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Symmetry breaking in three-generation Calabi-Yau manifolds
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The spontaneous breaking of [SU(3)]3 symmetry to SU(3) X SU(2) XU(l) due to nonrenormalizable
interactions in the three-generation Calabi-Yau superstring model is considered. It is seen that
these models lead naturally to intermediate scales Mz —10"GeV with simultaneous formation of N
and v' vacuum expectation values (VEV's). The lowest-lying extrema automatically preserve matter
parity and hence protect the model against too rapid proton decay. Models with matter parity also
protect against electroweak Higgs VEV s from forming at MI. The intermediate mass scale pro-
duces some particles with mass O(MI ). It also implies the existence of others with mass —1 TeV,
which are possibly accessible to low-energy experiments.

I. INTRODUCTION
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Thus K depends on nine, a priori arbitrary complex
parameters: a;, b;,c;. The zero-mass states at the
compactification scale M, are given by the Hodge num-
bers of E. There are h2 &

=9 generations of 27 represen-
tation and h

& &
=6 generations of 27 representation of the

gauge group E&. Here M, is O(Mp) where the Planck
mass Mz is 2.4X 10' GeV. The nonsimply connected na-
ture of CP XCP /Z3 allows for a flux breaking of E6 to
the rank-6 group [SU(3)] at M, (Ref. 4), where

[SU(3)] =SU(3)6XSU(3)L XSU(3)R (1.2)

After flux breaking, the remaining massless matter
fields can be characterized by their [SU(3)] content.

The last several years has seen a large amount of
analysis of the properties of the compactified ten-
dimensional heterotic string. ' While a number of difFicult
problems must be solved before a fundamental under-
standing of the consequences of this theory is obtained,
the phenomenological aspects of models that maintain
four-dimensional %=1 supergravity after compactifica-
tion ' remain a compelling framework for unification of
interactions. In this picture, the ten-dimensional space-
time compactifies to M4XE, where M4 is Minkowski
space and E is a compact six-dimensional Calabi-Yau
manifold. The only known Calabi-Yau manifold with
three generations can be defined as CP X CP /Z3,
which is the manifold with coordinates x;,y;, i=0, 1,2,3
obeying

There remain nine families of leptons L„'( 1,3, 3 ) (from
the nine generations of 27), six families of "mirror" lep-
tons Lt"(1,3, 3) (from the six generations of 27); seven
families of quarks Qt'(3, 3, 1) and four families of "mir-
ror" quarks Q, (3,3, 1); and seven families of antiquarks
(Q')", (3, 1,3) and four families of "mirror" antiquarks
(Q')'„(3, 1,3). The letters (a, l, r)=1,2,3 label the SU(3)
(color, left, right) component. The nonets of particles in
L, Q, Q' are given in terms of standard-model particles in
Appendix A.

The SU(5) content of the 27 of Es is

27=(M,O+Ms )+(H5+Hs )+(v'+N),
where M, p+M5 are the standard-model quarks and lep-
tons, H5 and H5 are the 5 and 5 representations of Higgs
particles needed in supersymmetry (SUSY) unification,
and v' and N are SU(5) singlets. [N is also an O(10) sing-
let.] A phenomenologically acceptable theory requires
that the [SU(3)] symmetry at M, break to the standard
model at some lower intermediate scale MI. This can be
accomplished if the scalar components of both X and v'
grow vacuum expectation values (VEV's). The cubic (re-
normalizable) contributions to the superpotential 8' are
generally I' fiat [see Eq. (A5)] and so it has been suggest-
ed that 2V and v' VEV growth arise from the nonrenor-
malizable quartic or higher contributions to 8'. Qualita-
tive analyses have indicated the possible validity of this
scenario, though a number of difFiculties have been
raised. It is the purpose of this paper to examine this
question in detail and to see under what circumstances
one might expect N and v' VEV's to occur at sufficiently

ge Mr.
A fundamental investigation of this question would re-

quire the detailed calculation of both the renormalizable
and nonrenormalizable Yukawa coupling constants from
the properties of the Calabi- Yau manifold. The full
Calabi-Yau manifold of Eqs. (1.1), however, is quite com-
plicated, depending on 18 real parameters. Thus, obtain-
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ing even the cubic coupling constants for the general
case would be quite difficult, while very symmetric special
cases are probably not phenomenologically viable. In ad-
dition, there are the difficult problems of calculating the
kinetic energy normalizations and the nonrenormalizable
couplings. While some progress has recently been made
on these problems, it is not yet possible to obtain all the
needed Yukawa couplings from first principles.

We will, therefore, take a less fundamental approach in
this paper and investigate what the structure of the Yu-
kawa couplings must be in order to achieve N and v'
VEV's at Mr=10' CxeV without specifying the exact
values of the Yukawa coupling constants. A central idea
in obtaining a phenomenologically acceptable theory is
the idea of matter parity M2 (Refs. 4 and 10). Violation
of matter parity would allow rapid proton decay. We
thus restrict our discussion to Calabi- Yau manifolds that
maintain matter parity. However, it is also necessary
that the spontaneous breaking of [SU(3)] to
SU(3)c XSU(2)1 XU(1)r at MI does not also break M2.
We will see below, from explicit minimization of the
effective potential, that there exist reasonable superpoten-
tials where the M2-preserving minimum does indeed lie
below the M2-violating extrema. These potentials imply
simultaneous VEV growth of N and v' (with
(N), ( v) =MI) so that [SU(3)] breaks directly to the
standard model at MI = 10' GeV. In addition, the
VEV's of the Higgs doublets, (H) and (H'), remain
zero so that SU(2)I XU(1)r breaking does not incorrect-
ly occur at MI. Thus the matter-parity-preserving
Calabi-Yau manifolds can lead naturally to potentials in
general accord with low-energy phenomenology.

In Sec. II we will review the definition of matter parity
and summarize the constraints it produces on the super-
potential and mass matrices. In Sec. III we exhibit the
form of the superpotential and discuss the minimization
of the effective potential leading to the spontaneous
breaking at MI. Section IV is devoted to the analysis of
the size of the N and v' VEV's and masses. One of the
unexpected features of the intermediate-scale scenario is
that even though (N ) is very large (i.e., ~ 10' GeV to
prevent too rapid proton decay" ) the effective potential
always leads to new exotic particles of electroweak mass
which may be accessible to colliders. The phenomenolo-

gy of these particles will be discussed elsewhere. '

TABLE I. C parity of lepton and quark generations (Ref. 4).
The labeling of the generations is that of Ref. 4,
L,+ =(L&+L2)/+2, etc.

C-even states C-odd states

I+ & 3+ & 5& 7& 8+

Q], Q2, Q»Q4+ Q6+

Q] Qz Q3 Q4+ Q6+
Li,L —C —C

Ql+ Q3+ Ql+ Q3+

Ll,L3,L6,L8

Q4 — Q6-
C
4 —y

C6—

L3,L4,L5,L6—C C

Ql —Q3-'Q]- Q3—

C [(Xp Xl X2 X3 ) X (yp y„y2,y3 )]

(Xp X] X3 X2)X(yp, y„y3 y2) (2.3)

The most general Calabi-Yau manifold having C as a
discrete symmetry is then

P, =gx; +a, (xpX]X2+XpX]X3)=0,3

P2 =Xpyp+C]X]yl +C2(X2y2+X3y3)

+ C3 (X2y3 +X3y2 ) =0

P3 =gy +b] (ypy]y2+ypy]y3

(2.4a)

(2.4b)

(2.4c)

This is still a rather general manifold, depending on five
complex parameters. From Appendix A we see that
q, u', d' and I,e', v' are odd under U, while H H&, D,
D', and X are even. The properties under C have been
obtained from the polynomial representation of the gen-
erations in Ref. 4. The C-even and C-odd generations of
leptons and quarks are listed in Table I. In the following
we will adopt the following notation for generation in-
dices:

i =(n, r), n =C even, r =C odd (2.5)

(e.g., from Table I, for the lepton nonet L; one has
n=l+, 3+,5,7,8+ and r =1—,3—,6, 8 —.) Combining
Table I with the above stated properties of the particle
states under U„one obtains the matter parity of each
state. These are listed in Table II. (The mirror states
have the same M2 parity. )

Matter-parity invariance restricts the allowed coupling
structures. The restrictions on the cubic interactions of
Eq. (A5) are

II. MATTER-PARITY CQNSTRAINTS
g1,2, 3 0 g1,2, 3

rst mnr

X' =0=X'
rst m nr mrn rm n

(2.6)

M2=CU, , (2.1)

where U, is an element of SU(3 )c X SU(3 )I X SU(3 )]],
T

Matter parity for the three-generation superstring
theory is defined by ' Equation (2.5) holds for the general Calabi-Yau mani-

TABLE II. M& (matter) parity of particle states. Generation
notation is given in Eq. (2.5), and particle notation is given in
Appendix A.

U, =

(2.2)

and C is a transformation of the Calabi- Yau coordinates

M2-even states

lr, er, Vr

qr, ur ~dr

Dn»n»n
H„,H„'

M&-odd states

In ~en»n
q„,u„', d„'

D„,D„',N„
H„,H,'
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folds Eqs. (2.4). After symmetry breaking at MI, quark
and lepton mass terms will grow in the superpotential of
the form

(q) — (I)Rm„, ™;JqiqJ iJ l J (2.7)

If matter parity is preserved by the symmetry breaking,
one sees from Table II that the only surviving terms will
be

W „,=(M„',~'q„q, +M'~„'q q„)+(M„',"l„l,+M"„'I l„) .

Table II implies that only N„and v'„can grow VEV's.
One could then make a linear transformation in genera-
tion space so that the nonvanishing N VEV lies in one C-
even generation, and the nonvanishing v' VEV lies in one
C-odd generation, and similarly for the mirror genera-
tions.

We consider, therefore, a model containing four gen-
erations: one C-odd generation and one C-even genera-
tion for both particles and mirror particles. The effective
potential then has the form

(2.8) V = V + VF + VD . (3.1)

From Table I we see for the quarks that r =4—,6—and
s =1—,3 —so that M„', ' is a 2X2 matrix. Barring ac-
cidental zeros in M„', ', we expect all the C-odd q„states
therefore to acquire masses. However, M' „' is a 5X2
matrix so that only two combinations of q become mas-
sive while three linear combinations of q remain mass-
less. These latter are the three light generations of low-
energy physics. Similarly all four C-odd leptons l„be-
come heavy, while two C-even combinations become
massive and three C-even combinations of I remain
massless. All the mirror quarks and leptons will grow
masses.

Thus, if matter parity is preserved under gauge symme-
try the three light generations we see at low energies
must come from the C-even states of the Calabi-Yau
manifold and all other quarks and leptons are massive.
How massive these exotic particles are, i.e., how large the
matrices M' ' and M'" are, depends on the dynamical de-
tails of the symmetry breaking at MI, which is discussed
in Sec. III. We will see that, remarkably, even though
MI —10' GeV, the intermediate-scale dynamics general-
ly implies the existence of new exotic light states (i.e. , 1

TeV) which may lead to phenomenological signals at col-
liders.

Here i=1,2 in Eq. (3.2) where now i= 1 is the C-even
state and i =2 is the C-odd state and

x;=N;N;,

E;=N;N;,

z;=H;H; ~,

z =H Hi i i

I lt
cg; =H2;H2;,

I I t6;=H2;H2; .
(3.3)

—m,. and —m, are the running masses (which we as-
sume have turned negative) and are —1 TeV. Note that
[SU(3)] invariance requires there be a common mass in
each multiplet.

The F term is derived from the nonrenormalizable
terms of the superpotential of form (27X27)"/(M, )

"
=(L„'L„)"/M, " . For the neutral fields one has

(3.4a)

The running mass term V arising from supersymmetry
breaking contains the terms —m; L;L; —m; L;L;. Re-
taining only those (neutral) fields that can grow VEV's
one has

V = —gm, (x;+y;+z;+co;)—gm; (x;+y, +z, +co;) .

(3.2)

III. NANO v' VEV GROWTH f; =N;N, +v,'v,'+—H; H; +H2;H2;, (3.4b)

The origin of supersymmetry breaking in superstring
theory remains unclear. For the purposes of this paper
we assume that some mechanism exists at M, leading to
the growth of soft breaking terms there (e.g. , gaugino
masses). These terms then feed into the physical sector
allowing the running mass of one or more multiplets to
turn negative at a scale' p=MI. The nonrenormalizable
terms in the superpotential then allow for the possibility
of gauge symmetry breaking via N and v' VEV growth.
If matter parity is preserved in this symmetry breaking,

+z;+w;+w;) . (3.5)

The D terms are constructed from the SU(3)I X SU(3)z
gauge transformation properties of the fields of Appendix
A. One finds

where k, is the effective coupling constant of the heavy
fields to the light fields. One has for V+ then

2

VF= gA, ;(f;ft)" '(x, +x, +y, +y, +z,
C

g 2 gL
VD = g[x, —x;+y; —y, —

—,'(z; —z;+w; —w,. )] + g( —z, +z, +w; —w;)

gl.
2

+ g(H2;v, ' v,
'

H2; ) + g[x; ——x; —
—,'(y, —y, +z, —z;+w, —w;)]

2

'2 2

+ g(y, —
y,.

—z, +z, +w, —w, ) + g(N, "v,' v,
' N;)— (3.6)
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~)Mc 1 («+gR ~1+( 2gR gL )~2
Ni= +

&24K, ) gR gI. + 4m~

g4
1'

X,M,
(3;7a)

( c)2 ~2Mc 1 ( 2gR gL ) ) + gL +gR—)~2

24~2 gR gL + —,gR

g4
+0'

X,M,
(3.7b)

Here gL R are the SU(3)L R gauge coupling constants.
We note that unless m; and m; are accidentally equal the
D term will make significant contributions to the extrema
equations (and to the mass matrices). There is no reason
to expect the cubic couplings [Eq. (A5)] of the Calabi-
Yau manifold of Eqs. (2.4) to produce equal running
masses for the 27 and 27 multiplets (the Yukawa cou-
pling constants are different). The usual neglect of D
terms thus does not appear justified.

It is straightforward now to write down the extrema
equations for Eqs. (3.1), (3.2), (3.5), and (3.6). We consid-
er here only the case when all VEV's are real, and discuss
in detail n=2 of Eq. (3.4). The extrema equations allow
one to divide the class of solutions into two cases: those
with vanishing Higgs VEV's (i.e., z; =z; =w; =w; =0) and
those where the Higgs VEV's are nonzero. We consider
the former case first. The potential then contains a num-
ber of extrema, some of which both preserve or break
matter parity (including the case with no symmetry
breaking at all where all the VEV's vanish). However,
the lowest-lying extrema is the one where matter parity is
conserved. ' We find

extrema

(X)) M, (X2) M,'+
&24K, &24K,

1 (gL+gR )(~)+~2} ( gL gR )~1~2

2gR Nl. + 4gz
T

0
M,

We note that solutions exist provided

(X) }2&0, (X2)2&0;

(3.9)

(3.10)

IV. VKV AND MASS SIZES

i.e., it is not necessary that both running masses —m;
and —m, be negative, but only that Eq. (3.10) hold.
Since M, -MP=2. 4X10+' GeV, Eq. (3.9) lies much
deeper than the symmetric state V=O. We note also that
the solution of Eq. (3.7) requires that both N, and v2

grow VEV's. Thus [SU(3)] breaks completely to the
standard model SU(3)c XSU(2)I XU(1)r in one step at
the intermediate-mass scale MI.

Returning now to the case where the Higgs VEV's H
and H2 are nonzero, the extrema equations are consider-
ably more complicated. There are, in fact, solutions
where the VEV's (H } and (H2) are large, i.e., O(XM, }

(which would be phenomenologically disastrous). The
case where the Higgs VEV growth preserves matter pari-

ty is discussed in Appendix B, where it is shown that
those extrema lie O(X M, ) highev than Eq. (3.9). Thus,
the matter-parity-preserving solution Eqs. (3.7) is the
lowest-lying extrema for this class of solutions and has
the physically valid property of N and v' VEV's but no
H and H2 VEV's. A more general treatment of the

Higgs VEV's will be given elsewhere.

N2 0

(gL+gR )~)+(—,'&R —
gL }~2

&24k', g' ~L + 4R

g4
+0

X(M,

(3.7c)

(3.7d)

One may analyze the extrema equations for a superpo-
tential of Eq. (3.4) for arbitrary n The le.ading term for
the N

&
and vz VEV's is given by

)2M4n —6
' )/(2n —2)

1 c

2n (2n —1)A, ,
(4.1)

)2M4n —6
' 1/(2n —2)

(v2)'=
2n (2n —1)A,z

(-,'gR —
gL )~(+(gL+gR )~Z

2 2 2 2 i 2+24~2 gR gL+ 4gR

Proton decay data require that" (N, ) ~ 10' GeV.
Table III lists the values of (N() for various vL We see

g4
+0

22M,

N2 =0=v],

(3.7e)

(3.7fl

TABLE III. Value of intermediate-scale VEV (N, ) for
M, =2.4X 10' GeV and supersymmetry-breaking mass X, = 1

TeV for the (27 X 27)" superpotential.

(N, ) (GeV)
A, l

= 10
where

X—:m+m 6=m —m

The potential at this extrema is

(3.8)

2.2x10"
2.0X 10'
4.2x10"
2.0X 10'

2.2 X 10'
2.0 X 10'
1.9 X 10'
6.2 X 10'
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~(i) + ~(2) —c —c(1)+ —c(2) (4.2)

where we chose phases so that (NI ' ) =0= ( v2' '). The
mass matrices for these fields can be directly calculated
by diff'erentiating the potential of Eq. (3.1) [using Eqs.
(3.2), (3.5), and (3.6)]. One may easily verify that the
imaginary parts remain massless at this stage. [Some of
these components are Goldstone bosons, ' and the rest
presumably grow mass at a lower scale from
renormalization-group (RG) corrections and electroweak
breaking. ]

The calculation of the masses for the Hermitian parts
is quite lengthy' and we consider here only the situation
when ( v2) « (N, ) [which, e.g. , by Eq. (4.1) could arise
if A.2))A, , ], and examine the case for N, . In this limit,
the mass matrix is 2X2 coupling X',"and X',". The two
eigenvalues m+ are

n (n —1)A, ,
m+ = —,'(gl +g~ )(N, ) —8 (N, )4"

C

that n =2 is consistent with proton decay data, provided
the coupling constant k& of the heavy fields to the light
fields is somewhat suppressed. Should a discrete symme-
try of the Calabi- Yau manifold make the n =2 term van-
ish, satisfactory values of (N, ) are obtained for a wide
range of n and A,

&
for n )2.

While the nonzero VEV's are very large, one of the re-
markable features of symmetry breaking with
intermediate-mass scales is that the masses of the fields
are not all large. This occurs because M, can cancel out
of some of the mass eigen values, leaving only
supersymmetry-breaking size masses in the eigenvalues.
To calculate the masses of X, and vz, it is convenient to
decompose the fields into their Hermitian and skew-
Hermitian parts:

X =1V''"+i%' ' v'=v'"+iv' 'l i, V2 —&2 l V

termediate scale MI —10' GeV so that [SU(3)] breaks to
the standard model. We have seen here that the original
scenario" of having this arise from the combination of
low-energy supersymmetry breaking and the nonrenor-
malizable interactions can achieve this. Indeed, the de-
tailed calculations with models given above imply that 1V

and v' must simultaneously break at Ml.
Matter parity p'Iays a crucial role in superstring mod-

els"' as it is necessary to prevent the overt type of rapid
proton decay. ' It is thus pleasing to see in the models
considered that the deepest-lying extrema automatically
preserve matter parity. In addition, extrema where the
SU(2) X U(1)-breaking Higgs bosons would grow VEV's at
MI lie significantly higher than the SU(2) X U(1)-
conserving solution. Thus, the models automatically give
rise to the phenomenologically needed results: [SU(3)]
breaks to SU(3 )c X SU(2)I X U(1 ) r at MI —10' GeV
with matter parity conserved and SU(2)I XU(1)r break-
ing not occurring until a lower-mass scale.

One of the most important features of superstring
theory is its prediction of towers of particles with Planck
masses. It is the interactions of these particles which
presumably makes the theory finite. Direct detection of
these particles is of course impossible. However, they
effect the low-energy domain in that it is their interaction
with the light particles that produces the nonrenormaliz-
able interactions. Thus the appearance of the intermedi-
ate scale is a direct consequence of the Planck-mass parti-
cles. Most significant is the fact that even though MI is
scaled by a power of the Planck mass and hence is very
large, the intermediate-scale information produces parti-
cles of mass —1 TeV. One may view these low-mass par-
ticles .as an unexpected low-energy signature of the
Planck-mass domain. The phenomenology of such parti-
cles will be considered in a subsequent paper.
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APPENDIX A
Inserting in Eq. (4.1) for (Ni ) ",we see M, precisely

cancels in these terms yielding

m + ——,(gl +g~ ) ( N) ) — Xi,2 p 2 2 2 4(n 1) 2

2' 1

m =4(n —1)X, .

(4.4a)

(4.4b)

V. CONCLUSIONS

One of the more dificult problems of superstring mod-
els based on Calabi-Yau compactification is to see how
one can achieve VEV growth of both X and v' at the in-

Thus m+ is heavy, scaled by (Ni ), and hence of size MI.
However m is light, scaled by the supersymmetry-
breaking mass (i.e., =electroweak mass). Note also that
the coupling constant A, , also cancels out of the result for
m . The importance of the D term to prevent m+ from
becoming tachyonic is evident above.

"H'E

Lx =la L

L p= C

(A 1)

The doublets in Eq. (Al) are SU(2)~ doublets. The quan-
tity 1—:(v, e) is the usual lepton SU(2)I doublet, H and
H„' are the usual SU(2)I Higgs doublets, and e=ir2 in
SU(2)1 space. The quark and antiquark multiplets are

(A2)

As discussed in Sec. I, the 27 representation of E6 can
be broken into three [SU(3)] nonets of particles
L„(1,3, 3), Qi'(3, 3, 1), and (Q'),"(3,1,3). We write
l =(A, , 3), r =(p, 3) where (A, ,p)=1,2 run over the
(SU(2)L,SU(2)z ) indices [and a=1,2,3 is the SU(3)c in-
dex]. The lepton multiplet has the components

eC
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(Q')~ =
C

Qg

da
(Qc)3 — Dc (A3)

&3 =A, 'detQ'+A, detQ'+A, detL —
A, TrQLQ'

and from Eqs. (Al) —(A3) one has

(A4)

+&; k( H; Hi, —Nk H; v.
'1—2„„+H',e'lg)

where q'"—:(u', d') is the quark SU(2)L doublet. D' and
H form the H3 of S.U(5), while D,' and Hi form the H~.
All fields are left-handed chiral multiplets.

The most general [SU(3)] -invariant cubic superpoten-
tial depends on four Yukawa coupling constants
X', X2, X', X4:

quarks. ) A similar expression holds for the cubic contri-
bution from the mirror generations. (Here i =1, . . . , 6
for leptons and i =1, . . . , 4 for quarks. ) The Yukawa
coupling constants A, ; k, etc. , are in principle determin-
able from the Calabi-Yau manifold specified in Eqs. (1.1),
though in practice they have only been determined for
symmetric cases and only up to normalization factors.

APPENDIX 8

We treat here the calculation of the extrema when the
Higgs fields H, and H2; are allowed to grow VEV's. We
assume matter parity is preserved so that only Higgs field
in the C-even state (i= 1) can grow VEV's, and will con-
sider the case n=2. It is convenient to introduce x;+x;,
y; y;, etc. [in the notation of Eq. (3.3)]. Minimizing Eqs.
(3.1), (3.2), (3.5), and (3.6) with respect to x, +xi, zi+z„
w, +w, (which enters only in the mass and F terms)
yields

Z1

X1 Z1 W1
(81)

(A5)

where q& =—e&„q", etc. , and the i,j,k indices run over gen-
erations. (i =1, . . . , 9 for leptons and i =1, . . . , 7 for

This shows that the H and H2 VEV's become as large as
the N, VEV. Minimizing with respect to the other vari-
ables yields the solutions

1
X1 =

2 4 2 1/2 26A, , (y, +4y, +1)'/ 3 g +g y, —1 2A. (y2+4y2+1)'/

21M,
Z 1

6A, ,

21M,
W1 =

6A, 1

1 y2
—1 22M, I+-

(y +4y +1)' y —1 2A, (y"+4y +1)'

1 1 gL
—2g~ y2

—1 22M 1+-
(y +4y +1)' 3 g +g y —1 2A, (y +2y +1)'

(82)

22M, 1y2=
2A2 ( 4+4 2+1)1/2 y2=y2y2

2 y2 y2

where

2b. /X +(1+35 /X )'2=
1 —b, 1/X,

2 + 2 g2g2
4&6gL, g11 2 2 +0 . b,

g~ g~ 22M,

(83a)

(83b)

X,M, (y, +6y, +l)(y2+1)
Vextreme

g ~2 ( 4+4 2+ 1 )3/2
1 V1 71

61X1M, y1 —1+-
8 g2 (y4+4y', +1)'/'

+{Xi ~1 y 1 X2 ~2y2) (84)

Since y1) 0, there are acceptable solutions, only if 61 & 0,
b, i & Xi or 51 &0, —b. , & Xi. Inserting Eqs. {82)and {83)
into Vgives

One may verify that Eq. (84) lies a distance
O(61X,M, ;X,M, ) higher than Eq. (3.9) and hence lies
significantly above the physically acceptable extrema with
vanishing H, H2 VEV's.
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