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Dynamic Debye screening for a heavy-quark-antiquark pair traversing a quark-gluon plasma
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We investigate dynamical plasma screening effects on a heavy-quark-antiquark pair traversing a
quark-gluon plasma. The screened potential created by a test charge (heavy quark) moving in the
plasma medium is calculated in the test charge frame by solving the transport equation for a col-
lisionless ultrarelativistic plasma interacting via Abelian gauge Geld. It is shown that the screened
potential becomes strongly anisotropic as the velocity of the plasma medium increases. Possible im-

plications of this effect for charmonium production in relativistic heavy-ion collisions are discussed.

I. INTRODUCTION

In a high-temperature quark-gluon plasma, decon-
finement and the plasma screening effect are expected to
modify the heavy-quark —antiquark (QQ) potential and
above a certain threshold temperature this may lead to a
dissolution of QQ bound states (charmonium). It has
been suggested' that the observation of this effect
through a strong and systematic suppression of the J/P
peak in the dilepton mass spectrum can be used to test
the formation of a quark-gluon plasma in ultrarelativistic
nucleus-nucleus collisions.

The recent experimental results by the NA38 Colla-
boration at the CERN SPS have shown an apparent but
systematic suppression of J/g production in the col-
lisions of oxygen and sulfur beams at 200 GeV/nucleon
on heavy nuclear targets. The measured peak-to-
continuum ratio in the dilepton mass spectrum exhibits a
systematic dependence on the transverse energy deposit-
ed by the collision and on the transverse momentum of
dileptons: this ratio is more suppressed for events with
large transverse energy and for dileptons with small
transverse momenta. It has been shown that the ob-
served magnitude and pattern of J/g suppression in this
experimental condition can be well explained in terms of
a simple model which incorporates the finite J/f for-
mation time and the finite plasma lifetime due to the lon-
gitudinal scaling expansion.

In order to confirm the observed J/g suppression as a
signature of quark-gluon-plasma formation, we must
however, rule out other possible nonplasma effects which
may mimic the plasma suppression: such effects include
nuclear absorptions. The collisional loss of J/g in
dense hadron or parton gas, ' and the distortion of
quark/gluon distribution by precollision' or by initial-
state interactions. ' ' These different suppression mech-
anisms lead to different results in the magnitude and the
pattern of J/g suppression (transverse-energy depen-
dence, J/g transverse-momentum dependence, nuclear
mass dependence, incident-energy dependence, etc.), and
hence it could in principle be possible to disentangle these
different effects from genuine plasma effect by more de-
tailed systematic study both theoretically and experimen-

tally. For such a purpose, it is desirable to seek other
dynamical effects characteristic of the plasma formation.

In this paper we study the dynamical plasma screening
effect which may arise when the QQ pair is moving in the
plasma medium. Such a situation would be relevant for
the formation of J/P with large transverse momentum
since a cc pair with large transverse momentum can es-
cape the plasma region forming J/P (Refs. 3—5). Let us
recall briefly the standard derivation of the Debye screen-
ing for a static test charge Q placed in a plasma. In this
case, the electrostatic potential y(x) is determined by
Poisson's equation by(x)=Q5(x)+p;„d(x), where p;„d is
the induced polarization charge density. By using the
linear response relation between the induced charge den-
sity and the potential p;„d(x) =IIoo@(x), where IIOO is the
time component of the photon polarization tensor in
plasma, one finds the well-known screened potential

y(r)= e
4mr

where m, =QIIOO is the inverse screening length or the
electric screening mass. This derivation of the Debye
screening is adequate only for the static test charge in
plasma at rest. It is well known that this result is
modified when the test charge is moving in the plasma. '

One can find good examples of the manifestation of the
dynamic screening effect, for instance, in the Coulomb
explosion of molecular ions transmitted through metallic
foil' and in the calculation of thermonuclear fusion cross
section in stellar plasma. '

For simplicity, we consider here a model relativistic
plasma whose massless constituents are interacting via an
Abelian gauge field 2 ", and we study the problem within
the framework of the kinetic theory. Since we are in-
terested in the screening of the potential acting between a
heavy quark and its antiquark moving together in the
plasma, our objective is to find how the plasma screening
is seen by an observer moving together with the test charge.
It will be shown that the screened potential becomes an-
isotropic and acquires nonzero vector components A
which generate (static) magnetic field around the test
charge. We make some speculations at the end for the
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possible consequences of our results for the charmonium
production in nucleus-nucleus collisions.

the Boltzmann equation (3) gives, for the Fourier com-
ponents of 5f;,

II. SCREENED POTENTIALS IN MOVING PLASMA

Let us consider a very heavy test charge Q traversing a
plasma with velocity v on the z axis in the —z direction.
We assume for simplicity that the test charge is very mas-
sive so that we can ignore the energy transfer between the
test charge and the plasma. This implies that in the rest
frame of the test charge the field is static and can be ob-
tained by solving Poisson s equation for the static poten-
tial A "(r):

hA "(r)=j ",„,(r)+j t'„d(r), (2)

where j~„,= —Q5(r)(1,0,0,0) is the external current asso-
ciated with the test charge placed at r=O and j~d is the
induced (static) current in the plasma which is now in a
steady motion with velocity v=(0, 0, v). Note that in
contrast with the usual Debye screening where only the
scalar potential P= A appears, here one must include
the vector potential as well since, as we shall see in a mo-
ment, the test charge will induce not only a polarization
charge density but also a (steady) polarization charge
current in the moving plasma medium. The latter gen-
erates nonzero vector potentials and hence nonzero mag-
netic fields around the test charge.

In order to solve Eq. (2) we have to first obtain the in-
duced current j",„d as a function of the potential 3". In
the kinetic theory the charge current in the plasma is
given in terms of the one-body distribution function
f;(p, x) as j"=g;q; f dI'p"f;(p, x), where we have used
a compact notation d I —=d p/(2') F. for the phase-space
integral, and i denotes the particle species that carries the
charge q, . - We assume that the plasma is in equilibrium
and locally neutral before the test charge is inserted. The
induced polarization current is thus given by

5f (p k)=q A u- (k u)(A p)
k p

XPf,'(1+f,')+O(A') .

The current induced due to this change in the distribu-
tion function can be obtained by inserting (5) into (3), and
to lowest order in A the result may be expressed as

j ";„d(k)=IP (k; T, u) A (k), (6)

k.u k"+II (k, k.u) u"—

(k u)k
k

(7)

where the metric tensor is chosen here as
g"'= diag(1, —1, —1, —1): II, and II@ are scalar functions
of two scalar variables k and k u =—k "u„.

The calculation of the polarization tensor can be most
easily performed in the plasma rest frame where k =co
—k and k.u =co, and one finds

where II" (k; T, u) is the polarization tensor for the plas-
ma moving with arbitrary four-velocity u". According
to Lorentz covariance and current conservation,
k„IP"(k)=k II"'(k)=0, the polarization tensor can be
decomposed into the following manifestly covariant form:

k "k'
II""(k;T,u}=II,(k, k u) g"—

g",„d= gq; J dI p"5f;(p, x), (3)
x [c,(m/lk I ) —eg (~/lk I )1,

where 5f, =f; f; is the chan. ge in—the distribution func-
tion from the equilibrium distribution caused by the in-
serted test charge.

To determine the change of the distribution function
caused by the test charge we use the collisionless
Boltzmann-Vlasov equation

where

@r(x)=—'x +—'(1 —x ) x ln
1+x
1 x

r

@L(x}=(1—x ) 1 ——x ln
1 1+x
2 1 x

i nx 8(1——x)

i mx 8(1——x)

p"Bg, q, F„p"Bf,/Bp =—0, (4)

where the second term represents the inAuence of the test
charge, which generates nonzero self-consistent fields
F„„=B„A—B,A~ in the plasma. Equation (4) can be
solved by perturbation expansion in the potentials in the
case of weak fields q; pA" (& 1, where p= 1/T is the in-
verse temperature of the plasma. To obtain the lowest-
order solution we replace the distribution function on the
right-hand side by the equilibrium distribution

Pp)"u
f,. (p)=(e "+1) ' with u"=y(l, v) being the
plasma's four Aow velocity, and use the following identi-
ties: p"BQ, =0 and Bf, /Bp„= —u "Pf; (1+f, ). Then

Here the electric screening mass m, is determined by
m, =g, q, c, T with numerical constant c; = —,', (—,') for
fermions (bosons). For example, in the case of an ultrare-
lativistic electron-positron plasma which consists of elec-
trons and positrons of electric charge +e with spin up
and down, m, =

—,'e T . This result was first derived by
Silin. (For the quark-gluon plasma, we can reproduce
the electric screening mass obtained by the lowest-order
perturbation calculation ' [m, =g T ( I+XF/6)] by the
following replacements: g~„„„q;~4K~(g/2) Tr(A, 'A, )

=2NFg 5,b for quarks (and antiquarks) and gs,„,„q,.
~2g f,b,f,», =6g 5„ for gluons, where A,

' and f,b, are
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the generators and the structure constants of the color-
SU(3) group, respectively, and XF is the number of light
fiavors. )

The functional form of the covariant expression of
II,(k, k u) and IIz(k, k u ) in (7) can be readily ob-
tained from (8) by the following replacements: co—+k u
and ~k

~

—+[(k u) —k ]' . This results in

II,(k, k u)= —m, @z(k u/+(k u) —k ),
m, k

II2(k, k.u)= [Nr(k u/'(/(k. u) —k )
(k u) —k

—
C&L (k u/+(k u) —k )] .

With the expression (6) for the induced current, the
Fourier transform of Poisson's equation (2) reads

are the transverse and longitudinal dielectric "constants, "
respectively, which satisfy det(e)= —e~reL. The quantity
z which has appeared in (12) and (13) is defined by

k u v cosO

'}/(k u) —k „0 +I—v sin O

It is easy to check that in the limit v ~0, the potential
(11) reduces to the Fourier transform of the ordinary iso-
tropic screened potential (1):

lim A "(k)=2~Q5(co)5„O
1

Ii ~0 "k+
At finite v, the potential (12) not only becomes anisotrop-
ic but also acquires nonzero magnetic components.

[k g" —II" (k)] A, (k) = —Q5(co)(1,0, 0,0) . (10) III. DISCUSSIQN

The solution of this equation is given by

5(co),
k e(k)

A (k)=2irQ5(co) +
k ez-(k) k eL(k)

A '(k) =2vrQ5(co)zy 1—
1/2z'y'

y2

(12a)

1 1
X cosp

2 (k)
1

et. (k)
(12b)

A (k) =2irQ5(co)zy 1—
1/2

2
p

2

y2

1 1X sing

A (k)=2irQ5(co)y3 (1—z )y —1 1 1

y —1 k

hark

(12c}

1

eL (k)

(12d)

where

Ple
er(k) =1+,' C&r(z),

j 2

me&L(k)=1+, 4~(z)
j 2

where we have introduced the dielectric tensor e(k;u) in
the plasma moving frame defined by e„(k;u) =g

2
pv ~ pv—(1/k )II„(k;u). The explicit form of the potentials

can be calculated by setting u"=y(1,0, 0, v) and
k"=(co, ~k~ cosP sinO, ~k~ sing sinO, ~k~ cosO). We list
below our final results for the Fourier
components of the potential:

We now examine our result and discuss its possible im-
plications on the fate of a cc pair in ultrarelativistic
nucleus-nucleus collisions.

We present in Fig. 1 the modified Coulomb potential in
the configuration space calculated from (12a). In a cylin-
drical coordinate system the potential takes a form of

Qm,
A (r)= F(m, p, m, z),

4m.
(14)

where F(x,y) is a dimensionless function. In the Fourier
transformation of (12a) both the real and imaginary parts
of the momentum-space potential A (k) contribute to
the real part of A (p, z) but no imaginary part appears in
the configuration-space potential. The equipotential sur-
faces are plotted in Fig. 1 at several different values of v.
Note that Fig. 1(a) for v =0 corresponds to the usual stat-
ic screened potential. At nonzero v, the potential be-
cornes anisotropic and loses forward-backward symmetry
with respect to the direction of the plasma motion (z
direction}. The potential slope is steeper downstream
than upstream. This implies that a particle with opposite
charge to the test charge would feel stronger attraction
downstream.

The origin of the forward-backward asymmetry of the
potential can be traced back to the imaginary part of the
dielectric constant, which physically arises due to the dis-
sipation of the field energy into the excitation of the plas-
ma medium. It is noteworthy here that no singular be-
havior appears in the potential at any value of v. This is
ensured by the absence of the collective branch in the
dispersion relation dete(k)=0 in the spacelike momen-
tum region (k (0). This is the property characteristic
of massless relativistic plasmas that the dispersion rela-
tion of all plasmon modes is always timelike, and hence
the plasmon cannot be excited by the test charge passing
through the plasma medium as in a nonrelativistic plas-
ma.

We must note that (14) is not the two-body potential
between QQ pair moving in the plasma. The effective QQ
potential due to the modified Coulomb interaction (14)
can be obtained by calculating the static Coulomb ener-
gy' —,

' J d rj'„'"'(r')Ad; (r') associated with a dipole
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external current j„"' which is the sum of two currents
created by the Q and Q separated b h d'e y t e istance r. Here

linear
p

r' is the dipole field created by j"' h
'

inear approximation as we took to derive the scr
potential (14) is 'ust th

o erive t e screened

created b and
is just the sum of two screened pot t' 1en ias

char e. U
y an Q independently in the absenc f th

g . pon the subtraction of the divergent self-ener
terms, this results in

ivergent se -energy

v, (r) = —,I[QA&( —r)+QA&(r)]
4a, m,

3 p
[ (p .,zm, )+F(pm„—zm, )] . (15)

In the last line we have replaced QQI(4') b the
singlet stren thg gth of the one-gluon-exchange force 4a, /3.
This potential is invariant by r=r —r ——+ —r
should be.

r=r& —
r& ~—r, as it

1.0 : A /(q~. /4~)
I

0 8 —v=o

0.6

2 04:
0.2

0.0 —1

ITl e Z

I I I I

I

I

0.5

1.00

0,75

~ o.so

0.25

0.00

v./{4~.m./s}
v=O

—0.5

0.5

me Z

0.5

I

I

I I I I

I

I I I I

I

I I I I I I I I

1,0

0.8
A /(qm. /4~) 1.00

0.75

o.so

V,/ {4cx,m, /3) v=O. 5
(b)—

0.2

0.0,
1 —0.5

m, z
0.5

0.25

0,00 —0.5
ale Z

0.5

1.0

0.8

I I I I I: A'/(q~. /4~) 0 5 (c)
1.00 V./{4~.m./a) v=0.7

I I I I

[

I I I I

I

I I I I

I

I I I I

I

(c)

0.6

2
0.4

0.75

~ o.so

0.2 0.25

0.0 —1 —0,5

m, z
0.5 0.00 —0.5

m, z
0.5

1.0
A /(Qrn, /47r)

I

0 8 —V=0.9

0.6

2 0.4

1.00

0.75

~ o.so

I I

I

I I

1

V./{ca.m, /3} v=0.9

0.5

I I I I

I

I I I

0.2 —0. 0.25

0.0 —1 —0.5
m, z

0.5 0.00

me z
0.5

FIG. 1. Electric potential around a test charge (Qi at the ori-

Four ifferen
gin, with the plasma flowing in the +z d'e z irection with velocity u.

our ifferent cases are shown here: u =0,0.5 0.7 0
and axes

.9. The z

p axes are scaled by the screening mass m, .

FIG. 2. Two-boddy potential between a pair of test char es
calculated by estimating static mod fi d C emo i e oulomb energy of the
pair in the plasma which is flowing in th + d'e z irection with
four different velocities: u =0,0.5,0.7,0.9.
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We plot in Fi . 2p
'

g. 2 the equipotential surfaces of the
eff'ective two-body potential given by (15) at several
different values of U. The shape of the two-body potential
is identical to that of the screened C 1 bou om potential in
the case of U =0 since V (r)=QA ( ) br, ut they differ at
nonzero U due to the averaging procedure in (15). It is
seen that the strong anisotropy observed in the screened

oulomb potential A (r) is significantly red d
'

h
wo- o y potential. We note however that the potential

strength is further weakened when the la
and the e uian e equipotential surfaces are squashed in the ion i-
tudinal direction.

in e ongi-

One immediate consequence of thisis modification of
wo- o y potential would be the modification of the pT

dependence of the J/P suppression. Since the QQ poten-
tial is more effectively screened wh
th 1e p asma, it re uires less
J/g formation at lar

q
'

ess energy density to suppress the
t large pT. 8'e hence expect that the

transuerse moment-um dependence of the J/. '
mould be shghtly flattened" compared with the

ce o e + suppression

results obtained
mi t e previous

ined wtthout taking into account this effect.

of the trans
At present experimental conditions th 1e re evant value

e ransverse velocity U of a cc pair whi h bic can arely
pe rom the high-density plasma region is

transv
U =pT ET- .7. Here we have used =3 G VpT= e or the

to
ransverse momentum of the pair h h

'
bw ic is o served not

o suffer significant suppression. At such val e
y ittle modification in the two-bod t '

1 f- o y potential from
the static Debye screened potential. The effect of the dy-
namic screening is enhanced at h' h 1ig er va ues of U. Since
the escape velocit of they c"armonium becomes larger as
the lifetime of the plasma increases we

o e ynamic screening becomes more important
when a long-lived plasma is formed in the
mentalen a con itions.

rme in t e uture experi-

We finally examine the effect of the induced color-
magnetic field created b non
(12b)—12d . y nonzero vector potential

B(r)= m, G(m, p, m, z;U)e„,Q

where e =( sin, cos ) isis a unit vector perpendicular
oth to the direction of the plasma motion v and h

e posi ion vector p. The equistrength surfaces
of the magnetic field are shown in F' 3. Th'n ig. . e magnetic
field vanishes on the z axis and its stren th
imum at the d

i s s rengt becomes max-
a e istance of p=1/m, . Again we see that the

y e space inversionmagnetic field is not symmetric b th
z ~—z rejecting the plasma Qow pattern.

T is magnetic field will coupl t the o e intrinsic magnet-

s in-de end
ic moment of heavy quark and t' kan iquar and generate a
spin- ependent effective two-body potential given by

V (r)=pgBg(r) —p —Bg( —r)r
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where It& =Qo &/(2m&) are the color-magn t
ments of the h

-magnetic mo-
of the heavy quark. The potential (17) i

h
ype o t e two-body interaction one fi dne n s in atomic

p ysics. At the first glance it m 1 k 1 kay oo i e a spin-orbit
interaction, which arises in the ce case o atomic physics

p
'

g e electron magnetic moment toue ot ecou lin ofth
t e apparent magnetic field seen by the electron movin
in the electrostatic Coulomb field of the ne o t e nucleus. In the
present case, the interaction is caused b th 1y e reative

~~~ pair and the plasma medium instead of the
relative motion of . The m

is small compared with the modified Cou om

t an t e usual spin-orbit interaction h' h
'

ion w ic is proportion-
a o m&. However, the expectation value of (17) van-
ishes for all wave functions with d fiwi e nite orbital angular
momentum due to the vanish' ing azimut al angle in-
egra, and hence the effect would arise 1arise on y in igher-

corrections due to the coupli f d'ff'ng o i erent orbital
angular momentum states. W
effect of t

e expect hence that the
e ect of the magnetic interaction is very small.
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In conclusion, we have studied the dynamic Debye
screening for a test charge traversing a collisionless rela-
tivistic plasma of massless particles which are interacting
via an Abelian gauge field, and we found that the usual
Debye screened Coulomb potential is significantly
modified when the plasma is moving with respect to the
test charge. We have indicated a few possible interesting
consequences of these effects on the fate of a heavy-
quark —antiquark pair created in ultrarelativistic
nucleus-nucleus collision. Further work is needed to
draw more quantitative conclusions on the significance of
these effects. Especially, we note that the perturbative
calculation of the gluon self-energy at finite temperature
shows nonanalytic peculiar behavior in the long-
wavelength limit ' which did not show up in the

present treatment based on the semiclassical transport
theory. It would be very interesting to examine the
consequence of such an effect in the dynamical screening
considered here. It is also interesting to see how our re-
suits are modified by inclusion of the dynamical evolution
of the plasma medium, especially the effect of the col-
lisions in plasma on the screening.
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