)(OiT"i(x, t)iO)+ g (0[T'J(x+1,t)ilail )(1 1 iT"i(x, t)iO), (15)

where p and q are the momenta labeling the two-particle
state. Since the vacuum is translationally invariant, the
first term on the right-hand side is space independent
(though formally divergent). Hence when we evaluate
the Fourier transform of C'~ "i with respect to I, the first
term will give a contribution proportional to 5(k) where
k is the wave number for the perturbation. However, we
are interested only in the k&0 modes. Hence this term
will not contribute to ~pi, ~

in (23), and can be ignored.
So all the contribution comes from the second term. We
therefore write

C' "&(x+1,x.;t)= gr' ( x+/p, qt)~" 'I( xp, q, t),
vq

(16)

where

~' (x,p, q, t)=(0~T' (x, t)i1, 1 ) . (17)

,, a a i. .. a a= lim g'" „.——5',g"
ax" az~ 2 ' ax' az"

X (0)y(x)y(z) ( 1„1, ) . (18)

After we perform the operations of difFerentiation we can
take the limits of z~x. We have split the operators
purely for computational convenience.

We are only interested in the component v p. Using
the mode expansion [Eq. (9)) for the field in the expres-
sion for r 0 it can be easily shown to be (see Appendix A)

0
( t) —f f p q f f el(p+q) x (19)

(Here an overdot signifies difFerentiation with respect to
time and p.q denotes a Aat-space dot product:
p.q=vP~p~&, a=1,2, 3.) Substituting (19) in (16) we
find the equal-time correlation function C(1, t)
=C 0 0(x+1,x; t) to be

To compute v; it is easier to first evaluate the quantity
(0~$(x)P(z)~lzlq) (where x and z are four-dimensional
space-time coordinates). Then r'J can be obtained as

r' (x,p, q, t):—r' (x,p, q)

G ar3
2

C(I t)= I ~ P I ~ 1 '(P+q)l f f P'qf f
(2m') (27r)

HC(l,r)=, , +
2m. (Sl) m"(Sl)

(21)

where 1 =~1~. Certain features in this result could have
been anticipated from general considerations. From di-
mensional grounds we know that C should go as
(length) . The only length scales available are H ' and
the proper length Sl. Thus any term in C must have the
form (Sl) F [H '/(Sl)] where F is a function to be
determined. But f and f contain only linear power of H
explicitly; therefore we can only have H or H explicitly
in F. So we expect two terms which go as (Sl) and
H (Sl) . The coefficients, of course, can only be deter-
mined by explicit calculation.

In the limit H~O, 5 goes to unity and the first term
goes to zero and we get the correct Hat-space limit. This
may be verified by repeating the calculation using the
fiat-space-time mode functions for the scalar field. (This
has been worked out, e.g., in Ref. 8.)

III. POWER SPECTRUM
OF THE DENSITY PERTURBATIONS

To calculate the power spectrum of the density pertur-
bation ~pi, ~

we require the Fourier transform of the two-
point function in (21). The k dependence of ~pi, ~

can be
decided purely by dimensional grounds. The two terms
in (21), on Fourier transform, will give a (K k /S ) term
and a (k /S )-type term. We are interested in ~pi, (ti, )~

where tz is the time at which the mode labeled by k
crosses the horizon. At r =ti„S(ti, ) cc k; therefore, both
(k /S ) and (k /S ) give terms proportional to ~k~

This is precut sely the scale-inu'ariant spectrum we are after.

(20)

Since the explicit form of fz(t) is known [see Eq. (11)],
the expression (20) can be evaluated in a straightforward
manner. The details of the calculation are given in Ap-
pendix B. The final answer is
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However, it is not possible to take the Fourier trans-
form of (21) in a straightforward manner. Both the terms
in (21) diverge badly near l =0; the Fourier transform is
ultraviolet divergent. This is a physical divergence which
arises in the coincidence limit of the two-point function.
We will adopt a procedure for regularizing this expres-
sion. This procedure, at the present level of our under-
standing of quantum gravity, is completely ad hoc. How-
ever, it leads to very interesting results. In the rest of this
section we will work gut the consequences of this regular-
ization. The motivation for this procedure is discussed in
the next section.

The procedure is the following. We replace the
squared proper length (Sl) by (S I +L } where L is a
length of the order of Planck length. This requirement is
equivalent to the following principle: The Planck length
is the lower bound to all proper length intervals; proper
lengths smaller than the Planck length have no opera-
tional significance.

With this prescription, the correlation function is
modi6ed to

where p stands for k/HS. All the IL dependence of the
right-hand side has been absorbed in P. This expression
gives ~p&(t)~ at some arbitrary instant t. However, we
are interested in its value at the time t = t& when the
mode labeled by k leaves the Hubble horizon. At t =t&,
2n k 'S (tz ) is equal to H '. Or equivalently
kl(HS) =P=2vr. At this time the power spectrum is

a'"~p„(t„)~

=23/Z ~'H'e -""F(L,H),
where

(27)

F(x)= ( I+2mx) 1+ +4m 21 3
(2mx)'i X

(2&)

Our ultimate aim is to compute density perturbation at
the time when the perturbation reenters the Hubble ra-
dius in the postinfiationary era. This is related to k ~pi, ~

at tz by Bardeen's gauge-invariant formalism. " The den-
sity contrast at the time when the mode reenters the
Hubble horizon is related to (27) by

)
H 1 + 3 1

2n. (S l +L ) m. (S l +L )

H 1

2n S [l +(L/S) ]

+ 3 1

~'S' [l2+(L /S)']' (22}

a'"[s,
f

1+w

a3"fn„/

1+w ~ &g

(29)

where t& is the epoch of reentry and io is the ratio of the
pressure to the density and 5&

——pz/po where po is the
average background density. We now use the standard
result that

(p„(t)(2= Jd'l e'"'

We can now take a Fourier transform of this expres-
sion to get the power spectrum

~2 1

2m' S [l +(LlS) ]
and

Po(ti )
I+w(t&)=

Vp
(30)

+ 3 1

m S' [l +(L/S) ]
(23)

1+ui(t&) =—', (31)

Using standard contour integration techniques we can
show that

e ik. ld 3l

(l +L /S )

m2 —kL /S
5 2

+ kL + 1 kL '

(24)S 3 S

and

(25)

r

e'"'d'l m' i L)s S I+aL—
(l2+L 2/S2)3 4

Substituting the value of the above integrals in Eq. (23)
we gei

4I
~g ~

— (2 )3
—nLH F(LH)

P o(ti, )
(32)

~3/2
Po(t) = t '~2

Zm

At the epoch, t = t& we have k l(HS) =2m-, hence,
—1/28 k

4o(ti )=
4

(33)

For evaluating P o we use the expression (4) in the
Bunch-Davies vacuum. It is well known that the regu-
larized value for Po(t) is

k'lp, (t)l'= H
8m , (1+PLH3

P (LH)'

+ 1P2L2H2)

+
3 3 (1+PLH)1

P (LH)

(26)

Substituting in (32) we get

e F(LH)ln
3

" 2~a

(35)

where F(x) is defined in (28). This is our final result. For
comparison, note that the standard analysis would have
given (without any fine-tuning)
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3&1+4~ 2mH

16''2 rr k
3 2mH

' 1/2

(36)

Both (35) and (36) show only a weak k dependence (loga-
rithmic); this is, of course, a desirable feature. What is
most important, however, is that the amplitude of the
fluctuations is damped by an exponential factor in (35).
This can give rise to acceptably low (10 —10 ) values
for the amplitude of the perturbations in our model.
There is no need to resort to any fine tuni-ng [T.his is a
vast improvement over (36) in which the amplitude is
about -70, which is too high. ] This reduction is essen-

8+G
On p

8m=nE
3

(37}

so that

tially due to the damping factor arising from the small
distance cutoff which we have imposed.

We will compute the numerical value of this expression
when all the parameters in the theory are scaled by
Planck length. We take the energy density V0 during the
inflation, to be about (eM~)" where M~ is the Planck
mass (cR/G)'~ =10' GeV, and e is of order unity (in
other words, the inflation is primordial). We will also
take L to be nL& where Lp=(GR/c )' =10 cm is
the Planck length and n is of order unity. With these pa-
rametrizations,

' 1/2

k3/v~5
~

128&2~ ne2 8~ 8mne
1/2

k
ln (38)

This expression can be as low as 10 —10 with e, n

remaining of order unity. For example, for e = 1.1,
n =1.4, we get

k 3~2~5J,
~

=0.6 X 10

For n =1.6, a=1.1, we get 10 and for @=1.3, n =1.2,
we get about 10 . In the "order-unity range" of
1.2—1.4 or so, for both e and n, we get acceptable range
for ~5k ~. Thus keeping the only two auailable parameters
Vo and L of the theory at Planck scales, we can produce
an acceptable density contrast. The crucial effect, of
course, is from the exponential factor. Note that even for
n =e= 1, this factor is exp( —+8m /3) which is about
2X10 4.

In conventional scenarios, primordial inflation with
@=1 can be ruled out. This is because, such an inflation
will produce too much of gravitational-wave background
leading to large anisotropies in (b, T/T}. In our ap-
proach, this problem could be taken care of if we regular-
ize the gravitational-wave amplitude by the same regular-
ization procedure. Recall that in the conventional
analysis, the characteristic fluctuations in the
gravitational-wave modes are given by [see, for example,
Eq. (12) of Ref. 10]

(bh)„= — d xe '"'"(h;.(x, t)h'J(0, t)) .
k'

(2m) 2
(40)

The two-point function (h; (x, t)h'J(0, t)) will vary as
~x~ in the conventional model and will be replaced by
(~x~ +L ) by our procedure. This will reduce hh by the
same exponential cutoff factor exp( nHL), =2X10-
when the waves produced in the inQationary phase leave
the horizon. Note that a wavelength which is about 10
cm today ( =Ho ' today) would have been about
[(To/10' GeV) X 10 cm] = 3 X 10 cm at the end of
primordial inflation [TO=3 K is the present cosmic mi-

crowave background radiation (CMBR) temperature].
Assuming that the inflation is by a factor Z =10 this
wavelength would have been about 3X10 cm at the
early stage of inflation. It is therefore necessary to con-
sider quantum gravitational effects on these wgve modes.
This issue probably requires a more careful analysis,
starting from the first priliciples. We hope to address this
issue in a future puMication.

IV. DRAWBACKS AND GUTLOGK

In this concluding section we will critically examine
the conclusions of this paper and discuss possible objec-
tions.

To begin with there are certain, relatively minor, tech-
nical objections. We did the calculation for a massless
free scalar field in an external de Sitter spacetime. To be
realistic we have to introduce some suitably fiat, effective
potential and take into account effects such as reheating,
finite age of the de Sitter space, etc. While this certainly
needs to be done, we do pot think it will modify the result
in any drastic manner. Several calculations have demon-
strated the fact that the value of (5p/p) is reasonably in-
dependent of these details. Essentially, this value is de-
cided by the Fourier transform of the two-point function
of the scalar field (0~$(x, t)P(y, t)~0) =G(x, y, t) For.
small

~
x—y ~, the behavior is always S ( t }~

x —y ~

Since our procedure only affects the value near Planck
length, the high-k behavior will always pick up a factor
such as exp( nHL) Thus—the cu. toff will reduce the
(5p/p) by a large factor (about 2X 10 ") even in a realis-
tic scenario.

The second issue concerns the way in which the ex-
pression (0~ T o(x+1,t)T o(x, t)~0) is evaluated. , In cal-
culating this quantity we have dropped two divergent
terms. However, this procedure can be fully justified.
The first term which we dropped was proportional to
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(0~ T 0(x+1,t)T 0(x, t) ~0) [see Eq. (15)]. This quantity is
independent of x, l and hence will only produce a 5(k)
contribution on Fourier transforming. In other words, it
does not contribute to inhomogeneities. (In fact we could
have regularized it with our ad hoc procedure and then
dropped it, since k&0.) The second term which we
dropped was infrared divergent [see Appendix B, Eq.
(B14)]. Such infrared divergence of two-point function is
well known in de Sitter spacetime (see, e.g. , Ref. 11).
This term again makes no contribution to the inhomo-
geneities [as demonstrated in Appendix B, Eq. (B12)],
The procedure we used in calculating various integrals in-
volving (e'~ *) is standard; in fact, this is how we calcu-
late the Fourier transform of ~x~

' to be ~k~

The really important issue, in our opinion, is the fol-
lowing. After calculating (0~ T 0T 0~0), we find that its
Fourier transform is ultraviolet divergent. An ad hoc
prescription ~x~ ~~x~ +L, is used to get around this
problem. Our results depend cruciaIIy on this prescrip-
tion; in fact, (5p/p)i, will blow up if L goes to zero. It is
necessary to motivate this procedure.

We justify this procedure on the following counts.
(i) To discuss primordial infiation and length scales of

the order of 10 cm, it is necessary to invoke some
features from quantum gravity. (Note that a scale of
about 1 kpc today would have been about 10 cm at
the beginning of inflation. ) One of the features repeatedly
attributed to quantum gravity is that it could work as a
"universal regulator. "' ' Our procedure incorporates
this feature in a simple manner. As we discussed in Sec.
I, the Fourier transform of (0~T'kT' ~0) must give the
correct, physical, power spectrum. If this diverges it is
necessary to acknowledge this divergence honestly and
try to remedy the situation. We believe we have taken a
step in that direction.

(ii) Some toy models of quantum gravity lend support
to the view that Planck length should be interpreted as
the "zero-point length" in space-time (see Ref. 14). Non-
perturbative quantum gravitational corrections to propa-
gators, computed by summing a partial set of Feynman
diagrams also support this view (see Ref. 12). [It was, in
fact, these considerations which motivated one of us
(T.P.) to suggest this damping mechanism. The results in
Refs. 12 and 14, however deal with space-time intervals,
while we need the proper length on a constant-t surface.
The procedure in this paper, in a way, justifies the earlier
naive calculation in Ref. 5.] These considerations give
additional support for the procedure

~ x( ~
~
x

~
+L .

(iii) To study physics at Planck energies, we need a
model which incorporates quantum effects of gravity.
One of the currently popular ideas is based on strings as
fundamental constituents. String theory removes the

divergences in conventional field theories essentially be-
cause of the nonlocalizability of the strings. This nonlo-
calizability occurs at about Planck length. Since conven-
tional space-time emerges as a nonperturbative conden-
sate in string theory, we may incorporate the nonlocaliza-
bility by adding a "zero-point length" to the proper
length. It is conceivable that when (5pk) is computed
from string theory, modes with proper wavelengths
smaller than Planck length will be damped out because of
the inherent "size" of the region over which strings can-
not be localized.

(iv) We may o6'er as an a posteriori justification for the
ad hoc procedure, the value of the (5p/p) which we have
obtained. Since we get an acceptable value without any
fine-tuning, it is probably worth investigating whether the
prescription contains some, at present unknown, element
of physics.

In this connection, one must make a clear distinction
between the sensitiuity of (5p/p) to the parameters of the
theory and the fine tunin-g of the parameters of the
theory. Our expression for (5p/p) is very sensitive to e
and n, i.e., small changes in n, e can induce large changes
in (5p/p) due to the exponential factor. This, in our
opinion, is acceptable. [In a way, this is also inevitable.
If all parameters are scaled to Planck length, the "natural
value" for (5p/p) will be something like 1, 2m, etc. To
get a number such as 10, it is essential that stronger
functions, such as large powers of e and n or exponen-
tials, need to be invoked. These functions will also be
sensitive. ] What is important is that acceptable (5p/p)
was obtained with e and n very close to unity (for exam-
ple, we did not need e= 5, n =20).

The most important problem which needs to be now
addressed is the computation of gravitational-wave per-
turbations in a rigorous fashion. If the damping mecha-
nism does not work for this case, then the model may not
be viable. This issue is under investigation.

APPENDIX p

We will evaluate (0~$(x)$(y)~1 1 ) and show how we
derive Eq. (19) from Eq. (18). From Eq. (9) we have

P(y, t) =P(y) = g [az fz (t)e'~'"+H. c. ] . (Al)
P

We substitute this in (0~$(x)$(y)~1 1 ). The only
nonzero term will be the one which arises from a~a act-
ing on

~ l~lq). So we get

(0~$(x)P(y)~1&lq) =f (t)f (t')e'~'"+'q "+(P q) .

(A2)

Substituting this in Eq. (18) we get

r o(x, p, q, t)= —,
' fp(t)fq(t) —

~ (p q)fpfq 'e~+ 'q"+(p~q)

(A3)

which is Eq. (19).
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APPENDIX B

C(l, r)= g T;(l, t), (81)

In this we indicate the main steps in the computation
of (21). We begin by expanding (20), getting four terms:

prescription"; i.e., we will introduce inside each integral a
convergence factor exp( —eIpI ). At the end of the calcu-
lation we will take the limit of e~O. This procedure al-
lows us to calculate in a well-defined manner all the
terms, except the first term in I /3. However in I

/3
the

first term does not make any contribution. To see this
note that this term can be written (formally) as

where
2

d pT, (l, /)= f e' 'If (/)I'
(2m )

3 3 2T= P q 'i+!'/Pq
~f I If(2') (2n ) S4 P

3 3

T = — d P d q ei(p+q) /(P 'q}j j yegg
(2~) (2m. ) S

T4(l, /)=T3 ( l, r)—.

(82)

(85)

H' 1 a a d'p e'p
(2m) al al~ p

(813}

g —f peip/ 2~f P f dl/eip/p
Ipl'

=4~f "da"", (814)

But the integral in this expression is independent of l:

~ (OH);//
3y2~2

e'

where p = IpI and O=p/(HS). The terms T2, T3, and T&
can be expressed, more convent. ently as

(86)

1T2= I PI ~,
S

T= — J J1

S2 a

T4(l, r)=T3 ( l, t), —

where

(87)

(88)

(89)

Using the expression for fp(t) from Eq. (11) we can ex-
press fp(t) in a convenient form as

H 1J =—
2S (2m )

3d p ipE —e~p]

al Ipl

1
l d pe

2S (2m } al
(815)

1 1

2S2 (2ir)3
d P ip. / —elpl

3

al. al/' Ipl
(816)

Since Q is independent of l its derivative with respect to
l vanishes. Therefore this term can be dropped. (This
same result is obtained if we evaluate this, formally diver-
gent, quantity with a cutoff and then set the cutoff to
zero. ) Using these facts we can rewrite (810) and (812) as

d3
e 1p'lp ~ 2

~/3 (2 )3 // P

H 1 df P ip/
(2n} p

and

1 1 fd pIpIeip/ elpl

2S' (2~)'

'2

(817)

and

P&p; .g

2S (2m ) I/
(810)

To evaluate T„J,I & we need to compute the following
integrals:

f d3 ip-l —
e~p~(0)= Jdpi' i.l (811)

H f d'p ~~ i /' f d & . ip'/

S' (2~)' P
(812)

Here a = 1, 2, 3, and the repeated index is summed using
the Bat-space metric, e.g. , J J =J&+Jz+J3, etc. In ar-
riving at (810) and (812) we have used the expression (11)
for fp.

To evaluate these expressions we note that p~e'p', etc.,
can be obtained from e' by differentiation with respect
to l . As it stands such procedures are not well defined
because of the oscillatory nature of the integrands. How-
ever, this can be taken care of with a suitable "ie

p dp e 'p(e'p' —e 'p'),= 2~

f d ip / —
elplIPI

I/2' e ep(eiP! e
—iP/)—= 2~

ill I

fd eip. / —elpl
I

(81S)

(819)

&p e 'p(e'p' —e 'p')= 2~
(820)

Of these, we actually have to calculate only A~ &~,
' the

values of A ~0~, A
~ & ~

can be found from A
~ & ~ by

differentiating with respect to e. By straightforward in-
tegration we, therefore, get
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4m
( —&)

so that

B 8'tre
~(o) B

~( —&) (lP+

and

(821)

16m

HS(l +e)
8ie

HS(l +e )

1 1 (l2 —3e )
T$

4m S (l +e)
T2= 1 1 11/ —2l e +3@

4m" S' (l'+e')

T3= 1—
4m S (l +e )"

(824)

(825)

(826)

B Sn(l —3e )
A()) —

2 A( ()
——

Be (l +e) (823)

We now evaluate J,J &, etc. , by differentiating A~, ~
with

respect to I, etc. , and substitute these results into (815)
and (816). This gives

T3(l, t) = T3 ( l, t) —. (827)

This expression, of course, remains 6nite when the a~0
limit is taken. Taking this limit, we get the Snal answer:

4 3 a'
C(l, t)= g T, =, , +, , (828)
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