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Renormalization of the flavor-changing neutral currents
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The flavor-changing amplitudes yq;q, and Zq;q, - are computed for off-shell particles and without
approximations. The calculations are done in the 't Hooft —Feynman gauge, and the on-shell renor-
malization scheme is used. The Ward-Slavnov-Taylor identities are derived and used to check the
results. Putting the external quarks on shell, we found that the corresponding flavor-changing S-
matrix elements are not renormalized, i.e., the sum of all counterterms vanishes. Using the renor-
malization scheme proposed by Sirlin the meaning of this cancellation is clarified.

I. INTRODUCTION

In the Glashow-Weinberg-Salam (GWS) model' of the
electroweak interactions, there is no tree-level coupling of
the neutral gauge bosons y and Z to quarks of different
Aavor. Such a Aavor-changing neutral current (FCNC)
arises at the one-loop level, as a result of quark mixing in
the charged weak current. The same happens with the
gluon-quark vertex in QCD, for which the results can be
easily obtained from the analogous photon vertex, includ-
ing the appropriate coupling constant and the generators
of SU(3)„~„. Since the mixing occurs through a unitary
matrix, there is a suppression [Glashow-Iliopoulos-
Maiani (GIM) mechanism ], roughly of the order
b, m /M~, where b, m stands for the largest difFerence of
squared masses of the quarks inside the loop. Hence,
processes whose amplitudes originate from such a
suppressed FCNC will'be very rare and a good test of the
GWS model.

In the early days of the GWS model, constraints for
the mass of the charmed quark, ' and for the mixing an-
gle in the Kobayashi-Maskawa (KM) matrix, were de-
rived from the rare decays of K mesons, and from K -K
mixing. Nowadays, with the advent of B-meson physics,
a similar procedure is possible for the mass, and the mix-
ing angles, of the top quark. Radiative B-meson decays,
from a b ~sy transition, can be used to put an upper
limit on the mass of the top quark, and it has been sug-
gested that a strong QCD enhancement, in the B—+K*y
decay, will put this achievement within reach of the
forthcoming experiments. Analogous analysis ' of the
rare decays of E, X+, and A are more affected by long-
distance effects, and thus they are less reliable. Exploring
FCNC's is also possible in e+e physics, where rare Z
decays can give a top-mass-dependent rate (e.g. , Z~bs ),
or even a top production mechanism below the tt thresh-
old (e.g., Ztc) (Ref. 11). Also, FCNC's are of some
importance to CP violation. An older result' predicts a
strong contribution, from "penguin diagrams,

" to the
CP-violating parameter e'/e, and, more recently, it has
been suggested' to look for a CP-violating asymmetry in
the flavor-changing (FC) Z decays mentioned above.
Still, it is the fact that all these processes are so strongly
suppressed that makes the search worthwhile, in the

sense that any abnormally high rate would definitely sig-
nal some new physics beyond the GWS model or, at least,
a heavy fourth generation.

The Aavor-changing vertex Zq;q, where i and j are
two different Aavor indices, has been computed, in Refs. 8
and 9, for on-shell external quarks, with the approxima-
tion of neglecting external masses and momenta, and, in
Refs. 3 and 4, with the further approximation of keeping
only the leading terms in (m/M~), where m is the mass
of the heaviest internal quark. For off-shell external
quarks, exact calculations have been performed for the
yq, q~ vertex by Deshpande, Eilam, and Nazerimon-
fared, ' ' and for the gq; q vertex by Chia. ' However,
an exact calculation, at one-loop order, for the FC Zq;q
vertex, for both on- and off-shell external quarks, is still
missing, and this is our aim. We also repeat and confirm
Deshpande and Eliam results' for the yq; q vertex. This
is done in Secs. II A and II B, where the results are given
in such a way that they are easily available to future
users. . The Green's functions involved are of one-loop or-
der, and so some attention must be paid to their renor-
malization, i.e., a renormalization scheme has to be
chosen, the counterterms calculated, and their contribu-
tions added to the one-loop diagrams. We adopt the on-
shell renormalization scheme and derive the counter-
terms according to the procedure outlined by Ross and
Taylor, ' and later developed by Sakakibara. ' The
Ward-Slavnov-Taylor (WST) identities for the vertices,
which were also missing in the literature, are derived in
Sec. III. They are used as a check on our results, and
also as an alternative and equivalent way to derive the
counterterms. '"'

In Sec. IIC we concentrate on the on-shell result.
When calculating the complete vertex, with the external
quarks on shell, it is seen that the ultraviolet divergences
cancel away, so that the sum of the one-loop diagrams is
finite. In principle, one still has to go through the renor-
malization procedure, and consider the contribution from
the counterterms, although now we know that this must
be a finite correction. Remarkably, the contribution from
the counterterms adds up to zero. This is a result which
has been quoted several times, ' but it has never been
properly justified. We show that it follows directly from
the structure of the counterterms, and does not depend
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on their values, as fixed by the renormalization condi-
tions. Moreover, it stems from a relation between the
counterterms, that can be obtained from the WST identi-
ties, i.e. , that is due to the symmetries of the theory.

In fact, the cancellation of the on-shell counterterms is
a consequence of the absence of the tree-level couplings
in the Lagrangian. This implication is not explicit, in the
sense that it is not a trivial result, in. the renormalization
prescription which has been adopted. This is so, because
of the introduction of field renormalization constants, so
that the divergences of all one-particle-irreducible (1PI)
Green's functions are absorbed. In the more "natural"
prescription, proposed by Sirlin, where only the param-
eters are renormalized, and only the physical quantities
(S-matrix elements) are guaranteed to be finite, the result
follows immediately. In order to further illustrate this
observation, we conclude with a few comments on a simi-
lar situation, that occurs with the counterterms for the
Z —+Hy decay.

The calculations are performed, using the notation and
the metric of Ref. 22. We have chosen to work in the
't Hooft —Feynman gauge. Throughout the paper, for
up-type quarks in the vertex, the matrix element V.;
represents U-& UI; and, for down-type quarks, it represents
U.I UI;, where U is the KM matrix. Summation over the
internal quark index I is assumed. So, for the FC vertices
and due to the unitarity of the matrix U, terms where V.,
multiplies factors which are independent of the internal
quark mass, are zero and will be dropped. Dimensional
regularization is used to deal with divergent diagrams,
and we use the notation

(=2/e —y+ln4m. —ln(Mii /p)

where @=4—d, and d stands for the dimension of
momentum space, y is the Euler constant and p is some
arbitrary mass.

II. FLAVOR-CHANGING yq;qJ AND Zq;qj VERTICES

At one-loop order, in the 't Hooft —Feynman gauge and
using the on-shell renormalization scheme, the renormal-
ized FC yq;q and Zq;q vertices, i:-&,„„,can be written
in the form

:-".
, „„=C [( A, jp "+A 2/k" + A 3 kp" + A 4

kk'" + A 5 k'y "P

+ a,y + W, k'y + ~,p.ky + a,p'y

with

+ A,oy"p+ A „y"k+A, 2p" + A, 3k")yl

+( A„~B„)y~], (2)

8 2
C= '

g /cosg~ (3)

A. Flavor-changing quark self-energy

At one-loop order, the unrenormalized FC quark self-
energy —i X, shown in Fig. 2 receives contributions from
loops with charged gauge bosons [diagram 2(a)] and from
loops with charged unphysical scalars P

—[diagram 2(b)].
If q denotes the momentum of the external lines, m& the
mass of the internal quark, and m; and m the masses of
the external quarks, the resu1t is

X.; =(g /16m)V;[Dfyl +. Egy~+F(m;y~+m yl )],
(4)

where D, E, and F are the following functions of q;
D =[1+(m&/Mii, ) /2] f dx (1—x)ln5

where the upper line corresponds to the yq;q. vertex and
the lower one to the Zq;q vertex. The incoming momen-
ta corresponding to the neutral gauge boson y or Z and
the quarks q, and q are denoted by k, p, and—p'= —(k +p), respectively. The coefficients A„and B„
(r =1, . . . , 13) are scalar functions of the momenta of
the external particles and they depend on the masses and
quantum numbers of the external and internal quarks.
They are listed in Table I, where contributions from the
proper vertex, iA", „„[d.iagrams 1(a) and 1(b), in Fig. 1],
and from the corrections to the external legs, i QI'; „„[dia-
grams l(c), 1(d), 1(e), and 1(f)], as well as from unrenor-
malized diagrams and counterterms, are kept separate.
The final result for the renormalized vertex, i "";„„,is ob-
tained adding all contributions, as shown in Fig. 1.
External particles are kept off shell, and no approxima-
tions are made.

~:-& I {k p. -p')~'ren

(b)

—g(mi/Mii, ) /4,
E = ,'(m;mJ /Mii )f d—x(1—x)ln5,

0

F =
—,'(ml/Mii ) g —f dx ln5

(5a)

(5b)

(5c)

with

5=1—x+(mi/Mii, ) x —(q /Miv)x(1 —x) . (6)

(c) (e)

FIG. 1. The one-1oop FC effective vertex.

The divergent terms in D arid F, proportional to the
squared mass of the internal quark, are due to the cou-
pling of the charged unphysical scalar, in diagram 2(b).
Those stemming from diagram 2(a), which only contrib-
utes to the function D, cancel upon summation over the
internal quark flavor.
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(12a)

(a) (b)

where no summation over j is implied and where uk is a
solution of the Dirac equation with mass mk. Notice
that Eq. (12a) is only imposed upon the nonabsorptive
parts of the self-energy, i.e., only the real parts of D, E,
and F will appear in the renormalization condition.
From Eq. (12a), and using the property (10), it is easy to
obtain

FIG. 2. The one-loop FC quark self-energy.
&,;„„(g)u;(g)~~ =0 . (12b)

The structure of the counterterm i cr ., for the FC quark
self-energy can be obtained with the prescription
developed by Sakakibara. ' In the free Lagrangian, the
bare left-handed (Lk =y I C&k ) and right-handed (Rk )

quark fields are scaled by a matrix in flavor space, which
deviates from the identity at order g: i.e.,

Lk =QZIk, L; =(5k;+ ~5Zlk; )L;,
R p

=V Z~k, R; = ( 5k; + —,
' 5Z~I, ; )R, ,

(7a)

(7b)

where L; and R; are the renormalized fields. In terms of
the renormalized quantities, the Lagrangian acquires an
extra term @-o..;4; given y

~,; =ai;gyl. +b,;4yg+cpyl. +di, yg,
with

Separating the terms in yL from those in y~, in Eqs.
(12a) and (12b), we obtain the necessary 24 conditions,
which give

a., =C'a,

with

b; =C'b, c,; =C'c, and d., =C'd, (13)

a = [m D(m ) —m;D(m; )+m;m~[E(m~ ) E(m; )—]

+(m; +m )[F(m )
—F(m; )]I/(m —m; ), (14a)

b = Im. E(m. )
—m; E(m; )+m;m. [D(m )

—D(m; )]

+2m;m. [F(mj )—F(m,. )]I /(mj —m; ),
c =m [m; [D(m; ) —D(mj )]+m;m~[E(m; ) E(m~ )]-

—2m; F(m )+(m; +m~ )F(m; ) I /(mj —m; ),
(14c)

a,; =
—,'(5ZL +5ZLt ), ,

bj; =
—,'(5Z~+5Z~ ),;. ,

(9a)

(9b)

d=m;Im. [D(m; ) —D(mj )]+m;m [E(m; ) —E.(mj )]

+2m F(m, ) —(m; +m )F(mj )]/(mj —m; ),
ci; = —

—,'(m 5ZI +m;5Zz~ ), ,

d, ,
= —

—,'(m, 5ZL +m, 5Z~ ), .

Notice that cr .
, obeys the relation

(9c)

(9d) and

2C=g V

(14d)

0 f Ot (10)

imposed by the Hermiticity of the Lagrangian.
Since we are only interested in the FC counterterm

(i&j), we have omitted the mass renormalization con-
stant 5mk =mk —mk. Still, we have to determine all the
constants in Eqs. (9), which, for three generations,
amount to 24 real numbers. Notice that Eq. (8) is the
most general structure we could have built for the coun-
terterm o. .;, i.e., in this case, the prescription given by
Eqs. (7) has not given us any additional information.
This will not be so when we derive the counterterm for
the proper vertex.

The renormalized FC quark self-energy —i X;„„is ob-
tained adding the counterterm to the unrenormalized
self-energy: i.e.,

l Xji ren l Xji + l &ji

Using these results in Eq. (11) it is easy to see that the re-
normalized self-energy is independent of g, and thus
6nite.

B. Flavor-changing erat'ective vertex

Once we have derived the renormalized off-diagonal
self-energy, it is straightforward to obtain the contribu-
tion to the effective vertex from the corrections to the
external legs i Q"; „„shown in Fig. 1. We write

l Qj i reII l Qji + l Mj (16)

where the erst and the second terms on the right-hand
side of Eq. (16) correspond to the unrenormalized dia-
grams and the counterterms, respectively. Then, from
Figs. 1(c) and l(d) we have

The values of the constants a.;, b;, c;, and d; of Eq. (8)
are now determined by the renormalization conditions
imposed upon iX,.„„.In the —on-shell renormalization
these conditions are

p+mj0";„„=X [—XJ, (p')+ o,.(p )],
p mj

while Figs. 1(e) and 1(f) give

(17a)
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gf'+ m;
Q)";„„=[ &—

J; (p')+ Iri; (p') ]p' —m;
(17b)

i% Lt j,(k,p, -p')

with

e
g /cos8 $v T1 Q S111 8II

p—Qsin 8

J

r P
(a)

6=x I+(mi/Mw) (1 xi )

+(k /MII )(x2 —x, )(1+x2—x, )

—(p /MII, )xi(1 —x, )

+(p k/M )2(l —x )(x —x ) (19a)

&'=1—xi+(mi/MII, ) x,

+(k /MII )(x2 —x, )(1+x'—x, )

—(p /MII )x, (1—x, )

+(p k/MII, )2(1—x, )(x2 —x, ) . (19b)

The renormalized proper vertex iAj';„„ is obtained
adding the contribution from the counterterm iA,".;. The
latter is generated following the same prescription as for
the self-energy counterterm, i.e., in the y- or Z-quark in-
teraction terms in the Lagrangian, we perform a scaling
of the bare fields and of the coupling constants. For the
FC counterterm, at one-loop order, there are no contri-
butions from the y or Z field renormalization, nor from
the renormalization of the couplings, and the result is

where Q denotes the charge, in units of e) 0, and T& is
the third component of the weak 'isospin of the quarks in
the external legs. Replacing the values of X.; and o. ;, in
Eqs. (17), these can be written in the general form of Eq.
(2). The corresponding A's and B's are in Table I.

In Fig. 3, we show the one-loop diagrams that contrib-
ute to the proper vertex iA".;. The diagrams where the
neutral gauge boson couples to the internal quark are
infinite: the divergent terms from the one with the W bo-
son inside the loop cancel upon summation over the
internal quark Aavor, whereas those from the diagram
with the charged unphysical scalar P* are proportional
to m& and do not cancel. Again, the final result can be
written in the form given by Eq. (2), and the coefficients
for graphs 3(a), 3(b), and 3(c) are in Table I. The diver-
gent term is of the form y"yL, and it will appear in the
coefficient A6. We denote by QII, the W charge, which is
+1 or —1 for up or down quarks, respectively, in the
external legs, and by Q'= Q —

QII and TI = —
QII /2 the

quantum numbers of the internal quarks. The denomina-
tors 5 and 6' are

FIG. 3. The one-loop FC proper vertex.

i'"= —i e—g /cos8
Q o /l

TI —Q sin 8

+
Q s111 8pr

X b,.; y"y~ (20)

where a; and b,. are the same as in the self-energy coun-
terterm and are given in Eqs. (9a) and (9b). Notice that
the prescription adopted is now determinant in defining
the structure of i A.~;, which only includes terms in y"yL
and in y"yII, among all the terms in the general form [cf.
Eq. (2)]. Furthermore, their values are fixed, in Eqs. (14a)
and (14b), without requiring any additional renormaliza-
tion condition. The results are listed in Table I, and one
can see that the divergent term in A 6 is absorbed and a
finite correction remains.

The relation between the counterterm for the proper
vertex and the counterterm for the self-energy can be ob-
tained explicitly, using the WST identities which are de-
rived in Sec. III [cf. Eqs. (33) and (37)]. Since these iden-
tities are valid, order by order, both for the renormalized
and for the unrenormalized Green's functions, they lead
to a relationship for the counterterms, which is

k A, (k,p, —p')= —eQ[o. ;.(P') —o;(p')]

for the yq;q vertex, and

k AJ;(k,p, —p')

=iMzA, (k,p, —p').

(21a)

(g/cos8II )[o—~;(p'')(Q sin 8II —T1yL )

—( Q sin 8', —TI y II )o J; (p )] (21b)

for the Zq;q vertex. In the previous equation, i A, is the
counterterm for the Pzq, q FC proper ve.rte. x i AJ, , where

Pz is the neutral unphysical scalar.
Notice that the terms proportional to T, and T&, in
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i~j; =(gT3 jMw )(dj;y jt c~;yl —), (22)

which is in agreement with the result one could have ob-
tained with the scaling prescription, applied to the ap-
propriate term in the Lagrangian.

It is interesting to point out that, the WST identities
can be used to determine directly the value of the proper
vertex counterterm, in Eq. (20), without computing the
self-energy. In fact, the renormalization conditions, Eqs.
(12a) and (12b), applied to Eqs. (33) and (37), give

and

Av
v'~ji ren~on shell (23a)

both Eqs. (33) and (37), are finite and have no counter-
terms. Hence, they do not contribute to either Eqs. (21a)
or (21b). These terms in the WST identities are gauge
dependent; for instance, they do not arise in a nonlinear

R& gauge, ' nor in the unitary gauge. The fact that
they have no infiuence in deriving Eqs. (21), signals the
gauge independence of the structure of the proper vertex
counterterm. Using, on the right-hand side of Eqs. (21),
the most general structure for the self-energy counter-
term io; [cf. Eq. (8)), it is simple to obtain the result
given by Eq. (20). At the same time one derives the fol-
lowing expression for the Pzq, qj proper vertex counter-
term:

our subsequent discussion, k has not been fixed). Since
we are working in the on-shell renormalization scheme,
the contributions from the renormalized corrections to
the external legs, i Q", „„,are zero, as can be seen from the
renormalization conditions, given in Eqs. (12a) and (12b).
Thus, only diagrams (a) and (b) in Fig. 1, i.e., the renor-
malized proper vertex, contribute to the on-shell effective
vertex.

However, let us examine in more detail all the dia-
grams in Fig. 1, considering on-shell external quarks. Us-
ing Eq. (24), with the appropriate entries from Table I, it
is easy to see that the contribution of the unrenormalized
diagrams is finite, and thus, the same must happen to the
contribution from the counterterms. Moreover, this con-
tribution, given by graphs (b)+(d)+(f), adds up to zero,
which means that the effective vertex, for on-shell quarks,
or the corresponding S-matrix element, is not renormal-
ized, i.e., it can be obtained simply by summing up the
one-loop diagrams, (a), (c), and (e), in Fig. l. In the con-
text of the on-shell renormalization scheme, this is a rath-
er surprising result and, despite the fact that it has been
stated several times, ' we have not yet seen a full discus-
sion of its origin. This is the purpose of this section.

For off-shell quarks, the counterterms for the correc-
tions to the external legs, shown in graphs 1(d) and l(f),
write

hX
kvAjirenIon shell l~"~ZAji renIon shell ~ (23b)

P+mj it('+m;
oP, =X ' cr;(P)+o;(P') X . (26)

for the photon and Z vertices, respectively, and from
these equations one can obtain the value of the counter-
terms iA, ,- and ik;.

C. On-shell effective vertex

+(a;~P; )y jl ],
with

al =m;(82 —84)+mj 34+ A ll+ A, 3
—

—,'m A3

'm (8 8 —2—8—)., —
12 2 i l 3 5

a2= ,'m;m 8, +——,'(m . —m; )A3+ —,'mj. A, 2+ —,'m; A,

+—,'m, -B.,2+m, . 39+m,.B&o+ 36+k A7

+ —,'(mj —m; —k )As,

(24)

(25a)

(25b)

a3= [—m;(8, 83 —285 ) mA3 —2A —l, —A—,2]/2,
(25c)

and similar equations for P; (i = 1,2,3), but interchanging
the A's and B's. These can be read from Table I, where
the momenta should be set equal to their on-shell values
(for the sake of generality, and since this will not affect

For on-shell quarks, the general form of i:-".
,
- „„reduces

to a sum of terms proportional to k"yL ~, p"yL ~, and

y yL z. Alternatively, using Gordon s identities, we
write

=ji„ lo shell=C[(alk"+a2y +a3lO" k~)yl.

If we replace o j; by its expression given in Eq. (8) and
add the contribution of the counterterm for the proper
vertex, shown in graph 1(b) and given by Eq. (20), we ob-
tain an expression in terms of the constants a;, b;, e;,
and d-, For on-shell quarks, this is easily seen to be zero,
independently of the explicit values of those constants,
which are fixed by the renormalization conditions.
Hence, the cancellation of the counterterms follows
directly from their structure, irrespective of the renor-
malization scheme which has been chosen, and can be
traced back to the relation given in Eqs. (21), which was
derived from the WST identities. This means that such a
result arises from the symmetry of the Lagrangian, and,
in this sense, it is a fundamental result in the renormal-
ization of the theory.

In the renormalization scheme that we are using, addi-
tional counterterms are generated by renormalizing the
fields, with the sole purpose of absorbing the divergences
in all 1PI Green's functions. Such is the origin of the i A, ,
counterterm that renormalizes the FC proper vertex, and
of the counterterm io. ; for the FC self-energy. Field re-
normalization is required for a formal proof of the renor-
malizability, based on the analysis of the generating func-
tional of the 1PI Green's functions (e.g. , Ref. 22). How-
ever, it can be ignored, if we are simply interested in the
calculation of S-matrix elements. In fact, the Green's
functions may remain divergent, provided that the S-
matrix elements, which are the physically meaningful
predictions of a field theory, are finite. Such a renormal-
ization program has been proposed by Sirlin. There,
the counterterms are generated only from the renormal-
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ization of the parameters, which is necessary for the con-
sistency of the theory, and there is no renormalization of
the fields. So, if the diagonalization of the mass matrices,
both in the quark sector and in the neutral-gauge-boson
sector, is achieved rotating the fields through bare mixing
angles, oft'-diagonal counterterms do not arise, and the
counterterm Lagrangian has the same structure as the
tree-level one. In particular, counterterms for both the
FC quark self-energies and the FC vertices do not exist,
so that the result

iT q &;(-p', k, p)

~ s e ee ~ ~ o+

l-p'
Vl

~ ~ ~ ~ ~ ~ %as

~P.. =( A& +Q& )ji ren~on shell '' ji ji 'on shell

which has been derived previously, now follows trivially.
Notice that, in this scheme, the corrections to the

external legs, must be introduced, when calculating the
S-matrix element. They follow from the Lehmann-
Symanzik-Zimmermann (LSZ) reduction (e.g. , Ref. 22),
and are avoided in the standard on-shell picture because
they are canceled by the counterterms from the field re-
normalization.

It is interesting to remark that an analogous result has
been found by one of us ' when calculating the Z —+Hy
decay. Again it was checked that, on shell, the counter-
term for the proper vertex cancels with the counterterms
for the corrections to the external legs. Proceeding, for
the yZ mixing, in a similar way as for the quark mixing,
it is trivial to justify the cancellation using Sirlin s
scheme.

III. WARD-SLAVNOV- TAYLOR IDENTITIES

The WST identities for the yq;q and Zq;q proper ver-

tices, i A'; (k,p, —p'), are derived from the invariance of
the appropriate Green's functions, under a Becchi-
Rouet-Stora (BRS) transformation, or, equivalently, un-

der the action of the Slavnov-Taylor (ST) operator s. For
completeness and to fix our notation, we write in the Ap-

iT'q j;(p;k, -p')

Uj
1i P

Tp

~ ~ ~ ~ ~ ~ y ~ 1 a k 4 4 a k ~ ~ ~ ~ \W$P t ~ ~

FIG. 4. The Green's functions T, and T& up to one-loop or-

der.

s (0~ Tc~ (x)uj (y)u;(z) ~0 ) =0, (28)

and using the ST transformation of the fields, we obtain,
in momentum space, the relation

pendix the ST transformation of the neutral gauge fields
A„and Z„of the corresponding Faddeev-Popov (FP)
ghost fields c~ and cz and of the up- (u-) and down- (d-)
quark fields. All Green's functions will be written as
functions of incoming momenta and, for clearness, we
derive the WST identities for up quarks in the vertices.

Let us start with the identity for the yq;qj vertex.
From

k~G„,(k)S,„(p')i A„,S,, (p) = —(gl 2)b, ,(k)[ U,„iT, «S«(p) S,, (p')i Tu. U—„,]+eQ„A,(k)[iT»,S„(p) S,, (p')iT'„—, ]

+ (g Icos8 ~ )b., ( k) [iT3J/S/j (p) SJ&(p')i T3[j ]— (29)

where 6, and G„are the propagators for cz and for the photon, respectively, and S k is the two-point Green's func-
tion for up quarks. The composite operators iT, and iT', are shown in Fig. 4, up to one-loop order, whereas to the same
order iT2J.,- =iTz~, = —6j,. and T3j' T3j' 0. Noting that

k G„(k)= k„b,,(k)+ieb, ,—(k)(F„F„'), — (30)

where the composite operators F and F' are of one-loop order, and, replacing Eq. (30) into Eq. (29), we obtain the WST
identity

ik AJ, = —e (F F„'. )AJ'., +i [Skj (p—')] '[(g/&2) Uk„T,„;—eQ„T2k; —(g lcos8~) T3k; ]

i [(gIV2)T',
~
—„U„&—eQ„Tz t

—(g. /cos8~)T3j/]. [S,,(p)] (31)

iA)'; =i AJ, +ieQ„y"5~;,

one obtains, at one-loop order, for the FC vertex,

(32)

At the tree level this equation gives the trivial result
p'=p +k and, writing the one-loop vertex as

ik A,', =ieQ„[X,;(p') &J,(p)]-
—i(g/V'2)[(gf' —m-) U&„iT,„;

i T'„„U~,(P —m—, )],
where,

(33)
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X.;(P)= —i [S; (p')] '+(P —m;)5j;. (34)

is the one-loop quark self-energy, and T& and T& are to be
replaced by their one-loop results shown in Fig. 4. If one
notices that there are no one-loop counterterms for these
composite operators, Eq. (21a) follows immediately from
the expression above.

The procedure for down-type quarks is analogous and
the final result can be obtained replacing U by its conju-
gate U (and vice versa) and c by the negatively charged

conjugate c (and vice versa).
The WST identity for the Zq, q. vertex is derived along

similar steps as for the photon vertex. The result is
somehow less simple, due to the longitudinal polarization
of the Z boson, which, in the HF gauge, is embodied in
the neutral unphysical scalar Pz. We start with the
BRS in variance of the Green's function
(0~?c,(x)uj(y)u;(z)~0), and obtain, in momentum space,
an equation similar to Eq. (29): namely,

k "GI„(k)$)k(P )i AkISI((P) = —(g /v'2)h, (k)[ Uj„iT,„IS(;(p) S(—(p')iT', I„U„,]

+eg„h, (k)[i T2j&S&; (p) Sjl(p—')i Tz&, ]

g u ) g( )[ 3jlSlj (p) SjJ(p ) T3tj ]+MzG (k)S z (p )Ak&$&, (p)

One should remember that now b,, and G„are the propagators for cz and the Z boson, respectively, G is the pz prop-
agator, T&~; and T&J.; are composite operators similar to the ones defined before, but with the incoming c„replaced by
cz, also, to oneloop order, T2, =T'z, =0, iT&, = —5, (g sin 8~ —T3yL), and iT',, = —5,,(g sin 8 —?
finaliy i A,; is the pzuju; proper vertex. Again, we derive an auxiliary WST identity: starting with the BRS invari-
ance of the Green's function (0~ TZ„(x)c,(y) ~0), we obtain

k "G„(k)= k„h, (—k) ig cos—8~6,,(k)(F„F„') iMzE—„(—k), (36)

where the composite operators, F„and F' are similar to the ones in Eq. (30), and again of one-loop order, and E„ is the
Zgz mixing two-point Green s function. Replacing this result in Eq. (35), we obtain the WST identity. At one-loop or-
der, for the FC vertex, it is

ik A;j. =i( glc os8~)[X j(p')( Qsin 8~ —T37 L )
—(Q sin 8~—T3] g)X j(p')]

i (gl—&2)[(P'—m )Uj„iT,„, iT', „U„—,.(P —m,. )] MzAJ, , — (37)

where A'; is the one-loop proper Z vertex

iAj, =iA ;+i(glc.os8~)y (Q sin 8~—T3) L)5j;,
and, similarly,

i A', =iAJ;+g(m; I.M~)T3y'~5j;

(38)

(39)

is the one-loop proper Pz vertex. Again, T, and T', are
not renormalized; thus, Eq. (21b) follows easily.

Adopting the on-shell renormalization scheme, it is
clear that, for on-shell quarks, the first two terms on the
right-hand side of Eq. (37) vanish. However the last
term, proportional to Mz is not zero and therefore one
obtains Eq. (23b). Similarly, Eq. (23a) follows from Eq.
(33).

IV. CONCLUSION

We have computed the amplitude for the FC Zq, q and
yq;q effective vertices, for off-shell external particles, in
the HF gauge. The calculations were done to one-loop
order, with no approximations, and the renormalization
was achieved, using the on-shell scheme to generate and
determine the counterterms. Notice that such FC coun-
terterms do indeed exist, in this scheme, both for the
proper vertex, and for the self-energy, although there are
no corresponding terms in the tree-level Lagrangian, they
stem from the renormalization of the quark fields. The
results can be read from Table I, using Eq. (2) which has

the same form as the analogous equation for the photon
vertex, in Ref. 14. Hence, it is straightforward to check
this result against our own: every contribution to the
effective photon vertex in Ref. 14 was confirmed [notice
the misprints in Eqs. (23) and (35a) and in the entry 86 of
Table I of Ref. 14] either analytically or numerically (this
was the case for the proper vertex counterterm). This
partially checks our result for the Z vertex, since the cal-
culation was done simultaneously for both vertices,
whenever this was possible, keeping track of the different
couplings for the y and the Z. Moreover, setting the
external quarks on shell and performing the appropriate
approximations, the previous results for the Z vertex ' '

were recovered. A check has also been made of the exact
WST identities [Eqs. (33) and (37)], which we have de-
rived; in particular, it seemed necessary to test the
gauge-dependent terms that arise in the off-shell identity.
This was done numerically, using the results that we had
obtained for the vertices, and the WST identity was
proved to be correct.

Putting the external particles on shell, it was found
that the counterterms cancel, i.e., that the S-matrix ele-
ment is not renormalized. This result can be derived us-

ing the WST identity which relates the counterterms for
the proper vertex and for the self-energy, which means
that it originates from some feature of the tree-level La-
grangian. However, no explanation can be provided
within the context of the on-shell renormalization
scheme, where the relevant objects are the 1PI Green's
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functions.
Using the renormalization scheme proposed by Sir-

lin, the result follows trivially. In this scheme, only the
parameters are renormalized, so that the redundant coun-
terterms, which came from field renormalization, are el-
iminated. In this way, it is immediate to see that those S
matrix elements which do not have a tree-level contribu-
tion will not be renormalized, whereas in the usual on-
shell scheme, this behavior only appears after the calcula-
tion, and with no obvious connection to the absence of
the tree-level coupling.
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APPENDIX

The Slavnov operator has the following action on the
fields:

sA„=B„c~+ie (c W„—cW„),
sZ„=a„c,—ig cose (ctv„—cWt ),
sc~ =B„A",
scz =()pZ" —Mzgz ~

su = i —(g/t/2) UcyLd +ieQ„c„u
+i (g /cos8@ )cz( Q„sin 8+ —T3„yI )u,

su = i (—g/&2)dyttc U +ieQ„uc„

+i (g/cos0+, )u(Q„sin 8~ —T3„ytt )cz,
sd = i (g—/&2) U c y I u +ieQdc„d

+i (g/cos8n, )cz(Qdsin 0~—T3d 7'L )d,

sd = i (g /—&2)u ytt cU+ieQddc„

+i (g/cosOtt )d(Q„sin Og T3dy—tt kz .

8'„ is the field that annihilates a 8'+.
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