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Forward-backward multiplicity correlations are considered in a pure-birth process. We obtain
analytic formulas for conditional moments of the backward multiplicity and the conditional back-
ward multiplicity distribution at a given forward multiplicity. The conditional mean multiplicities
and the conditional dispersions observed in pp collisions at &s =24, 31, 45, and 63 GeV and in pp
collisions at &s =546 GeV are analyzed. Good agreement between our approach ancf the data al-
lows us to recognize some details specifying the stochastic approach of hadron-hadron collisions.

I. INTRODUCTION

Probability distributions obtained in a pure-birth pro-
cess are sometimes applied to the analysis of observed
multiplicity distributions in hadron-hadron (h -h) col-
lisions. ' In this paper we consider forward-backward
multiplicity correlation in a framework of the pure-birth
process.

The branching equation for a pure-birth (PB) process is
given as

P(0)=Q(z =0)=exp (n&
1+&n &/g

(6a)

P(n)= Q(z)
1 n

nI Bz" z=0

distribution and the generating function.
The probability distribution is given by means of Eq.

(4) as

a P(n, t)=A(n —l)P(n —l, t) —AnP(n, t) .
Bt

It is often investigated under the initial conditions

P(n, t =0)=6„ (2a)

((n ) /g)"
~ (1+&. ) /g)""

xI.'" 1+(n )/g

(n)
1+(n ) /g

(n =1,2, . . . ), (6b)

and

P(n, t =0)=(m )"e ( )/n! . (2b)

where L„"'(x) is the associated Laguerre polynomial.
The jth moment of multiplicity is written as

Analysis of multiplicity moments has shown' that the
probability distribution P (n, t) obtained from Eq. (1) with
the initial condition (2b) is more favorable than that with
the condition (2a).

A probability generating function is defined as

a~
(n(n —1) . (n —j+1))= . Q(z)

Bz'

=1 (j)(n &(&n &/g)'
xL' ')

I ( —0), . (7)

Q(z;t)= g P(n;t)z" .
n=0

That corresponding to Eq. (2b) is given explicitly as

(n )(z —1)
1 —(n )(z —1)/g

where

(n)=(m)(e ' —1), g=(1/(m) —1/(n))

(4)

Hereafter, we abbreviate the variable t in the probability

where ( n ) is the mean multiplicity. From Eq. (7), we ob-
tain

C2=(n ) l(n ) =1 +2 g/+1 (/n ) .

Forward-backward (FB) multiplicity correlations ob-
served in h -h collisions have been analyzed by several au-
thors. In this paper we would examine whether ob-
served FB multiplicity correlations are described in the
framework of the pure-birth process under the condition
(2b).

In Sec. II some formulas of the FB multiplicity correla-
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tion are obtained from the generating function. Asymp-
totic behavior of the conditional mean backward multi-
plicity is given in Sec. III. Analyses of the conditional
means forward multiplicity and the conditional disper-
sion observed in pp collisions at &s =24, 31, 45, and 63
GeV, and that of the conditional mean multiplicity in pp
collisions at &s =546 GeV, are made in Sec. IV. Con-
cluding remarks are presented in the final section.

II, FORMULAS FOR THE I'B
MULTIPLICITY CORRELATION

The following probability distributions are defined to
consider the FB multiplicity correlation. '

(D 1) A two-component probability distribution
p(n i, nz) that n, charged particles are emitted in one (L)
region and nz charged particles are in the other (R) re-
gion. It is normalized as

g p(n„nz)=1 .
n& =0 n2=0

(D2) f„(n, ) is the probability that n, particles are
emitted in the I. region under the condition that n

(n =n, +nz) particles are produced in total. It satisfies

0f„(ni )=1.
(D3) The multiplicity distribution in the R region is

denoted as pz(nz).
(D4) p(ni lnz) is the conditional probability that n,

particles arq emitted in the L, region under the condition
that nz particles are emitted in the R region. The nor-
malization condition is written as

p(n, , nz)=P(n)f„(n, ),
p(n„nz)=pz(nz)p(nilnz) .

(9a)

(9b)

For simplicity, we assume the binomial form for f„(n i ),

f„(n, )=„C„a 'P ' (a+P=l), (10)

where a (P) is the probability that a particle is emitted in
the I. (R) region.

The generating function G(u, u) of the two-component
probability p (n „nz) is defined as

G(u, u)= g g p(ni, nz)u 'U '
n =On =0

1 . 2

1 . cVBp(j, m)= . a~P . G(u, u)j'm' Bu BU u =O, u=0

gj+m

jim ) g j+m (x)
x=0

(12)

gm
pz(m)= G(u, u)

gvm
u =l, u=0

, P Q(x) (13)

= g P(n)(au+Pu)"=Q(au+PU) .
n=0

Then the two-component probability p(n, , nz) and the
multiplicity distribution pz(m) in the R region are ex-
pressed by the use of Q (x):

P p( nil nz) 1 (nz 012 .).
nl =0

Then we can write the relations

The jth conditional moment (ni(ni —1) . (ni —j
+1)) of the L multiplicity at the given R multiplicity
m is defined by the formula

(ni(ni —1) (n, —j+1)) pz(m)= g n, (ni —1) (n, —j+l)p(nilm)pz(m)
nl =0

n, (n, —1) (n, —j+1)p(n„m) .
nl =0

(14)

Then, from Eqs. (11), (13), and (14), we obtain

aj~-
(n (n —1) (n, —j+1)) pz(m)= . G(u, U)

u =1,u =0

gj+m (m +j)!ajP . Q(x) = '
(alP)~pz(m +j ) .

g& j+m m!x=a

Therefore the conditional moment is written by means ofpz(m):

(n, —j+1)) = j (ar'f3)jp, (m+j)/p (m) .(m +j)! (16)

Equation (16) generally holds as long as Eq. (10) is assumed. The conditional dispersion DI (m) when m particles are
observed in the 8 region is defined as
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D (m) =( &
n'

&
—(. )' )'"

The multiplicity distribution in the 8 region is given from Eqs. (4) and (13) as
T

p2(0) =exp P&n &

I+@&n )/g
(18a)

m (I+P&n &/g)
(()

I +P( n)/g I+P&. ) /g
(rn =1,2, . . . ) . (18b)

Equation (18) is obtained from Eq. (6) by the substitution
of P(n ) for (n ). From Eqs. (16) and (18) the condition-
a1 mean I multip1icity is expressed as

1+ n

where x =g/(1+)r)( n ) /g).

III. ASYMPTOTIC BEHAVIOR OF THK CGNDITIE)NAL
MEAN L MULTIPLICITY

Then we get

(n, ) =(m +1) 1+—+O(x2)1+ n / 2
(20)

1.'"(—x)= 1+ +O(1/x )
nr X

(ii) When ~x~ &&1 (g&&1) with finite P(n ), using the
approximation

We examine the asymptotic behavior of ( n, ) in two
cases.

(i) When ~x~ ((1, namely, g((1 or P( )n&&1, the as-
sociated Laguerre polynomial is approximated by

r

we obtain

(n, ) = [2m+1+0(1/x )] .1+ n /
(21)

L"'( —x) =(n + 1) 1+—x +0 (x )n 2
In both asymptotic limits, (n() is expressed as a

linear function of m.

TABLE I. Comparison of the observed multiplicity moments in pp collisions at &s =24, 31, 45, and 63 GeV with our calculations
involving assumptions (i), {ii), {i ), and {ii ), respectively. (n ) aud C, are inputs in our calculations.

Expt
(i)
(ii)
(i')
(ii')

&n &/C,

8.12/1.249
4.06/1.249
6.12/1.438
3.06/1.438

8.12+0.08
8.12
8.12
8.11
8.12

hach2

&s =23.6 GeV
1.249+0.009
1.249
1.249
1.248
1.248

Cch
3

1.840%0.033
1.830
1.809
1.856
1.844

Cch
4

3.08+0.09
3.047
2.945
3.184
3.119

Cch
5

5.645
5.281
6.141
5.903

Expt
(i)
(ii)
(i')
(ii')

9.54/1. 256
4.77/1.256
7.54/1.438
3.77/1.438

9.54+0. 12
9.54
9.54
8.1 1

8.12

&s =30.8 GeV
1.256+0.012
1.255
1.256
1.255
1.255

1.859+0.041
1.857
1.843
1.880
1.870

3.1220. 11
3.130
3.058
3.246
3.195

5.877
5.621
6.298
6.111

Expt
(i)
(ii)
(i')
(ii')

11.01/1.287
5.51/1.287
9.01/1.429
4.51/1.429

11.01+0.17
11.00
11.00
11.00
11.00

&s =45.2 GeV
1.287+0.015
1.286
1.287
1.286
1.286

1.988+0.054
1.975
1.965
1.998
1.993

3.53+0.16
3.483
3.436
3.606
3.577

6.885
6.713
7.343
7.236

Expt
(i)
(ii)
(i')
(ii')

12.70/1.297
6.35/1.297

10.70/1.418
5.35/1.418

12.70+0. 12
12.69
12.69
12.69
12.69

&s =62.8 GeV
1.297+0.010
1.296
1.296
1.295
1.295

2.017+0.034
2.014
2.006
2.033
2.027

3.60+0. 10
3.604
3.567
3.708
3.680

7.242
7.101
7.637
7.529
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IV. ANALYSIS QF EXPERIMENTAL DATA

In this section the observed multiplicity correlations
are analyzed by the use of the formulas mentioned in Sec.
III. In our formulas, three parameters, (n ), g, and a (or
13=1—a) are contained. We take a=0. 5 because of the
FB symmetry in rapidity plot. g is expressed as

/=2(Cz —1 —I /( n ) ) (22)

where Cz = ( n ) I( n ) . The parameters ( n ) and g can
be determined by the use of the experimental data ( n, h )
and (n,'„).

In order to fix (n ) and g, we consider first the follow-
ing two cases

(i) Particles are distributed in the L region or R region
under the binomial law. In this case, formulas derived in
Sec. III are used. Then, we get

(n~„)= g nJP(n}=(nj) (j =1,2) .
j=0

(23)

(ii) Particles are distributed in the L'region or R region
in pairs under the binomial distribution. In other words,
the formulas in Sec. III are used by the substitution of
( n ) l2 for ( n ), and m in these formulas is interpreted as
the number of pairs: ' namely, 2m particles are emitted
in the R region. Then, we get

In this case„P(n) represents the probability that 2(n + 1)
charged particles are emitted in the final states. The
mean multiplicity under the condition that 2m + 1

charged particles are in the R region is expressed as
(n, ) +1 (m =0, 1,2, . . .).

Hereafter, we use the more common, conventional no-
tation (n~ ) = ( n~ )F for the conditional mean multiplici-
ty (n, ) defined in Eq. (19), and Dii=(D~)F for the
conditional dispersion DI (m) defined in Eq. (17). In oth-
er words, ( nil ) represents the conditional mean multipli-
city in the backward region when nF particles are found
in the forward region, and Dz denotes the dispersion of
the backward multiplicity at fixed nF.

Multiplicity moments observed in pp collisions at
&s =24, 31, 45, and 63 GeV at the CERN ISR (Ref. 9)
are compared with our calculation in Table I. As it is
seen, our results with assumptions (i)—(ii ) are in very
good agreement with the experimental data.

Conditional mean multiplicities (nz ) and conditional
dispersions Dz observed in pp collisions at &s =24, 31,
45, and 63 GeV at the ISR (Ref. 9) are compared with
our calculations in Figs. 1, 2, 3, and 4, respectively. The

Js =24 GeV

10-

(n~„)= g (2n)~P(n)=2J(nj) (j =1,2) .
j=0

(24} Cn&&

8-

However, in pp collisions, the leading-particle effect
plays an important role. In our analysis, the parameter
characterizing that effect has value 2 (in accordance, e.g.,
with Ref. 8). It happens very likely that one charged par-
ticle is in the L region, and another charged particie is in
the R region, due to the leading-particle effect. In order
to take this effect into account, we consider the following
two modified cases.

(i') One of charged particles emitted in the final states
is always in the L region, and another charged particle is
in the R region. Other particles are distributed in the L
region or R region under the binomial law. Then, we get

4 ~
re

I~ ~

2-
a}

6-
De

I

10 20

(n,„)= g (n+2)JP(n)=((n+2)~) (j =1,2) . (25)
j=0

In this case, P(n) denotes the probability that n +2
charged particles are emitted in the final states. The
mean multiplicity under the condition that m + 1

charged particles are in the R region is represented as
(ni ) +1 (m =0, 1,2, . . .).

(ii ) One charged particle is always in the L region, and
another charged particle is in the R region. Other parti-
cles are distributed in the L region in pairs under the bi-
nomial distribution. Then, we obtain

(n~h ) = g (2n +2)JP(n)=2~((n +1)~) (j =1,2) .
j=0

(26)

~ ~ ~

~V r

I

10
l

't 5 „20"F

FIG. 1. Analysis of data in pp collisions at &s =24 CxeV. (a)
Conditional mean multiplicity (ns ) and (b) conditional disper-
sion D& are compared with our calculations: dashed line is ob-
tained with assumption (i), solid line with (ii), dotted line with
(i'), and dash-dotted line with (ii'). nF represents the forward
multiplicity.
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FIG. 2. Analysis of data in pp collisions at &s =31 GeV:
otherwise the same as in Fig. 1. FgG. 3. Analysis of data in pp collisions at &s =45 GeV:

otherwise the same as in Fig. 1.

dashed lines in these figures are obtained from assump-
tion (i). These lines cannot explain the data. Solid lines
are obtained from (ii), and are well fitted to the data ex-
cept for the data at &s =24 GeV. Calculated results of
( nii ) and DIi at &s =24 GeV are almost independent of
the multiplicity nF in the forward region, contrary to the
experimental results.

In order to examine the leading-particle effect in pp
collisions, we calculate the conditional mean multiplici-
ties and the conditional dispersions, with assumptions (i )

and (ii ). The dotted lines in Figs. 1—4 are obtained from
assumption (i'). These lines cannot reproduce the data.
Dash-dotted lines in these figures are obtained from (ii'),
and are well fitted to the data at the ISR energy region.
The calculated results with assumption (ii') are better
fitted to the data at +s =24 GeV than those with (ii).
Calculated results with (ii') can explain the data at other
ISR energies comparably as well as those with (ii).

In Fig. 5 the conditional mean multiplicity observed in
pp collisions at &s =546 GeV at the CERN SppS collid-
er' is compared with our calculations involving (i) and
(ii). At this energy our calculation with assumption (ii) is
more preferable than that with assumption (i).

V. CONCLUDING REMARKS

Forward-backward multiplicity correlations are formu-
lated in the framework of the pure-birth process. It is

found that the jth conditional moment of the L multipli-
city when I particles are emitted in the 8 region is in
general expressed by the ratio of the multiplicity distribu-
tions in the R region [compare Eq. (16)].

Multiplicity correlations observed in pp collisions at
ISR energy region, and in Pp collisions at &s =546 GeV
at the SppS collider are well explained by our calculation
involving the formulas of Sec. III with assumption (ii)
that particles produced in h -h collisions are distributed
in the I. or R region in pairs.

As we take the leading-particle effect into account, cal-
culated results of (nii ) and DIi with assumption (ii') can
reproduce the experimental results at lower ISR energy
region much better than those with assumption (ii).

Chou and Yang analyzed a Auctuation of the FB multi-
plicity distribution f„(n i ) at fixed n in pp collisions at
&s =546 GeV (Ref. 5). They suggested that particles are
distributed in the forward or backward region in pairs
with a binomial distribution. However, they did not ana-
lyze the conditional mean multiplicity.

Carruthers and Shih analyzed the observed conditional
mean multiplicity at &s =546 GeV (Ref. 6). They use a
negative-binomial distribution for the multiplicity distri-
bution of full rapidty range. In a negative-binomial dis-
tribution, two parameters ( n ) and k are contained.
They take k =3, which means three clusters are pro-
duced, and from each cluster charged particles are emit-
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~s =63 GeV ~s= 546 GeV
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FIG. 5. Observed conditional mean multiplicity in the pseu-
dorapidity interval ~g~ 4 in pp collisions at &s =546 GeV is
compared with our calculations: dashed line is obtained with
assumption (i) and solid line with (ii).
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FIG. 4. Analysis of data in pp collisions at &s =63 GeV:
otherwise the same as in Fig. 1.

In summary, we cannot distinguish which assumptions
among the four are the most preferable for the descrip-
tion of multiplicity moments in h-h collisions. However,
it is found from our analysis of forward-backward multi-
plicity correlations that assumption (ii) or (ii ) is better
than (i) or (i'); this leads to the conclusion that particles
are distributed in pairs according to the binomial distri-
bution, and the leading-particle efFect is appreciable in
the lower ISR energy region.
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