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Pro«of three-Savor scattering formulas
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We detail the derivation of the two recently published formulas governing three-flavor meson-

baryon scattering in the large-lV, limit.

In this Brief Report, we present the promised deriva-
tion of the two recently published formulas [Eqs. (7) and
(8) of Ref. 1, reproduced as Eqs. (12) and (15) below] that
govern quasielastic meson-baryon scattering in the large-
N, and unbroken SU(3)„„„limits. Our tool is the
three-Aavor Skyrme model, and we shall assume basic
familiarity with this approach. The principal expres-
sions for the s-channel and t-channel partial-wave ampli-
tudes are valid for mesons of arbitrary spin, and in this
regard, they generalize the results of Refs. 3 and 4, which
only apply to the pseudoscalar octet. The case of arbi-
trary spin was previously considered in the context of the
better-known two-Aavor Skyrme model in Ref. 5.

We are interested in the process

P+8~$+B' .

Here, P and g stand for mesons of arbitrary spin S& and

S& and SU(3)„,„„quantum numbers I R&, I&,I&„Y&I and

I R&, I&,I&„Y&I,with R& &
the fiavor representations; I3

and 8' denote either —,
'+ octet or —,

'+ decuplet baryons,
with spin and flavor quantum numbers S~, Rz, etc.,
defined in analogy to the mesons.

In the three-Aavor Skyrmion approach, the —,
'+ octet

and —,
'+ decuplet baryons are viewed as rotating solitons.

To construct them, one must first solve for the nonrotat-
ing solitons. This involves postulating an efFective meson
Lagrangian, and then finding the minimum-energy classi-
cal solutions with winding number (baryon number) uni-
ty. Because of energy considerations, any such
configuration will have a large component in the lowest-
lying meson multiplet, the pseudoscalar octet. If we
think of the pseudoscalar mesons as residing in the ex-
ponent of the usual nonlinear chiral field U, then the soli-

ton Up can ahvays be chosen to lie in the isospin sub-

group:

Up =exp
iF(r)r a 0

0 0 (2)

The soliton profile F(r) is determined by energy minimi-
zation, subject to the boundary conditions [F(0)=n.,
F ( ~ ) =0] appropriate to baryon number one.

Following Ref. 5, we begin by examining the simplified
process

p+ UO~Q+ Uo (3)

K =Ip+ L+Sp =I~+L'+ S~, (4)

with L and L' the initial and final orbital angular momen-
ta. Defining the hybrid quantum numbers K = I&+L and
K '=I&+L', we therefore find for the T matrix

in which the meson scatters, not from a physical baryon,
but rather from a nonrotating soliton. What are the
selection rules governing (3)? These will certainly not be
the familiar ones of the strong interactions, since Up not
only breaks translational invariance, but intertwines an-
gular momentum and isospin indices. [We will find below
that SU(3)s,„„andangular momentum conservation are
regained after the baryon wave functions are folded in. ]
First of all, since Up commutes with hypercharge, the
scattering must vanish unless Y&

= Y&. Furthermore,
thanks to the dot-product structure in the exponent of
Up the- collision will preserve the vector sum K of the
mesons' isospin and total angular momentum:

T(P+ Uo ~g+ Uo) =5r r ((I&I&,~ (L'L,'
~ (S&S&, ~

)T( ~I&I&, ) I3 ~LL, ) ~s&S&, ) )

(L'I~L,'I~, ~K 'K,' ) (K 'S~K,'Sp, ~KK, )

X(KK, ~LI,L,I~, )(KK, ~KS~K,S~, )~ t

where the Y's are reduced matrix elements characteriz-
ing the simple process (3) (they are functions of energy).

In addition to hypercharge and "K-spin" conservation,
the set of possible reduced matrix elements will be con-

strained by the discrete symmetries of the soliton. Thus,
the fact that Uo(r)=Uto( —r) enforces the parity con-
straint
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P4 X( —1)

=POX�(
—1)

on the process (3), with P& ~ the intrinsic meson parity.
Likewise, the identity Uo(r)=cr~UO (r)o serves to rule
out (inter alia) any m.g coupling through such conceiv-
able terms as Vg V X ~. Note that this last result, togeth-
er with hypercharge conservation, gives rise to an "ac-
cidental" isospin-conserving factor 5l l in Eq. (5) in the

important special case that P and f are elements of the
pseudoscalar octet; this factor is essential to verifying
that Eq. (12) below properly reduces to the corresponding
formula given in Refs. 3 and 4 when meson spin is set to
zero.

Although we have arrived at Eq. (5) by assuming that

U„=AUOA ', A CSU(3) .

It is easy to convince oneself that

(6)

the soliton configuration resides exclusively in the pseu-
doscalar octet, we believe that it applies to the higher-
mass multiplets as well. For, in our experience, regard-
less of one's choice of effective Lagrangian, it appears
that the soliton components in the various meson multi-
pliets can always be chosen to commute with F and K.
In the absence of a general proof, however, we shall take
this as a fundamental assumption.

A modest generalizaton of (3) is to consider scattering,
not from the canonically embedded soliton Uo, but rather
from the rotated configuration

T(p+ U„~i'+U„)= g[D ~ ( A)]. . . ,
,
T(p'+ Uo~p'+ Uo)[D 4 (A)], ,

)
tPZ rP

' ttJ' ttlz O'Z 0 ' 0 4'Z

the sum extending over all (I&,I&„Y&) ER& and (I&,I&„Y&)ER&.
Armed with Eqs. (5) and (7), we can finally consider the physically relevant case (1) of meson scattering from a bona

fide —,
'+ octet or —,

'+ decuplet baryon. The required expression is the quantum superposition

T(/+8 —+Q+B')= f dA yR (A)T(P+ U„~g+U„)yR(A) . (8)
SU(3)

Here, gR and yR are the SU(3)„,„„wavefunctions of the initial and final baryons; they are themselves expressible as D
functions:

S~ -Sz, (R~)tyR(A)=( —1) 'V dimRR[D (A)](s~ s~ i) (l~ I~ Y~)

The indicated integral over SU(3) can easily be carried out with the help of the standard identities

(A)]~l, l„r,i, il, l„r,i[D (A)](l, l, r, i, (l,l„r,)(R) (R')

[D (A)j(l l Y ), (l l Y )((RIiI„Yi);(R'I3I3,Y3)IR "yI5Iq, F5)
R yI5 I5 Y5 I6I6 Y6

and

X ((RI2I2z Y'2);(R'I4I4, Y4)IR "yI,I„Y,& (10)

f dA[D""(A)](Iili Yi), (I,I„Y2)[D (A)l(I3I3 F3),(14I4 F4) (dimR) ERR'filiI4fiI, I4 fiYi Y4fi1,13fil2 I3 fiY2Y3

The brackets in (10) are SU(3) Clebsch-Cxordan coefficients.
In order to obtain the most compact expression for the scattering (still paralleling Ref. 5), one projects the initial

(final) meson-baryon system onto a state of definite total s-channel spin and angular momentum
l J,J„S) ( l J,'J,',S') ),

and total SU(3)ii,„«lR, y, I,I„Y',) (lR,'y,'I,'I,', F,') ). With the shorthand notation [K]=2K +1, etc. , we find, after some
algebra, that the sum on magnetic quantum numbers can be accomplished in closed form, yielding for the T-matrix ele-
ment:

T(LL'SS'J,J,'J„J,',R,R,'y, y,'I, I,'I„I,', YY')

R~ R~ R y,I+I'+ YJJ' J J' RR' ll' l l' Y1" ~ 5 1 IF I F+1S S SZ SZ S S S S SZ SZ S S IIgIii Y 8 7

Ry,' R~ R~
I",X+1 S'1 I'P.

KKK'

[I"][K]I (dimRR )(dimRR )[S][S'][K][K'] I
'J

dimR,

(12)
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The sums run over all values consistent with the isocalar factors and 9j symbols. This is Eq. (7) of Ref. l.
The Kronecker 5's which have emerged in (12) express conservation of angular momentum and SU(3)„,„„(notethat

the discrete quantum number y, is not generally conserved). In obtaining (12), we have factored each SU(3) Clebsch-
Gordan coefficient into a product of an SU(2) Clebsch-Gordan coefficient and an SU(3) isoscalar factor,

R1 R2
((R,I,I„Y,);(R2I2I2, Y2)(RYII, Y) = (I,I2I„I2,~II, )

1 1 2 2
(13)

reexpressed all SU(2) Clebsch-Gordan coefficients as 3j symbols, and finally, made use of the definition of the 9j symbol
as a product of 3j symbols:

r

J J J J 1 J2 12 J1 J2 J12 J3 J4 J34 J1 J3

M13 M24 M J3 J4 34 ~ I m2 M12 3 ~4 ~34 m 1 m3 M13
J J J 1

~ 2 ~3m 4M12M34
&24

J2 J4 J24 J12 J34
X (14)m 2 m4 M24 M12 M34 M

Inspired by Donohue's finding of substantial simplification in the helicity amplitudes when isospin is formulated in
the t channel instead of the s channel, we also presented in Ref. 1 the t-channel analog of Eq. (12); namely,

[(dimRI) )(dimRI) )[Jy][Jq]j
' '

dirnR

R~ R~ R,y, R,y', R~ R

IY I', —Y' J,O, J,O

( Y + 1 ) /2+ SI1 +I, +I
~

+K +K +K '+ L +L '

[E]~[K][K ']
KKK'

J~ I K J~

J~ J,
I E J~ I'

S~ L, K '
S~

E
[II'Y}
KKK 'LL'

(15)

Here, J& and J& are defined by J&=L+S&and J&=X.'+S&.
(R,. )

The derivation of Eq. (15) follows exactly the same course as before through Eq. (11),except that D ' ( A) in Eq. (7)
(R~)t

and D ( A) in Eq. (8) are each adjointed with the help of the identity

(R) Iz +Iz+ Y/2+ Y'/2 (R +
)

](II Y),(I'I Y') ](I', —I,—Y'), (I, I,—Y)— (16)

In order to project out total t-channel angular momentum and Aavor, we need a prescription for crossing all the bras as-
sociated with the final meson g into kets, and conversely, all the kets associated with the initial baryon B into bras. Our
conventions are

for SU(2) quantities, and

~RII, Y)~( —1) ' (R *I, I„—Y~—I +Y/2

for SU(3) quantities. The 6j symbols in (15) result from the identity

Ml M2M3

T

( I) 1 2 3 1 2 3+M +M +M 1 2 J3

M1 —M2 m3

T

J2 J3 j, J3
M2 —M3 m1 M3 —M1 m2

J2 J3

m1 m2 m3

J1 J2 J3

J1 J2 J3 (17)
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Finally, we should point out that although the two-Qavor Skyrmion formalism for partial-wave amplitudes described
in Refs. 1 and 5 can be shown to have close parallels to the study of one-boson exchange in the large-X, limit, we are
not aware of any such correspondence in the three-Aavor case.
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