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We investigate electromagnetic and axial-vector currents and the corresponding form factors as
well as meson-nucleon form factors within the framework of a nonlinear chiral Lagrangian con-
structed by Jain, Johnson, Meissner, Park, and Schechter in Phys. Rev. D 37, 3252 (1988). We em-
ploy an unambiguous procedure to construct the electroweak current densities. This brings in a pa-
rameter, related to the co—+m y decay rate, which does not appear in the strong-interaction part of
the Lagrangian. This results in a fairly accurate description of the nucleons properties. The effects
of coupling to a two-flavor "q meson" are shown to be small.

I. INTRODUCTION

It is now believed that QCD at low energies can be well
approximated by an effective chiral Lagrangian made
from multiplets of the low-lying meson fields. Baryons
are solitonic excitations (Skyrmions) of this Lagrangian.
Experiment and the quark model combine to tell us that
these low-lying mesons are the pseudoscalar and vector
multiplets.

In a previous publication (which we will refer to as I in
what follows), ' we addressed the question of how to con-
struct such a pseudoscalar-vector chiral Lagrangian and
determine its parameters. We argued that at present it
seems most reasonable to fix the values of the parameters
from experiment. Special care has to be taken about the
"anomalous" terms proportiqnal to the Levi-Civita ten-
sor e„&. These terms embody all unnatural-parity
meson interactions such as, e.g., co~pm, EX~3m,
For the appropriate literature on these terms we refer the
reader to the reviews. ' The model we discuss here starts
out from a general chiral-symmetric Lagrangian of pseu-
doscalars and vectors first written down in Ref. 4. There
appear three unknown strong-interaction constants, two
of which we could determine from the strong-interaction
processes co~3tr, (b~pm, and $~3rr. The third param-
eter could be estimated from the calculation of some soli-
ton properties. Whereas in I we approximately calculat-
ed a few nucleon properties, in this paper we will investi-
gate many more properties and include a discussion of
collective quantization. Then a careful investigation of
the electromagnetic and weak currents will be performed.
In I we noted that when one couples electromagnetism to
the strong-interaction Lagrangian, a new term which
does not contribute to the strong interactions arises after

suitable "gauging. " Its strength parameter (d, ) was left
unspecified in I. Here, we fix it from the well-known
cu~ym. decay rate. A notable feature in this paper is
that all electromagnetic and weak currents are calculated
in a uniform way from "first principles. " This leads to
some new contributions (proportional to d~) which were
not previously discussed in the literature.

Since our model is chiral invariant, it obeys exact par-
tial conservation of axial-vector current (PCAC), quite in
contrast to the "complete" model and other effective La-
grangians making use of the Bardeen subtracted Wess-
Zumino action. ' Further insight into the nucleon struc-
ture comes from the calculation of the strong meson-
nucleon vertices, which are related to the ad hoc strong
form factors in one-boson-exchange models of the
nucleon-nucleon interaction.

Another issue addressed in I was the influence of an
isosinglet-pseudoscalar particle, the g on the properties
of the nucleon. We argued that this g will contribute to
the moment of inertia of the spinning soliton. However,
from the minor influence of the g on the NX force we
conjectured that these effects ought to be small. We will
justify this assumption here in presenting a full-scale cal-
culation including the g. Its most prominent effect is to
lower the nucleon mass, but by far too little to resolve the
main problem of our approach: namely, that with the
pion decay constant fixed at its empirical value, the nu-
cleon mass comes out several hundreds of MeV too high.

Our paper is organized as follows. Section II contains
a brief review of the strong-interaction Lagrangian. In
Sec. III we first briefly review the calculation of the clas-
sical soliton performed in great detail in I. Then, the soli-
ton is quantized to give states of good spin and isospin
(throughout, we will restrict ourselves to the two-Aavor
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sector). A careful study of the electromagnetic, axial-
vector, and strong properties of the nucleon follows, with
detailed numerical results. The outlook is surveyed in
Sec. IV. Appendices A and B are technical, while in Ap-
pendix C we briefly discuss the induced pseudoscalar
form factor. In Appendix D we calculate the parity-
violating weak pion-nucleon vertex following the ap-
proach outlined in Ref. 9.

II. LAGRANGIAN OF PSEUDOSCALARS
AND VECTORS

U=exp (2.1)

with f =93 MeV the weak pion decay constant. Note
that in the present paper we are making some minor
changes in notation compared to I. These will be summa-
rized at the end of this section. We will also use

Here, we will present the strong-interaction
pseudoscalar-vector Lagrangian constructed in Ref. 1. It
encodes the two pertinent features of strong-interaction
physics at low energy: namely, the spontaneous break-
down of chiral symmetry and the experimental fact that
the pseudoscalars and vectors are the lowest-lying multi-
plets.

In our model the pseudoscalar 0 nonet P transforms
nonlinearly under chiral U(3) X U(3). It is most con-
venient to use the linearly transforming matrix

constant, g =g=6 (Ref. 10). The constant k is given

by

gp~~f ~4 2 2

2m
(2.6)

a=(B„U)U 'dx"=dU U

the action I"3 reads

r, =r„,(v)

(2.7)

+ Tr ic] 2 ALo.

+2cz(d AL a AL —AL ad Ac+ ALa AL a)

and follows to be k =2.20 for the empirical values of m,f, and g . For simplicity, we will use, however, the
value k =2, so that we recover the KSRF formula. " No-
tice that the KSRF relation is reasonably well satisfied by
experiment, but not required in the present model. The
nonanomalous action (2.5) was first written down by
Kaymakcalan and Schechter and is equivalent to the
hidden-symmetry approach of Bando, Kugo, and
Yamawaki. ' This equivalence has been demonstrated by
various authors. '

The third piece in (2.4), the anomalous action I 3, con-
tains terms proportional to the antisymmetric Levi-Civita
tensor e„&. It is most convenient to use the notation of
differential forms. Introducing the left-handed nonet
one-form

g=&U =exp
2f

(2.2)

+2+2c3 2i AL —a+ —AL a AL a1

The vector-meson nonet matrix p„ is related to the auxili-
ary "gauge fields" A„and A„by

A „'=gp„g'+ —'ga„g',

+ —'C'a„

(2.3a)

(2.3b)

X,= —
—,
' Tr[F„(p )F""(p)], (2.5)

with g a coupling constant to be determined later. Obvi-
ously, 3„and 3„are related by the constraint
A „'= v A „"'v'+(i yg ) va„v'.

The action built from the pseudoscalars and vectors
contains three pieces:

r= f(X,+X )d x+r, =r„,+r, . Q.4)

The nonanomalous piece I „, consists of (for a more
thorough discussion the reader should consult I)

(2.8)

where c, , c2, and c3 are constants whose values will be
specified later on. I ii,z(U) is the conventional Wess-
Zumino term of pseudoscalars. ' Actually, (2.8) is
equivalent to the anomalous action obtained within the
"hidden-symmetry approach" by Fujiwara et al. ' when
one imposes charge-conjugation invariance as discussed
in I and also in Ref. 16. All calculations include a
chiral-symmetry-breaking mass term Xsa= —,'f m Tr(U
+ U —2).

In I, we have obtained values for two of the three un-
known constants appearing in (2.8) from purely strong-
interaction processes: namely, the decays /~pm,
P~3n, and co~3m In particular. , expanding the action
(2.8), one finds vector-vector-pseudoscalar and vector-
(pseudoscalar) coupling terms, which have the following
coupling strengths:

%2=m Tr(p~")+2 g„if Tr[p"(d'„g+B„gg)]'
+ —,'f (k +1)Tr(B„gB"g )

,'f (k —1)Tr(g B„—g—'8"g )
gvvy=

2&Zic,

f h=—2&2i
1c

&2c, c3

g 2

I 3= f [ gi,i,&Tr(dpdpg)+—ih Tr(pdgdgdg)]+

(2.9)

with F& (p)=d„p dp„ig[p„—,p ] w—here we have
identified the gauge-coupling g with the p~~ coupling

For the empirical value of the coP-mixing angle,
~e~ =0.053+0.030, one finds
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gvvy=+2f~gvvy=+I 9 ~

(2.10)
g( r ) =exp[i ~ rF( r) /2], (3.1b)

p= —,'coI+,'~ p, P-= "ri"I+r m. , (2.1 1)

where "g" is an isosinglet pseudoscalar which does not
have any ss component. We do not expect the g to play
an important a role as the m, p, and co as discussed in
some detail in I. Introducing the one-forms

p =Ak+dQ'=0+
(2.12)

h =2&2f h =+0.4 .

Within the experimental uncertainties, we can have
gzz&=+1. 3, . . . , +2.2 and h =+0.15, . . . , +0.7, with
the correlation ~gvv&

—h
~
=1.5. It should be noted that

one parameter has been left unspecified; however, from
our estimate of nucleon properties in I we argued that
a=0. 12c3/c2=1. We will come back to this point when
we discuss the static and dynamical properties of the nu-
cleon which will be presented in the following sections.

Here, we will not explore the full U(3) content of the
action (2.4), but rather restrict ourselves to the study of
nonstrange baryons. Therefore, we will only consider the
chiral U(2) XU(2) symmetry of the anomalous action.
The pseudoscalar- and vector-meson nonets read

pia(, r) = e.ikaP k G(r)
gr

(3.1c)

co"(r)=co(r)Ã (3.1d)

into the Lagrangian yields the hedgehog mass MH as a
functional of F, G, and co. The corresponding equations
of motion obtained by minimizing MH are solved togeth-
er with proper boundary conditions to ensure baryon
number 8=1 and finiteness of the soliton energy. In I
the hedgehog mass MH, the topological baryon charge
radius rH, and the axial-vector constant g~ as approxi-
mately estimated from the pion tail were presented. We
use the standard input parameters f =93 MeV,
m = 138 MeV, m =m „=m =770 MeV and for simpli-
city we assume the KSRF relation which gives
g =5.8545. For the central values of parameters
(h, gvv&)=+(0. 4, 1.9) and (I/&2g)c3/c2=~=0 (1), we
find MH=1. 410 (1.463) GeV, rH=0. 42 (0.48) fm, and
g„=0.78 (0.93). For a more detailed discussion of these
quantities we refer the reader to Secs. VII and VIII of I.

As a second step the projection onto states of good spin
and isospin is carried out. Following the spirit of Adkins,
Nappi, and Witten and as outlined in Ref. 6 we perform
the time-dependent SU(2) rotation:

IIFl i/2f II I
m' &

(p', A,', )=&2(p", A,",),
y

ii

v'2 '

the U(2) reduction of I 3 can be most easily accomplished.
In the two-flavor limit, the result is given in (5.6) of I.
Here we note that a term (2ic2/f )di) code@ was omitted
there.

Finally, we summarize the changes in notation between
this paper and I:

U(r, t)=A(t)U(r)A (t),

g(r, t)= A(t)g(r)At(t),

v p (r, t)= —A (t)v" [Kgi(r)+rK r(2(r)]A (t),2

r p'(r, t ) = A (t)r p'(r)i A (t),

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(ppq„)'= —(p„q")",
G(r)'= —G(r)",

(2.13) co(r, t)= KXr,(r)
(3.2e)

co(r)'= —co(r )" .

The symbols in this paper are denoted by II.

III. BARYON PROPERTIES
IN A SOLITON MODEL APPROACH

where U(r) and p'(r) are defined in (3.1) and 2K is the
angular frequency of the spinning soliton i v"K = A A.
The U(2) reduction of the anomalous action gives rise to
the coupling of an isosinglet pseudoscalar q meson.
From parity and isospin the Ansatz for g is uniquely
determined to be

i)(r)=K rii(r) . (3.3)
A. Classical solutions and semiclassical quantization

Following the Skyrme-Witten point of view, baryons
emerge as solitons in a purely mesonic theory. As a first
step in this approach the static soliton configuration
which minimizes the energy must be found. For the
model Lagrangian discussed in Sec. II this procedure has
been explained in detail in I. Here we want to briefly
summarize this calculation without citing the lengthy for-
mulas. Inserting the following hedgehog Ansatze

L(t)= jd r J = —MH+OTr(AA ), (3.4)

where 0 is the moment of inertia:

0=4+j A[F, G, co;$„$2,g, g]dr,
0

(3.5)

This and (3.2) lead to the time-dependent Lagrange func-
tion

U(r)=exp[i~ rF(r)], (3.1a) with
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A[F, G, co;g„gz, P, r)]

', rz—fz sin F+8sin ——8sin —g, +3/, +2/, (z+gz ——p' + zp +m p
I'

+ [3r gP+2r (I(z+r g'z +46 (g&+g&gz —
2$&

—hz+1)+2(G +26+2)gz]+
3g

T

2/i
3

PF'sin F

r2+ (P'sinF(6 —g&+2 —2cosF)+tI)IF'[2+(g, —6 —2)cosF+2sin F—2$, —2gz]+sinF(g', —6')})
L

2r3
PF'[( 6 —g, )( 1 —cosF ) + (1—cosF ) —Gg, ]+A„, (3.5a)

A„=—
,', (r —rI' +2r) +r m „g )— g'(6+1 —cosF) (g, +gz)— 1 1

[rI'(g, +gz)sin F+2r)F'(6+/, )sinF]2

9g

( rl' I ( 6 +g, )( 6 + 1 —cosF ) + ( g, +gz )[( 1 —cosE) —26 cosF] I

+rI[g&(G + 1 cosF)+—G'(1 —cosF —g, )+F'sinF(6+/, )])

+ [ri(/co' roP') —rl'rtpco] —
,', m r——(cosF)r)z,] 2 2 (3.5b)

3 = 3
M~ =M~+, M~ —M~ =

89 ' 20
(3.6)

In Table I we summarize the results for the moment of
inertia, the nucleon mass, and the NA mass splitting to-
gether with the moment-of-inertia contribution 0 which
was used in I to estimate the total moment of inertia. We

where the use of y, = —3h /2v'2, y z
——g z~&/g, and

3 ~y 2 turns out to be most convenient. A canonical
g-mass term proportional to m „has been added to
achieve the physical g mass m „=m „+m . Extremizing
the moment of inertia 6 gives the coupled equations of
motion for the excitations g&, gz, P, and r). Those are
given in Appendix A as are the pertinent boundary con-
ditions.

The nucleon mass Mz and the nucleon-b, (1232) mass
splitting follow to be

see that for the central values of h and gvv4, together with
v=+1.0 the results are very similar to the complete
model. Furthermore, for all allowed values of h and g~~&
and keeping ~= 1, the nucleon mass comes out too high,
with the NA splitting somewhat too large for the central
values. To lower the nucleon mass, one could think of
using a large and negative ~. This, however, also leads to
a further increase in the NA splitting, as can be read off
from Table I. In particular, for the central values of h
and gzz&, a value of ~= —1.0 already leads to 0-0.3 fm,
which is considerably too small. All the numbers given
in Table I do not take into account the contribution from
the g [i.e., we have set g(r) =0 throughout]. The discus-
sion of the g effects is relegated to a later section, here let
us just mention that the g tends to decrease the NA mass
splitting by less than 10 MeV (for the central values).
This effect goes in the proper direction, but it is certainly

TABLE I. Baryon masses, the moment of inertia 0 of the spinning soliton, the contribution from the
classical pion field 0„, as well as the nucleon mass and the %h mass splitting are given. For compar-
ison, we also show the results of the complete model. The standard input parameters g=5.8545,

f =93 MeV, m =138 MeV, and m =m =m =770 MeV are used. The g profile is set to zero
throughout.

(h, gvvp, ~)

(+0.7, +2.2,0.0)
(+0.4, + 1.9,0.0)
(+0.4, +1.9, +1.0)
( —0. 15, + 1.3,0.0)
(+0.4, +1.9, —1.0)
(+0.4, + 1.9, —20.0)
(+0.4, + 1.9, —200.0)

0 (fm)

0.407
0.626
0.731
1.425
0.314
0.322
0.383

0 {fm)

0.309
0.534
0.717
1.372
0.137
0.213
0.296

M„(GeV)

1.395
1.528
1.564
1.864
1 ~ 522
1.305
1.331

M~ —M& (GeV)

0.728
0.473
0.405
0.208
0.942
0.918
0.773

Complete model 0.677 0.692 1.575 0.437
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too small to resolve the problem of the too high nucleon
mass and NA splitting. To end this section, let us men-
tion that one could entertain more complicated methods
of quantization. Lee and Zahed' have proposed a con-
straint Dirac quantization of ~pm solitons to properly
treat the rotational zero modes. Their results, however,
indicate only a very mild change in the moment of inertia
so that we can consider the method used here as justified.
The constraint Dirac quantization of the Lagrangian
presented should be investigated in the future but goes
beyond the scope of the present paper.

B. Electromagnetic properties of nucleons

The computation of the electromagnetic current is of
practical interest in measuring how accurately the
present model describes the real world and also of con-
ceptual interest in the sense that its isoscalar part
("baryon number" current) is usually computed in a
different way from the other currents. Here we shall
adopt an approach in which all currents are computed in
the same way.

It is immediately clear that what is being experimental-
ly measured when we talk about nucleon electromagnetic
properties is the coefficient J„ofthe photon field A" in
the term of the effective action

f d 4~JEM~ P (3.7)

Note that J„ is an effective current which may also de-
pend on A„. In order to find the term (3.7) we must
"gauge" the total action I (U, A) of this model with the
electromagnetic field A„ in such a way that I ( U, A, A )

is gauge invariant. A convenient generalization of this
procedure (discussed in detail in Sec. III of I) is to add a
full chiral multiplet of external gauge fields 8„' and re-
quire that the gauged object I ( U, A, B) yield the well-
known non-Abelian chiral anomaly. Using the equation
of motion of the external fields it is easy to see that the
candidate currents

61 (U, A, B)
5Bg'

(3.8)

actually correspond to the zero-B-field limit of formally
conserved quantities in our model.

For orientation let us discuss the application of (3.8) to
the iso scalar current in the ordinary Skyrme model
(where the vector-meson fields A are deleted). Then the
gauged Wess-Zumino term gives a contribution which is
identical to the "topological" current originally found by
Skyrme. ' There is the amusing feature that this term
does not (in the two-fiavor case) contribute to the strong-
interaction Lagrangian which is used to study the soliton.
A similar phenomenon exists in the present model where
the vector mesons are present. The appropriate part of
I ( U, A, B) due to the e terms is given in (3.11) of I. The
last term of this expression,

d, fT.[F(B,)(a,~, ~,a, )+F(B,)(P,O, —Py, )],
(3.9)

where F(B&)=dBL—ihB&, a,. and /3 are left- and right-
handed one-forms defined in I and d

&
is a new constant,

obviously makes no contribution to the strong-interaction
part of the Lagrangian. However, it does contribute to
the electromagnetic current. We can get a handle on its
value by calculating the electromagnetic decay widths for
co +n —y in this model (equivalently p ~sr y or some
other similar mode could be used). We find the decay
width to be

2

~0~) —
lq l3

12~

2

R (3.10)

where q is the daughter pion momentum in the ~ rest
frame and the relevant real linear combination of cou-
pling constants is

d1R=2
h

LC2
(3.11)

Notice that the ratio d, /h, h being a coupling constant
for the external field multiplet, is what actually enters
into our discussion. From the observed width we find

IR I

=o.o38+o.oo2 . (3.12)

JB0
4 f 2 4&2icF sin F+ i F's 2F

2~ r gr

4; 2c3 F
C2+ [3sin F—(1+G —cosF) ]

3g g r

4iC2
[F'G ( 6+2) +2G'sinF ]

3g r

8 di d+ [ —sinF(G +1)+—,'sin2F] .
3r h dr

(3.13)

The first term in (3.13) represents the entire contribution
from the gauged nonanomalous part of the action while
the second term (identical to the original Skyrme result)
comes from the gauged Wess-Zumino action. The
remaining terms are found from (3.11) in I. The above
expression can be simplified by using the classical equa-
tion of motion for co(r). This yields

1 d F sin2F 2r
r 2 dr 4~2 8~2 3g

+ 4R sinF(cosF —6 —1) (3.14)

Of course, the sign of R is undetermined by the above ar-
gument.

As an example we now briefly discuss the computation
of the time component of the two-flavor baryon-number
current. We specialize the external fields to the photon
field by setting hBI z ~eQA, where the charge matrix Q
has the decomposition Q=I3+B/2= —,'r3+ p( ) ) To ap-

ply (3.8) we functionally differentiate the gauged action
with respect to the "isoscalar photon:" QA ~A /3.
Then, also substituting in the classical values of the fields

(3.1), we find the current density Jo:
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where R is defined in (3.11). It is interesting that, using
(3.12), there are no undetermined parameters in (3.14).
We easily verify the normalization condition

4m r drJ =10

using the boundary conditions on I', 6, and co. Note that
only the first term in (3.14) contributes at the boundaries.
An important point evident from (3.14) is that the rela-
tive sign of m and F is measureable. It was remarked in
Sec. VII of I that the sign of co(r) was linked to an overall
sign of c&,c2, c3. Changing both simultaneously leaves
the energy functional invariant. There was no way for us
to determine the overall sign of c, ,c2, c3 from the meson
sector. Now, however, we find that only one sign choice
for co(r) in (3.14), for example, gives acceptable values for
the isoscalar electromagnetic properties so that the
overall sign for c&,c2, c3 can be fixed. The appropriate
sign choices for our central determination of parameters
are

+0.4 d gvvy +1 9

The other current components needed for discussing elec-
tromagnetic properties of the nucleon, J;,Jo ', J;
can be computed from (3.8) in a similar way. Some of
these currents will involve also the moment of inertia 0 as
well as the excitations g„g2, p, and 2). After using the
semiclassical quantization prescription

Breit frame the form factors Gz and GM are obtained by
Fourier transformation of the corresponding electromag-
netic currents J"' and Jp3' '. From (3.16) and (3.17)
we therefore have

G~ (q )=4mf dr r jp(qr)R, (r), (3.18a)

GM (q )=8aM~ f dr r —j,(qr)R2(r),

Gz='(q ) =4m f dr r jp(qr)R3(r),

(3.18b)

(3.18c)

GM '(q ) = 8'&f dr r —
j& (qr )R4(r),

0
(3.18d)

The electric form factors turn out to be properly normal-
ized, i.e., Gg'"(0) = 1,0 while the magnetic form factors at
zero-momentum transfer supply the magnetic moments:

(3.20)

Finally the electromagnetic radii of the proton and nu-
cleon are related to the form factors via

where q = lql and j, (qr) are the spherical Bessel func-
tions. The projection onto proton and neutron states
proceeds in the well-known way:

(3.19)

( &2 ) nP6 Gg, n(q2)
dq

(3.21a)o.= 2iOTr—(A A~),
r=2iOTr(AA r),

(3.15a)

(3.15b)

(3.15c)

q=0

Gg, n( 2
)

I pn dq
(&2)p, n

M (3.21b)
o;r, = —

—,'Tr(Ar, A r, ), q=O

In Table II the charge radii, the magnetic moments,
and the proton and neutron radii are given, together with
the isoscalar and iso vector magnetic moments for
R = —0.04. For the central values of the parameters
with ~=0 or ~= 1, these results are of the same quality as
the ones of the complete model. The magnetic moments
are a bit too large in magnitude; on the other hand, the
neutron electric radius is closer to the empirical value. It
is interesting to note that only the neutron charge radius
and the isovector magnetic moment vary strongly within
the allowed range of g~&4, and h, whereas all other quanti-
ties are relatively stable. For comparison, we give in
Table III the same quantities for R =+0.04. As one can
see, the overall agreement with the data is clearly worse
than in the case R = —0.04. The electromagnetic form
factors of the proton and neutron are shown in Figs. 1 —4.
In the case of the proton electric form factor, for the cen-
tral choice of parameters we find that it falls off some-
what faster than the phenomenological dipole fit. The
neutron charge form factor displayed in Fig. 2 is obvious-
ly most sensitive to parameter variations. It comes out a
bit too small for the central choice of parameters (~=0
or v=1); for v= —1, however, it is close to the recent
semiphenomenological fit of Gari and Krumpelmann. '

The magnetic form factors show approximately a dipole
behavior; it is interesting to note that the q dependence
of these form factors shown in Figs. 3 and 4 is very in-
sensitive to the choice of parameters, quite in contrast to

the general form of the currents is obtained to be

JI=P i JB R (i) (3.16a)

(3.16b)

(3.16c)

(3.16d)

J; =R2(r)e; ko rk,
Jp= =R3(r)r,

J; '=R4(r)ejko Jrkr .

(+f( —,'q)l Jp(0)l&;( —
—,'q) ) =GE(q')yfg;

(Xf(—,'q)lJ, (0)lN, ( ——,'q)) = yfioXqy, ,
.

N

(3.17a)

(3.17b)

where yf and g; are two-component Pauli spinors of the
final and initial nucleon states, respectively. Thus in the

For the model considered here, R, (r) can be read off
from Eq. (3.14) and R, (r), i =2, 3,4, are presented in Ap-
pendix B. The derivation of the electromagnetic form
factors has been described at some length in Ref. 6.
There it has been shown that it is most convenient to
work in the Breit frame, in which the four-momentum q"
of the virtual photon coupled to the nucleon acquires the
specific form q"=(O, q). Furthermore, the electric and
magnetic parts of the currents separate in this special
frame:
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TABLE II. Electromagnetic properties of nucleons for R = —0.04. the electric and magnetic radii of the proton and neutron as

well as their magnetic moments are given. For illustration, we also give the isoscalar and isovector magnetic moments, p, and p„re-
spectively. For comparison, the results for the complete model as well as the empirical data are given.

(h gvvy v)

(0.4, 1.9,0)
(0.4, 1.9, + 1)
(0.4, 1.9, —1)
(0.7,2.2, 0)

( —0. 15, 1.3,0)

Complete model

Expt.

PE p
(fm)

1.01
1.05
0.81
0.89
1 ~ 17

0.97

0.86+0.01

2
"E,n

(fm )

—0.16
—0.19
—0.13
—0.20
—0.04

—0.25

—0.119+0.004

ps
(n.m. )

0.40
0.40
0.36
0.40
0.38

0.47

0.44

2.50
2.80
1.58
1.52
5.71

2.31

2.35

pp
(n.m. )

2.90
3.19
1.95
1.92
6.09

2.77

2.79

pn
(n.rn. )

—2.10
—2.40
—1.22
—1.13
—5.33

—1.84

—1.91

M, p
(fm)

0.93
0.96
0.82
0.88
1.00

0.94

0.86+0.06

(fm)

0.91
0.94
0.75
0.89
0.96

0.94

0.88+0.07

electric form factors. Again we should stress that for the
central choice of parameters with R = —0.04 and K=O
(or x = 1), the electromagnetic properties of nucleons pre-
dicted by this model are similar to the ones obtained in
the complete model.

C. Axial properties of nucleons

The evaluation of the axial-vector current proceeds
analogously to the calculation of the electromagnetic
current, i.e., by gauging the Lagrangian with an external
field, a„which now, of course, is axial. Therefore we
have to replace the external gauge fields by

'T 'r
hB ~a .—and hB ~—a .—

p, L p p, R p

in (3.5) and (3.11) of I. In correspondence to (3.8) the
I

axial-vector current A„ is derived from

51 (U, Al, a)
6a"

(3.22)

In order to calculate the axial form factor it is sufhcient
to consider the spatial components A; because a careful
treatment of the semiclassical quantization gives a van-
ishing matrix element for the time component of the
axial-vector current between nucleon states (i.e., no
second-class currents as shown in Ref. 6). After substi-
tuting in the soliton profiles we have

A,,= [ A
&
(r)5,b +

A 2 (r )r, rb ]—,
' Tr[ A & A r'], (3.23)

wherein the radial functions A, (r) and Az(r) are ob-
tained as

I

A &(r)= sinF(2G+2 —cosF)+(y&+ —,y2) sin2F+ [co'sin F coG'cosF—+co''cosF(1+G —cosF)]
coF

r 27 2p

+(—,y2+y3) sinF(1+G —cosF)+ d, (co'sin F+coF'sin2F),coF 2g
r (3.24a)

in2F
Az(r) = —A &(r)+f+'(r)+(y, +—', y2)co — coG(G+2)+( —,'y2+y3) (1+6 cosF) +4g —co

I" 2p' I" h p2

(3.24b)

Note that the KSRF relation has been used to simplify
the first term of (3.24a).

Again as in the case of the electromagnetic currents a
term proportional to d& shows up. Such a term would

I

have been missed if the axial-vector current had been
computed from just the strong-interaction part of the La-
grangian.

Next, we calculate the axial form factor G„(q ) of the

TABLE III. Electromagnetic properties of nucleons for R = +0.04. Notations as in Table II.

(h gvvy

(0.4, 1.9,0)
(0.4, 1.9, 1)

( —0. 15, 1.3,0)
(0.7, 2.2, 0)

7E p
(fm)

0.90
0.96
1.06
0.80

(fm )

—0.33
—0.34
—0.24
—0.32

ps
(n.m. )

0.33
0.42
0.44
0.30

p„
(n.m. )

3.09
3.64
7.53
1.78

pp
(n.m. )

3.43
4.06
7.97
2.08

pn
(n.m. )

—2.76
—3.22
—7.09
—1.48

(fm)

0.80
0.81
0.86
0.78

PM, n

(fm)

0.81
0.83
0.85
0.82
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PROTON ELECTRIC FORM FACTOR GE (t) NORMALIZED PROTON MAGNETIC FF GM(t) /GM(0)

1.0-

0.5— 0.5

0 10
I I [frn']

10

«D
4
~2
5

I I Urn']

FIG. 1. Proton electric form factor for various parameter
sets of [h,gi,v&, irI. We define 1:—[0.4, 1.9,0I, 2—:[0.4, 1.9, 1I,
3—= [

—0. 15, 1.3,0I, and 4=—[0.7,2.2, 0]. In all cases R = —0.04
which fixes d& /h according to Eq. (3.11). D denotes the empiri-
cal dipole fit Gz~(t) =(1+~tI I0.71 GeV ) . The standard input
f =93 MeV, m~=m =m =770 MeV, and m =138 MeV is
used.

NEUTRON ELECTRIC FORM FACTOR GE (t)

'FIG. 3. Normalized proton magnetic form factor
GM(t) IG~(0) . For notation, see Fig. 1.

nucleon and discuss some issues related to the
Goldberger-Treiman relation. The axial form factor is
related to the matrix element of the nucleon axial-vector
current A,"(x) in the Breit frame via

—q
)

T

TQ

G~ (t)o i+ G„(t)+ Gp(t) a tM~ 4m„'

(3.25)

0.10— NORMAL I ZED NEUTRON MAGNETIC F F GM(t) /G„(0)

1.0—

0.05

0,5

0
ltl [t~']

FIG. 2. Neutron electric form factor for various parameter
sets. For notation see Fig. 1. Set 5 is defined by
5—:[0.4, 1.9, —1.0I. The empirical dipole fit (D) as well as the
semiphenomenological parametrization of 6ari and
Kriimpelmann (GK) (Ref. 19) are also shown. The data are ex-
tracted from the paper of Galster et al. (Ref. 41) using the
deuteron Inodel of Lomon and Feshbach (Ref. 42).

10
It/ [frn ]

FIG. 4. Normalized neutron magnetic form factor
GM(t)/G~(0). For notation see Fig. 1. Notice that curves 2
and 3 are identical within the accuracy of the figure for

~ tI ~ 10
fm ', the same holds for 4 and 2 for

I tI 8 15 fm
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with t= —q, oi=o —Q(cr q), o~=Q(o"q), and E
= ( q /4+ M& )

' . The induced pseudoscalar form factor
G (t) is related via PCAC to the strong ~N form factor
6 z~(t) and is discussed in some detail in Appendix C.

G„(q ) expressed in terms of the radial functions A,
and Az reads

( p) 87T NM

(M~+ q /4)'i

NORMALIZED AXIAL FORM FACTOR Ga&q

i.o—

,A(qr)
X r jo(qr)A&(r)+r Az(r) dr .

0 gP'

B„A"'(x)=m f ~'(x),
which leads to the Goldberger-Treiman relation (GTR)

(3.27)

(3.26)
Before presenting results, let us mention one pertinent

difference to the complete model. There, the Bardeen-
subtracted anomalous action was used which breaks
chir al symmetry and leads to a violation of the
Goldberger-Treiman relation of the order of 15% in the
zero pion mass limit. In the model presented here, we
have exact PCAC,

0.5

D

4
2

10
Itl [tm']

FIG. 5. Normalized axial form factor G~(t)/Gz(0). For no-
tation see Fig. 1. D denotes the empirical dipole fit of Ahrends
et al. (Ref. 20) with M~ =1.09 MeV.

M~
G.xx(0) = (3.28)

X & =4m f m f r (1 —cosE)dr,
0

(3.29)

in contrast with the "complete model, "where part of the
anomalous action also contributes to X„&.

In Table IV we summarize our results for the axial-
vector coupling g„=G„(0), the nucleon axial radius
(r~ )' and the AN X term for the parameter sets dis-
cussed before. In Fig. 5, we show the normalized axial
form factor up to momentum transfer ~ti &25 fm in
comparison with some data and the recent dipole fit of

G (())=g & is the strong pion-nucleon coupling con-
stant at t =0 which will be evaluated in the following sec-
tion. The GTR (3.28) gives a good check on the numeri-
cal accuracy. Furthermore, the pion-nucleon X term re-
ceives its only contribution from the chiral-symmetry-
breaking pion mass term, i.e.,

Ahrens et al. with M~ =1.09 GeV. For the central
values, the form factor follows closely the dipole fit,
somewhat different from the complete model. The axial-
vector coupling constant g~ is close to one for the pre-
ferred set of values Z =0.4, g«, ——1.9, and ~=+1. The
mpco correlations are the reason for this enhancement of
g~ as compared to the conventional Skyrme model. For
the whole range of parameters with ~ positive, the axial
charge radius comes out reasonably close to the empirical
value, and the X term is generally too small. This is,
however, an expected result since we are dealing with the
U(2) reduction of the Lagrangian. In a somewhat
simplified SU(3) model, Blaizot, Rho, and Scoccola ' have
shown that the effect of strangeness is large enough to ac-
commodate a X term of -60 MeV. For negative ~, g„
tends to decrease drastically and the X term tends to be-
come too large as can be read off from Table IV.

TABLE IV. Axial-vector properties of the nucleon. The axial-vector coupling g&, the axial charge
radius r~, and the mN X term are given together with the results of the "complete" model and the
empirical values (Refs. 20 and 31). The numbers for the complete model in parentheses refer to an al-
ternative evaluation in Ref. 3.

(h gvvy~v)

{+0.7, +2.2, 0.0)
(+0.4, + 1.9,0.0)

(+0.4, +1.9, +1.0)
(+0.4,

'+ 1.9,'-1.0)
(
—0. 15, +1.3,0.0)

0.53
0.76
0.91
0.32
1.38

r „(fm)

0.59
0.64
0.66
0.56
0.71

r (Me V)

18.5
31.6
41.6
83.8
76.7

Complete model

Expt.

0.99 (0.91}

1.259+0.009

0.62

0.63+0.03

-200 (156)

60+ 10
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Performing a spectral analysis of the axial form factor
as outlined in Ref. 22,

ImG„(t')
G„(t)= f—", ,

" dt',
9m' t' —t

(3.30)

D. Strong meson-nucleon form factors

The strong meson-nucleon vertex functions (the pion-
nucleon form factor, the Dirac and Pauli form factors re-
lated to the p and co meson-nucleon couplings) give fur-
ther insight into the structure of nucleons as solitons.
They can be related to the ad hoc form factors used in bo-
son exchange models of the nuclear force and to disper-
sion theoretical approaches based on NN~n~ helicity
amplitudes.

First, let us consider the mNN form factor G»(t)
defined by

we find that the spectral function is broadly peaked
around t ' = (0.9 GeV), close to the result calculated in
the complete model and not far from the axial-vector
meson mass m( A, )=(1056+35) MeV as has been found
recently in ~~ 3, +neutrino decays. In summary, we
can say that the axial properties of nucleons as described
by the model presented here and for the preferred choice
of parameters is similar in quality to the one quoted for
the complete model. The model discussed here, however,
is manifestly chir al invariant and leads to the
Goldberger-Treiman relation resulting from exact PCAC.

(V —m~)p„'(r) =J„'(r),
(V' —m' )~„(r)=J„(r)

(3.35)

(3.36)

with a =0 for the isoscalar m meson and a = 1,2, 3 for the
isovector p meson. The corresponding Dirac and Pauli
form factors F, (t) and Fz(t) follow as

(N(p')I J„'(0)lN(p ) &

=u(p ) FIJ~(t)y + Fz~~~(t)cr„q' ~'u(p)
ft

(3.37)

Gg (t)=F~ (t)+ F ' (t),1 4M2 2
N

Gg, "(t)=F~ (t)+F~' (t),
(3.38)

which in the Breit frame are identified with the Fourier
transforms of the time and space components of the
source J„'(r). Therefore, we immediately have
(m =m„=m)

(j=p or co) with ~ =, I. for the co and ~' (a = 1,2, 3) for the
p. We define vector and tensor couplings g~ and gT by
the values of Fi(t) and F2(t) at t =0 (notice that usually
one defines gi, and gT at the respective meson poles). For
convenience, we also introduce the "electric" and "mag-
netic" vector-meson-nucleon form factors

(N(p')l J'(0)lN(p) ) =G»(t)u(p')t'y~r'u(p) (3.31)
Gg(q2) = (q + m )f r j 0(qr )[g&(r)+ —,

' gz(r)]dr,
with t =(p„' —p„) the invariant squared four-momentum
transfer. The right-hand side of (3.31) can be related to
the Fourier transform of the static source distribution of
the pion field y'(r). The latter is given by the field equa-
tion

8 . . .j, (q )

Gg (q )= — M&(q +m )f r G(r)dr,
3g 0

(3.39a)

(V' —m' )p'(r) =J'(r), (3.32)

where J'(r) can be connected to the right-hand side of
Eq. (6 6a) in I. Since the pion field is given by
g'(r) =(f„l3)cr.rw'sinF(r), the vrNN form factor be-
comes

Gg(q )= 4vr(q +—m )f r jo(qr)co(r)dr,

M~ „j,(qr)
GM(q )= —2ir (q +m ) f r2 P(r)dr .

0 0 qr

(3.39b)

(3.39c)

(3.39cl)

vr» 0)=g~»
8m

M~f m r sinF(r)dr
0

(3.34)

and it is related to the axial-vector coupling g~ via the
GTR (3.28).

The vector-meson-nucleon form factors follow in a
similar way from Fourier transform over the source func-
tions J„'(r) via

G»(t)=G»( —
q )8ir», j, (qr)

M~f~(q +m ) r sinF(r)dr .
o q

(3.33)

The pion-nucleon coupling constant at t =0, G»(0) fol
lows to be

Of course, we also have an gX% form factor. Here, we
will set il(r) =0 throughout and discuss the effects of the
il together with G„»(q ) in a later section.

Having set out the basic formalism let us now present
the pertinent results. The normalized pion-nucleon form
factor G»(t) is shown in Fig. 6 for ltl ~25 fm togeth-
er with a monopole with a cutoff 4 =1 GeV for the four
sets of parameters defined before. At small t, G»(t)
falls off like a monopole, for momentum transfer ~10
fm ' it falls off somewhat faster. The pion-nucleon cou-
pling constant defined at t =0 is given in Table V. We
see that for the central choice of parameters g z& is close
to the empirical value, very similar to the complete mod-
el. The violation of PCAC together with the large value
of X & (cf. Table IV) certainly constitute the most severe
limitations of the complete model. For the vector-
meson —nucleon form factors it is first important to notice
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1.0

0.5 M

4

2

0.5

0 )0
t fm

0 IO 20

FIG. 6. Normalized strong pion-nucleon form factor. For
notation, see Fig. 1. M denotes a monopole with a cutoff
A=1.0 GeV.

FIG. 7. Normalized strong co-meson —nucleon vector form
factor F& (t). For notation see Fig. 1. M denotes a monopole
with cutoff A =0.75 GeV.

that the relative strengths of vector and tensor couplings
follow the general systematics required by XX-interaction
phenomenology: the m-meson —nucleon vertex is dom-
inated by the vector coupling, whereas the p-
meson —nucleon vertex is dominated by the tensor cou-
pling. This is made explicit in Table V where the anoma-
lous magnetic couplings for the p and the co are given, re-
spectively. These are defined via ~.=Fz'~' (t =0)/FIJ'
(t =0). The respective form factors F', '(t) and Ff'(t)
are shown in Figs. 7 and 8 for our usual sets of parame-
ters. It is interesting to note that ~ = —0. 1 —+ —0.2 for
the whole parameter range, close to the empirical anoma-
lous isoscalar moment of the nucleon, ~, = —0. 12. For
the p meson, the situation is diFerent. For the central
choice of parameters, we have ~ =5.01 (I~=0) and
~ =5.62 (~= + 1 ), close to the empirical value I~ =6. 1P
(Ref. 26). Within the range of parameters, I~ is rather
strongly dependent on y& and yz. This can also be seen

from Fig. 9, in which we show A Ap A Kp and K„ for
the allowed range of g~v& and h with ~=0 [Th.e cutoffs
A and A„are defined via the dominant form factors
F~z(t) and F, (r).] A„ is relatively stable, around 7SO
MeV (somewhat smaller than in the complete model). A„
and A are somewhat dependent on the co-P-mixing angle,
we find 0.7 A ~1.0 GeV and 0.7 A 1.2 GeV. We
should again stress that the results for the central choice
of g~z& and h together with ~=+1 are very similar to
the complete model. In contrast, choosing ~= —1.0, the
strong meson-nucleon form factors cannot be described
satisfactorily within our model.

Following the procedure outlined in Ref. 22, we have
also performed a spectral decomposition of the pion-
nucleon vertex function, which has a peak around
&r =7m for the central choice of parameters. This is
consistent with dispersion-theoretica1 analyses which
point out the importance of ~p intermediate states on top

TABLE V. Strong meson-nucleon vertex functions. The pion-nucleon coupling constantg» =G»(0), the cutoffs A, A~, A„, and the anomalous magnetic couplings Kp and ~ are given. The
cutoffs AM are determined from fitting the form factors G NN(t), F, (t), and I'~&(t) to monopoles at
small t. ~ and ~ are defined at t =0, the empirical values are taken from Refs. 24 and 32. Empirical
values in parentheses are from the OBE potential (Ref. 24). The results of the complete model are also
given.

gvvy v)

(+0.7, +2.2, 0.0)
(+0.4, + 1.9,0.0)

(+0.4, +1.9, +1.0)
(+0.4, +1.9, —1.0)
( —0. 15, + 1.3,0.0)

8 n. NN

7.89
12.51
15.23
5.27

27.67

1.017
0.881
0.830
1.140
0.698

Ap (GeV)

1.215
0.966
0.884
1.543
0.726

0.780
0.755
0.734
0.902
0.680

2.92
5.02
5.62
2.76

12.34

—0.12
—0.19
—0.29
—0.27
—0.21

Complete model

Expt.

14.05

13.45

0.860

0.890 (1.3)

0.95

(1.4)

0.86

(1.5)

4.36

6.1

—0.07

—0.12
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shown as well as the profiles of the vector-meson excita-
tions g„gz, and @. The g profile is small throughout,
and the vector-meson profiles are only mildly affected.
The moment of inertia changes from 8=0.824 fm [for
g(r)=0] to 9=0.834 fm. The direct contribution from
the g is 0„=4vrlo A„dr=0. 03 fm. This amounts to a
decrease of -4 MeV in the NA mass splitting, which is
only a very small effect. Allowing for yz and y3 being
nonzero, this trend persists. For the central values of the
parameters, the nucleon mass is decreased by -5 MeV,
and over the whole range of parameters, the g decreases
the moment of inertia by a few percent. The effect of the

g on the electromagnetic properties in Sec. III B is simi-

larly small.
As in the previous section, the equation of motion for

the g,

(V —m „)g(r)=J„(r), (3.41)

(3.42)

and the gNN coupling constant at q =0 is given by

2~ oo

gq» Minim &30 " o
(3.43)

For the minimal model, G„»(q ) is shown in Fig. 11 to-
gether with a monopole factor with a cutoff of =1 GeV.
We find g„»=1.61, somewhat small compared to the

can be used to define the strong gNN form factor as the
Fourier transform over the source function J„(r). One
easily finds

, j, (q )
G»(q )= — Mz(q +m„)I r rl(r)dr

SU(3) value gz»=v'3/25g» (Ref. 28) and the one-
boson-exchange-potential (OBEP) value g „~~=6.86
(Ref. 24). The form factor can be fitted to a monopole at
small t with a cutoff A„=1.08 GeV, as compared to
A =1.5 GeV used in Ref. 24. For the central choice of

7l

parameters, the q profile is somewhat more pronounced
and we find gz»=5. 60 and A&=0. 84 GeV. It might be
interesting to note that some versions of the Bonn poten-
tial do not include the g, while others do. This is
another manifestation of the fact that the g plays only a
minor role in the NN force, and should therefore have
only mild effects on the soliton properties as we have
demonstrated.

IV. SUMMARY AND OUTLOOK

It is generally believed that a suitable Lagrangian of
pseudoscalars and vectors should provide a realistic test-
ing ground for the notion that the nucleon is a solitonic
excitation. Here, we have investigated in detail this con-
jecture within the framework of a Lagrangian set up in I.
It has three coefficients which can be exclusively deter-
mined from strong interaction processes, plus an extra
one when electromagnetisrn is carefully added. Two of
the three strong-interaction constants have been deter-
mined in I. The remaining one could not be fixed from
existing meson data, while a plausible range for its value
was given in I from the study of some bulk properties of
the soliton, re=1. We should stress that the freedom in
adjusting K did not enable us to solve the problem of the
too high mass of the nucleon and the b,(1232).

Here, we went one step further. We performed an adi-
abatic quantization of the soliton and calculated a variety
of its properties, with particular emphasis on the elec-
tromagnetic currents. First, we determined the new con-
stant d, /h from the ~~~ y decay to be

d R gvvy gvvy
h 2 4g2 4g2

(4.1)

1.5

).0

0.5—

0
I

10 20
t fm

FIG. 11. Strong gNN form factor for a minimal model. For
notation see Fig. 10. M denotes a monopole with a cutoff
A=1.0 GeV.

with R =+0.04. All currents were calculated in a direct
manner and it was found that new contributions to both
vectors and axial-vector currents involving d, emerged.
Although we did not assume vector-meson dominance,
the electromagnetic radii, magnetic moments, and form
factors turn out to be of similar quality to the ones of the
complete model (Ref. 6). Similar statements can be made
for the axial-vector coupling constant and the axial form
factor. The model presented here predicts an axial form
factor which follows closely the empirical dipole fit of
Ahrends et al. In contrast with the complete model,
our Lagrangian embodies exact PCAC, therefore, over-
corning the most severe limitation of models making use
of the Bardeen-subtracted Wess-Zumino action. We have
also demonstrated that the model considered here makes
contact with semiphenomenological one-boson-exchange
models of the nucleon-nucleon force. It predicts coupling
constants and form factors familiar from the phenome-
nology of the NN interaction. In particular, the pNN in-
teraction has a dominant tensor coupling, whereas the
coN¹interaction is governed by its vector coupling.

Through the adiabatic quantization the isoscalar-
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pseudoscalar g gives a contribution to the nucleon mass
and its other properties. %e have justified our conjecture
in I that these effects will be small. For example, the q
brings down the nucleon mass by a few MeV, the
inAuence of the g on the other properties of the nucleon
is similarly small.

In light of the recent discussion concerning the spin
content of the proton and the admixture of strange
operators in the proton's wave function, it appears to be
of utmost importance to perform a full U(3) treatment of
the Lagrangian considered here. Research along these
lines is underway.
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APPENDIX A: EQUATIONS OF MOTION
FOR THE MESON EXCITATIONS

AND THE REDUCED MOMENT OF INERTIA

Here, we wish to present the coupled equations of
motion for the vector-meson excitations g, ('r), $2(r), and

P(r) defined in (3.2) as well as the g-profile r)(r) defined in
(3.3). These follow by extremizing the moment-of-inertia
functional (3.5). Furthermore, these equations of motion
can be used to bring the moment of inertia functional
into a much shorter, the so-called "reduced form. " This
reduced form of A(A„~) can be used as an excellent
check on the numerical solutions of the coupled equa-
tions of motion, which read

T

g", = ——g, +m g,
—4f~ sin —+ [6 (g, —1)—2(G+1)$2]

r

'V2g, . 'V3g
(('sinF — PF'(G + 1 —cosF)+ g

2r 21 21' f~
1

3
F'sinF+ y 26' (A 1)

g2
= ——gz+m g2+4f~ sin —+

z [6 (g, —1)+2(6 +36+3)g2]
r r

2 2

+ ( P'sinF —2$F' ) + PF'( 6 + 1 —cosF )
2r 2r

V1 Z 2 g
3

sin F+yz[26 cosF —(1—cosF} ]—3y3(6+1 —cosF) + g F'sinF yzG'—
2r f~

(A2)

P+m P —2yiF'sin F+2y2I(G —g&)F'c oFs+( 6' —(I)sinF+E'[pi+(2 —(1—cosE) ]I
r

g p ~'/co—2y3F'[(1 —cosF )(6 —g, ) + ( 1 —cosF )
—6pi ]— (A3)

2
q'+ g+—rn „rl+I rl cosF [F'sin—2F(g, +gz)+ (g', +gz)sin F—2F'sinF(6+ /, )]

r " 3gf r

2 2 [2G'[G+g, —(pi+$2)cosF]+2F'sinF(gi+gz)(6+ 1 —cosF)+(gi+gz)[(1 —cosF) —2G cosF]I

6y3 (G+1—cosF)[2(6'+F'sinF)(g, +(2)+(6 +1—cosE)(g+gz)] — /co'
2p 2g

„r f r

subject to the boundary conditions

g', (0)=g, ( ~ ) =0, g~(0) =$2( ~ }=0, $(0)=p( ~ ) =0, g(0) =g( ~ )=0,
and the constraint (at r =0)

2$,(0)+$2(0)=2 .

(A4)

(A5)

(A6)

One can now use the equations of motion (Al) —(A4) to reduce the lengthy expression of the moment of inertia (3.5).
One finds that terms bilinear in the excitations and their derivatives drop out, terms linear in the excitations receive a
factor ( —,

' ) and terms independent of the excitations remain unchanged. Therefore, the reduced form of the moment of
inertia reads
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r r

A„d= , r—f sin F+8 sin ——4 sin —
g& + (2—2/i —gz)+ pF'sin2F

F . 2 F 2G 71
3g

+ (P'sinF( 6+2 2—cosF)+/IF'[2 —(G+2)cosF+2sin F]—6'sinF j )+ (1 cos—F)QF'(6+1 —cosF)
y2 I y3
6 371, . V2

9gf. 6gf.
re'6 sinF — [g'G(G+ 1 —cosF)+ [G'(1—cosF)+F'G sinF] j .

To have a check on the numerical solutions to the coupled equations for g„gz, P, and g, we demand
i A/A„d —1

i
( 10 . This together with (A6) serves as an excellent check on the numerical analysis.

APPENDIX B: THE RADIAL FUNCTIONS

The radial functions R, (r) as defined in (3.16) in the presence of the g meson are listed in this appendix (for simplicity
we choose the abbreviations s =sinF and c =cosR:

1R,(r)=
120r

m P +
g

Nc 2 d] dF's —4 F'(g, +(2)+ [s(2+6 —g, —2c )]

+ [3F's +F'[(1—c) +(g, —G)c —g,
—g2]+s(g' —G')j

+ F'[(1—c)(6 —g, )+(I—c) —6(i]+— —4 co'
2y3 2 g X2

2 g h f„ (81)

R3(r)= f Is +p [(1+2c)g,+gz —2c(1 —c)]j+ ,'y&F' s —+— [3F'Ps F'P+P's—(G+1—2c) —O'Ps]
r2 4 r2

1 d,'(y2+2y—3)F—' c(1+6—c)—g 2 (Psc )

1 N~g 2 yi+ (2F'gsc+rI's ) — [g's +2rIF'(6+1)s]
4gf r 12~

+y2 t qG'c+ g'[( G+ 1)c—1]—qF'( G+ 1)s j

1—(y2+ 3y3)g'( 1+6 —c) —4g [gc(1+G —c)]
h dr

R~(r)= f [s 2p c(1+6—c)]+—yicoF's + ,'y2[3toF's +to's(1+—6—2c)—toG's toF'c(1+6 ——c)]1 2 2 2

r

dy3toF'c(1+ 6——c)+2g toF' — (tosc )
h . dr

(82)

(83)

(C1)

The terms proportional to N, arise from the gauged WZ
term I wz(U, Bz,B&) in (3.11) of I. Of course, we have

N, =3. Furthermore, the dimensionless constant
p =m /(&2gf„)is 1 if the KSFR relation is imposed.

APPENDIX C:
THE INDUCED PSEUDOSCALAR FORM FACTOR

In the nucleon matrix element of the axial-vector
current [Eq. (3.25)], we encountered the induced pseudo-
scalar form factor 6 (t). Using PCAC, one can show

that it is related to the axial form factor 6~(t) and the

strong pion-nucleon form factor G»(t) via
2m fG„(t)+,G~(t)=, G~»(t)

4M~ M~(m t)—
with t= —q and M& the nucleon mass. One can, alter-

I

natively, evaluate G~(t) directly from the matrix element
(3.25) and finds

32aM~
G (t)=-

31

oo M~
X . r j0qr Ai r 1 — +32 r

0

r . ~N——j,(qr) A2(r) 2+

(C2)
wh««=(M~+q /4) . The radial functions A, (r)
and A, (r) are given in (3.24). For small momentum
transfer, the induced pseudoscalar form factor is dom-
inated by the pion-pole term, which in turn leads to
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TABLE VI. The induced pseudoscalar form factor G~(t) in
comparison to the pion-pole-dominance values for momentum
transfers 1 fm ' &—t 5 fm '. The central values
gv«=+1. 9, h =+0.4, ~=1.0, R = —0.04 together with the
standard input f =93.0 MeV, m =138.0 MeV, and g=5. 8545
are used. (~ Rvv(t &) IP 1 "F)I

TABLE VII. The weak pion-nucleon coupling constant G
for various parameter sets with R = —0.04. We also give the re-
sults of the y asymmetry in ' F together with the empirical data
(Ref. 59) and results of the complete model.

&—t (fm ') Gp(t)

139.5
36.4
11.7
3.9
1.3

Gp"(t)

144.6
40.6
14.8
6.0
1.5

(0.7,2.2,0)
(0.4, 1.9,0)

(0.4, 1.9,+ 1)
( —0.15,1.3,0)

Complete model

Expt.

15.4 X 10-'
8.5 X 10
8.0X10-'
15.2X10 '

8.8X10 '

(3.4X10 '

2.8X10-'
1.7X 10
1.5 X10-'
2.8X10-'

1.8 X 10

(1.2+3.8) X 10

4M~f
GJ, (t)= m„—t

(C3)

Experimentally, very little is known about the induced
pseudoscalar form factor. It is measured at t= —I„
from the p-capture reaction p +p —+v„+n

G (
—m„)—=g =(8.25+2.4) .

2MN
(C4)

In Table VI we summarize the pseudoscalar form fac-
tor G (t) as calculated from (C2) in comparison with the
pion-pole dominated piece G (t), as given in (C3) for the
central values of the parameters together with ~=+1.0.
At small momentum transfer, these values are of course
identical, for ~t~ ) 1 fm we see the expected deviations
from pion-pole dominance. At the p pole, we find

2=4~sin O~G„g ~~

X f [r R&(r)R&(r) —2r R2(r)R4(r)]dr, (D2)

where we have introduced the commonly used definition
of the weak pion-nucleon coupling strength. We have
also corrected for an incorrect normalization which ap-
pears in Ref. 9. Before presenting our results, let us men-
tion that the y-asymmetry data from ' F set a solid con-
straint on 6, indeed one has

one first has to construct an effective current Xcurrent
Hamiltonian starting from the standard model. Express-
ing the pertinent matrix elements via the soliton currents,
we end up with (for a more thorough discussion, the in-
terested reader should consult Ref. 9)

G„=G g„~~/&32

f71

g = "G(—m„)=959
N

(C5) 6" &3.6X10 '. (D3)

in fair agreement with the empirical value (C4). To check
the sensitivity of g versus parameter changes we have
also calculated g for the edges of the allowed range for

g&v& and h (with ir=0 and R = —0.04). We find

4 99 o " +0 7 gvvy +2 2
(C6)

7 0 ~ ~ 5 gvvp +gp= '

which is similar to the parameter sensitivity of g z& ex-
hibited in Table III. For comparison, in the complete
model one finds g~ =8.86 (Ref. 34), which is not surpris-
ingly close to the value with the central values and
Ir= 1.0 [Eq. (C5)].

APPENDIX D:
THE WEAK PION-NUCLEON VERTEX

In this appendix, we are going to calculate the parity-
violating weak pion-nucleon vertex strength defined via

X~~~ =
—,
' G N(n. X r),X (D 1)

with N denoting a nucleon spinor and G the weak mX
coupling strength to be calculated. We will essentially
follow the work of Ref. 9 and omit any calculational de-
tail here. To obtain the weak pion-nucleon amplitude,

Our results are summarized in Table VII. Throughout
this appendix, we will set ri(r) =0 since the g terms have
only mild influences on the current densities, and use
R = —0.04. For our standard sets of parameters, we give
the value of 6 together with the predicted y asymmetry
in ' F, which has been reported by Haxton,

6„
~
P (

' F )
~

= ( 2.0+0.5 ) X 10 6 DDH (D4)

where 6 =1.08X10 is the quark-model estimate
of Desplanques, Donoghue, and Holstein, which is
above the experimental limit (D3). We should point out
that a recent quark-model calculation of Dubovik and
Zenkin tends to favor small values of G„, typically close
to the empirical limit. Our results are on the small end of
the allowed values, and predict a y asymmetry in ' F
close to the empirical value. It is interesting to note that
for the central values of gvv& and h together with a =0 or
Ir=+ 1,0, the result for G is within 10% of the result for
the complete model. Of course, the values for 6 ob-
tained here should be considered as a lower bound.
In a U(3) treatment of our Lagrangian additional nonfac-
torizable diagrams will contribute to G . For a discus-
sion on these points, we again refer the reader to Ref. 9.
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