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1 APRIL 1989

M. B. Gavela*

E-28049 Madrid, Spain

F. Iddir, A. Le Yaouanc, L. Oliver, O. Pene, and J. C. Raynal

(Received 25 July 1988)

We consider possible tests of CP violation or new strong-interacting sectors at future colliders, for
instance e+e . These tests minimize the Qavor identification needed. In the case of the standard
model no sizable observable is found, even if the Higgs sector becomes strongly interacting. The.
mean values of the simplest T-odd operators involving electron and positron polarizations and ini-
tial or final momenta are forbidden by the chiral-conserving interactions. More complicated ob-
servables involving correlations between final momenta gnd electron or positron polarizations can
in principle have nonvanishing expectation values. However, the effect is proportional to a very
small phase shift between left-handed and right-handed amplitudes. On the contrary, in theoretical
schemes beyond the standard model, with significant chirality-Hip couplings to fermions, either new
sources of CP violation or new strong-interacting forces could be tested below the threshold of pro-
duction of new particles.

I. INTRODUCTION

In this paper we consider whether the search for
aplanarities in e+e colliders with polarized beams can
give indications either on CP violation or on the existence
of a strongly interacting Higgs sector or any new source
of strong interactions. Momenta and polarizations are
reversed by time reversal. Thus a cross product
0 =(v, X vz) v3, where v; are momenta or polarizations,
is a T-odd observable. Consider a reaction e+e —+X,
where X is any final state, and call p, , p2, and p the mo-
menta of any ingoing or outgoing particle. Possible T-
odd observables could be, for instance,

O, =S' .(p, Xp2),

0~=(S' XS' ) p . (2)

The nonvanishing of certain mean values ( 0, },( 02 }
would be signals of T-odd effects, either final-state strong
interactions or CP violation.

Since operators (1) and (2) will involve initial and final
variables as well, by mean value we will mean the follow
ing. Let 0( Iu; I, I uf I ) be an operator dependent on ini-
tial and final variables. We will take the auerage of 0,
that we will denote (0},by summing ouer some final
states and sonze initial states with the corresponding
differential cross section as the weight, as is made precise
below by Eqs. (12)—(14). Of course, as we want to isolate
T-odd effects due to the dynamics, we will add to each
final state its symmetrical state under T, and similarly for
initial states. This is a procedure to define T-odd
aplanarities on which we will establish theorems within
the standard model and beyond it.

Sufticient conditions of T-odd effects would also be the
asymmetries

r

N(S' (p, Xpz)&0}—N(S' .(piXp2)(0)Ai= (3)
N(S' (p, Xpz) &0)+N(S' (pi Xp2) &0}

or

N((S' X S' ).p, & 0} N((S' X—S' ) p, (0}32=
N((S' XS' ) p, &0)+N((S' XS' ) p, (0)

(4)

S' (S' ) denotes the spin of the electron (positron). It is
assumed that the cross section is inclusive; i.e., there is a
sum over the dynamical variables which has not been
made explicit, or at least there is a sum to eliminate any
angular correlation between variables, although this hy-
pothesis will be relaxed later on.

Note that both T-odd aplanarities ( 0, },( 02 } and

A, , A2 are different, although superficially A„A2 look
like averages of 0„02. However, they are not, since the
events in the numerators of (3) and (4), count for +1 or
—1 according to the sign of 0&,02.

Let us consider the standard model. The e (e+) are
coupled only to vector bosons, the couplings of Higgs
particles being negligible, as they are proportional to the
masses. Chirality conservation implies that, to a very
good approximation, the amplitude for any e+e annihi-
lation process can be expressed as

A'f'=e (A'f'y„+ A'f'y„)e e

where AL, Az, and e are functions of the considered final
state, labeled by the superindex f, and e, e+ are Dirac
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spinors. It is always possible to take e" real, including all
the phases in the couplings AL, Az. To simplify the no-
tation, we will often delete the index (f) that character-
izes a particular final state or a particular family of final
states. Diagrams such as those of Figs. 1 and 2 give am-
plitudes of type (5). On the contrary, the @ED radiative
corrections (Fig. 3) lead, among other terms, to terms of
the anomalous magnetic moment form e+icr„q e e' '"
not considered in (5). We will still neglect these kinds of
term as they are suppressed by a factor a.

Our conclusion will be that the mean values &0& &

&02 &, or such aplanarities as A& and A2, vanish for
amplitudes of type (5). We think that the reason for this
result is that light Dirac fermions are close to Weyl fer-
mions, for which spin is not really an independent degree
of freedom, being aligned or antialigned to the momen-
turn. However, some T-odd effects are allowed if addi-
tional correlations exist between the polarizations and
momenta involved. This could be useful if, for instance,
the Higgs sector of the standard model becomes strongly
interacting. Our results can obviously be generalized to
any couple of ingoing or outgoing fermions verifying Eq.
(5). To explore such possible generalizations we will keep
a notation that distinguishes between m +, m, and we

will sometimes relax the equality m +=I . We will
e e

consider the case where heavy top quarks are produced.
We will now recall some known results concerning

time reversal, CP symmetry, and final-state interactions,
and discuss which combinations of mean values of T-odd
operators and which aplanarities are signal of either CP
violation or new strong interactions. Then we will prove
that there are T-odd operators of a structure more com-
plicated than (l) and (2) that can have nonvanishing ex-
pectation values. We will first present a proof using a po-
larized cross-section formalism, followed by a proof using
Dirac algebra, which will clarify the physical meaning of
our results.

II. T-ODD AMPLITUDES, CP VIOLATION,
AND FINAL-STATE INTERACTION

Consider a transition matrix T, expressed in terms of
its Hermitian and anti-Hermitian components:

T =
—,
'

( T + T ) + —,
'

( T —Tt ) .

The effect of time reversal ~ gives, if one assumes T in-
variant under ~,

&b~Tla &=7)[&«~—,'(T+T )~rb &+&«I —,'(T T )~rb &],

FIG. 2. e+e annihilation diagram via two 8' and v ex-
change.

where g is a phase. By Hermiticity,

& b[T[a & =~[&rb (-,'(T+ T')[«&*

&rb I

—,'(T T-') («—&*] .

In the lowest-order Born approximation, T-H, and only
the Hermitian part, the first term on the right-hand side,
contributes. This means that, if ~ is an exact symmetry,
we have equal probability of finding negative or positive
eigenvalues of the observable 0=(v, Xvz).v3, where v;
are momenta or polarizations. The reason is that 0 being
T odd, for each positive eigenvalue A, )0 there will be a
negative one A,„where the subindex r means that it cor-
responds to the ~-reversed eigenstate. A, )0 and A, (0
occur with equal probability because only the Hermitian
part of the transition matrix T can contribute in the Born
approximation, and the expectation value of 0 vanishes.
We conclude that to first order in H a nonvanishing ex-
pectation value of a T-odd operator 0 is a signal of w

noninvariance of the Hamiltonian, that is from the CPT
theorem, a signal of CP violation. '

But higher-order terms in H induce an anti-Hermitian
contribution to T, often referred to as unitarity correc-
tions because it is the absorptive part of the amplitude:

)if t 2 Tin Tnf~ (5' Pn )

Suppose that the mean value of a T-odd observable 0
(may be more general than 0, and 02) is measured in a
collider. How do we discriminate if it is due to CP viola-
tion or strong interactions? As we will see, this distinc-
tion can be made if we know how to identify at least one
Aavor. First it should be noted than an aplanarity always
appears through terms of the type ie" p v,„v2 v3pv
The i has to be combined with some imaginary interfer-
ence between two terms in the amplitude, in order to get
a real contribution to the cross section. To clarify the no-
tations we will parametrize the latter by i sin(5c~+5„),
where 5C~ is any possible CP-violating phase, and 5„ is

FICx. 1. e+e annihilation diagram via y and Z .
FIG. 3. e+e annihilation diagram with radiative QED

corrections.



1872 M. B. GAVELA et al. 39

any phase due to unitarity corrections in a strong-
interacting process such as a final-state interaction.

For any transition ( b T a ), we consider the CP
reversed amplitude (b T a) where ~b) =CP~b),
~a) =CP~a ). Let us consider a T od-d operator 0 such
as (1) or (2) and its matrix element between an initial
state ~i ) and a particular final state

~f ),
M = (f ~S ~

i ) (i ~0 ~i ), and let us consider the CP
transformed matrix element M = (f ~

S ~i ) (i
~
0

~

i ) (we are
considering as an example the particular case in which 0
acts only on initial observables; S is the S matrix) where
all the momenta and polarizations are replaced by the
CP-transformed ones of the corresponding antiparticle
in the CP-reversed process. Since ( b

~
T

~
a )= (b ~(CP) 'T(CP) ~a ), it follows that, for CP

conserving transitions, (CP) 'T(CP) = T and hence it is
proved that, for CP-conserving processes, M =M. It fol-
lows that the phase 5„ is the same in ( b

~
T

~
a ) and

(b
~
T~a ) while obviously, if there is CP violation, the

phase 5c~ is reversed. It is thus obvious that a nonvan-
ishing value for M —M is a signal of a CP violati-ng phase
while a nonvanishing M+M is a signal of unitarity
corrections.

In the case where the initial state
~

a ) is e +e, ~
a )

may be, depending on e and e+ polarizations, a CP
eigenstate. Then M can be looked for in the same reac-
tion than M, but one needs to identify at least one final
flavor, as we will see below.

III. T-ODD OPERATORS
WITH VANISHING EXPECTATION VALUES

Let us consider the inclusive process e+e .f+. . .

where f is some observed final state. We will here con-
sider the T-odd observables of the types 0, (1) and 02(2),
where the momenta p&, p2 can be p +, p, or any final

momenta pf. We will prove that the Incan values of these
T-odd operators vanish. We will first use for our proof a
formalism suitable for polarized cross sections and, to
clarify the physical meaning of our results, we will give
an independent proof using Dirac algebra.

A. Helicity formalism

We quantize the spin along the initial electron momen-
tum. Let us consider the amplitude for the process
e e ~f+X,
(2~) 54(p ++p —pf —p~) A„'f' „(p,p +,f +X)

e e

=(p, +p, —p, +p, —iSif +X&

and let us consider the auxiliary quantity

~(f) —~ g (f) g (f)+

where the sum extends over the unobserved final states X
and the superindex f indicates the observed final state.
The trace of this matrix, summed over f, is proportional
to the total cross section. The left (right) amplitudes (6)
involve a spin —

—,
' (+—,') electron and a spin —

—,
' (+—,')

positron, since the left-handed coupling couples to a

& ——,++ 0 0 cr

It is convenient to define the vectors:

M, = go'f', , S,
P —8 +~V —P + IJ —P

e e e e e e

M =go'f', , (S, XS,
P —P +~V —P + P I-t IJ +P

(9)

(10)

where the sum extends over the repeated spin indices and

The mean values of operators (1) and (2) will be given
by

1
Mi =(S' (pi Xp2)) = (M& (pi Xp&)) (12)

Mz=((S' XS' ) p) = (M2 p)
2

where 1V, are convenient normalization factors and the
expectation value in the last expression is taken over all
the variables besides the spin, already summed up in (9)
and (10). Of course, if p in (12) is p + or p, we under-

stand (7) as being summed over f; pi and p2 in (11)can be
p +, p, or pf, for instance. These are the special kinds
of mean values that we have outlined in the Introduction.

Note that we are considering as possible observable
(S' XS' ).p . Although all variables are initial, the
average defined above, ivhen a particular final state is ob
served, is dependent on the dynamics. This is the reason
why we make explicit the superindex f in the cross sec-
tion in (9) and (10).

(1) We now consider the observables of the type Oi(1).
From (9) and (8) we obtain that only M i can be nonvan-
ishing. M i is proportional to ( S' p ) since we choose
Oz along the p . But S' -p is actually a T-even, CP-
even oservable. Thus, no genuine T-odd aplanarity can
be nonzero, either coming from strong interactions or
from CP violation: both Mi +Mi (signal of final-state in-
teractions) and M, —Mi (signal of CP violation) vanish.

(2) Let us now consider the observables of the type
02(2).

(i) We will examine first the case where p=p . Then
e

the observable (S' XS' ) p is both T odd and CP odd
since the e e initial state transforms under CP by sim-
ply exchanging the spin

CP~ e,p, es, ',p&s=e'~~e, p, s', e+,p', &s

(g is an arbitrary phase related to the definition of C) and
the cross product S' X S' is antisymmetric in the spin

right-handed positron that has spin —
—,
' along p . The

e

only nonzero amplitudes are then A and A++ and
the only nonzero matrix element of the matrix o (7) are

o++ ++ 0 0 o++, ——
0 0 0 0
0 0 0 0
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P —~P +e e
I I

P —~P +e e

~(.f)
P —P +~V

e e e e

X(S", S», —S», S", ) (14)
p p p +p + P P P +P +

and the cyclic permutations x —+y ~z. Using the explicit
form (8), it is straightforward to show that the vector Mz
is zero, and thus the mean value M2 vanishes for any v.

An important remark is in order here. We have just
proven that (S" S» —S» S"+ ) =0, but it is not true
that (S" S»+ } =0. The latter observable is T odd, but
it is not rotational invariant around the Oz axis. Thus
such an observable may be nonzero only if we have sin-
gled out some direction perpendicular to the z axis or, in
other words, if pf depends on the initial polarizations.
An example of this phenomenon will be discussed below.
On the contrary, whenever pf does not know of the initial
polarizations or momenta implied in the observable, the
previous theorem holds, i.e., M2=0. Note that
(S S»+ ) is transformed by CP into (S» S"+ ) . The
combinations

((S" S» +S» S" )(v+v) (15)

correspond to CP-odd and CP even observables (-v T
means perpendicular to Oz). Note in particular that if no
final-state identification is made the combination v+v is
implicitly considered. It follows then that

indices. Thus, a nonvanishing M2 is a signal of CP viola-
tion only.

(ii) We consider now the expectation value of an opera-
tor of the type 02, ((S' XS' ).v), where v is some
final particle momentum pf. Denotinq by v the momen-
tum of the antiparticle f, ((S' XS' ).(v+v) } is CP
even and signals unitarity corrections, while
((S' XS' ).(v —v)} is CP odd and signals only CP
violation. The observation of the latter needs flavor
identification. The mean value Mz of this type of opera-
tor is given in terms of the vector M2 (10) by (13). Quan-
tizing as usual the spin along the electron momentum,
the components of M2 read

1+rsg, —
o ac Tr ( Al E'I + A~8„)(P +rn )

1+ysg +
X ( AL gL + Ag eg )(p + —»n, + )

(17)

X(ALE'g+ Agg~ )p +g +], (18)

where o'2' is the part in (17) which depends on S and
S +. From S .p =S +.p + =0 (since S,S + are po-e e e e e e ' e
larization vectors) we can anticommute momenta and
spin to get alternatively the form Tr( p E' p + )

or'Tr( ' ' p'+gp — ), whence we can conclude that

eL z and el z have to be orthogonal to the (p,p ) hy-

perplane. Indeed, assuming e=ap +bp +, we get
p' 8p +=ap p ++bp +p =0, since we neglect m, .
The vectors S and S + are also orthogonal to the

(p,p +) hyperplane, since, in the massless case, the lon-

gitudinal polarization becomes proportional to the
momentum

S 1
p +O(m, )p + (19)

The e„are vectors depending on the final-state momenta
and polarizations [to simplify the notation we delete from
now on the index (f) from the general expression (5)] ac-
cording to the considered diagrams. For example, in the
process e+e ~K+K where H+, H are two spin-
zero particles, one has e~p + —p

We consider the m, =0 limit, and the two kinds of ob-
servables, (1) and (2).

(1) Observables of the type 0&. In the m, =0 limit, no
expectation value M, can appear since it would come
from the term in (17) which contains ysg but not

ysg +. This term is a trace over an odd number of Dirac
e

matrices, that vanishes.
(2) Observables of the type Oz. Dealing now with ob-

servables of the form (2), we are left with the trace

o'"~ —
—,
' Tr[(A~g~+ A~a~)P g

((S" S» +S» S" )(v+v) } (16)

is a pure CP-odd signal. As stated, no final Qavor
identification is needed, at the prize of tagging a trans-
verse axis (x or y) through some correlation between po-
larizations and final momenta. This is a particular case
of our 02 observables to be defined below.

o' '&x g Tr(AI. E'I. + A~&~)m

rsg, — .+ . rsg+L L

X ( A~gl+Aggs )m + (20)

and therefore p S =0 (m, ). Straightforward manipu-

lations from (17) lead us to the result that the longitudi-
nal polarization has a nonvanishing contribution:

B. Dirac algebra

Starting from (5), the cross section is proportional to
the following trace of Dirac matrices:

since the I/m, in (19) cancels the m, factor here. But
these contributions lead to no T-odd e6'ect. They simply
lead to the expected selection of left (right) helicities
when coupled to left (right) currents. Finally, we obtain
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o'~2'~ Tr[(1—o p )(S' cr)(e o)(1+o p +)(S' o)(e* cr)]A LAg

+ Tr[(1 c—r p )(S' cr)(e*.o)(1+o"p +)(S' .o)(e cr. }]AL*,Az . (21)

We see that the part in the cross sectjon which depends on
the polarizations is only the cross product between left and
right couplings In . any process where only left (or only
right) couplings are involved, the polarized electron and
positron act exactly as if they were unpolarized. If we
sum over all possible values of e in order to wash out any
correlation with S, S +, we recover the result of Sec.
III: S +, S appear to be parallel, and no cross product
S' XS' can have a nonzero average.

IV. T-ODD OPERATORS WITH NONVANISHING
EXPECTATION VAI.UKS

A. Example: Correlation between initial polarizations
and a final state

Let us assume that we do not sum over all final states,
i.e., over all the possible values of e„ that characterize
possible final states in (5). We will assume, furthermore,
that there is a correlation between the particular final

state considered and the e or e+ polarizations, i.e., a
correlation between e and S' or S' . Then, a nonzero

auerage for a T odd obseru-able is possible One e. xample
could be the mean value of the operator

O~=[(S XS ~) p, ](e S +) (22)

([(S XS +}p, ](e S +) ) cc Im(AL A~ ) . (23)

The mean ualue of such an obseruable does not uanish in
the m, =0 /imit and moreover it can only be nonzero if
there is a relatiue phase between left and right amplitudes.
To select a genuine CP-violating effect or a T-odd effect
due to strong interactions we will have to consider, re-
spectively, the combinations

To obtain the mean value of this operator it is enough to
multiply the right-hand side (RHS) of (21) by (e S + ) . If
we now assume e to be real so that all phases are included
in AI, Az in (5), we obtain

where A is given by the expression

A ~N(S" =+1,S»+ =+1)

+N (S' = —1,S»+ = —1)
e +

N(S—" = —1S» =+1)

—N(S =+1,S»+ = —1)—IS +~S I . (26}

B. An example of T-odd asymmetry in supersymmetry

A nonvanishing value of (25) would be a sufficient condi-
tion of the existence of T-odd CP-even effects due to a
strongly interacting sector. Our conclusion is then that
such correlated aplanarities as A ~ need not vanish in the

m, =0 limit. However, in the framework of the standard
model, any estimate that we have made leads to very
small prediction. s for such aplanarities, since the phase
shift between right and left amplitudes (5) turns, in prac-
tice, to be very small. This is so even if we consider a
strongly interacting sector, where final-state interactions
between 8', Z, and Higgs particles do not discriminate
among bosons which have been produced through a right
{or left) coupling to e+e . On the contrary, any new
strong-interacting sector which could appear in the col-
liders at high energies could be detected by this kind of
observables before reaching the production threshold of
the particles responsible for the new force. We have in
mind, for instance, models where, instead of the coupling
in (5), the fermions are coupled through forces which
change chirality as, for instance, eel where P is a scalar.

This holds also for the 0, and 02 type of observables
and asymmetries A„Az discussed before as signals of
unitarity corrections. To quantify these effects, one needs
the discussion of precise models, which we do not intend
here.

([(S XS +).p, ][(e S ) +(e.S +) ]) (24)

A(lp +I & lp„+I)—A(lpH+I & Ip„+I)

A ( Ip„+ I
& Ip„.I )+ A ( lp + I

& lp„. I )
' (25)

X V X V

the upper (lower) signs corresponding to CP odd (-even)-
operators. For example, if we consider the production of
two (pseudo)scalar final particles H+H, then
e ~ (pH+ —

pH ). One may think of Higgs particles

whose direct coupling to electrons is negligible and thus
does not spoil our starting hypothesis (5). An asymmetry
of the CP-even type would be, for example,

An example of asymmetry of the type considered in
this section is studied by Kizukuri, that considers in a
supersymmetrie model a decay: Z' —+ 8'&+ W, ~e +v

+e v' where 8'z, O'I are 8'-inos, i.e., fermions cou-

pled to the Z boson via a Lagrangian: I.'"'

=eZ W„(GLy~t+G~y„~)W, + H.c. The decay amph-

tude is at the tree level of the form (5) except that the fer-
mions are in the final state instead of the initial state.
The author predicts an aplanarity of the type e (Sh XS&)
where e is the Z polarization. Looking at formula (13) in

Ref. 3, it appears that this aplanarity is proportional to
scalar products (pI, S&), etc. (labeled p, p» in Ref. 3 ),
which means that it is of the type A 2 (25). The author
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takes advantage of the fact that GL and GR may have a
relative phase. This is an example of our main con-
clusion: T-odd observables (whether they are related to
CP violation or to unitarity corrections) may exist with
polarized fermions interacting through chiral-invariant
interactions if one considers situations in which some
final momentum coupled to the current is correlated to

the fermion polarizations. Furthermore, some relative
phase between right and left amplitudes is needed.

C. General T-odd terms: Nonvanishingmasses

We start from Eq. (17), but making explicit now the
sum over possible final states that could be observed:

cr y Tr (A' '8' '+ A'f'g' ')(P +m )e eff'
I+yqg 1+ysg +

( A 'f"g'f'*+ A 'f"g'f'*)(P —m )L L R R e+ e+ (27)

It is always possible to take e„real in (5), putting the phases in AL, Az. We now make the remark that any T odd te-rm
in the sum (17) must be proportional to Im( A I A z ) since any antisymmetric vector product comes from
Tr(yydd ) =4i e &rsa b~c rd and the i on the RHS has to be canceled by another factor i to give a real contribution to
the cross section. It is now easy to check that all terms proportional to Im( AL' ) Az( ") in (27) are odd under the ex-
change of (p, S )~(p +,S +). Indeed, after some manipulations we get, from (27),

1+y5g +
cr((p, S ),(p, S )) cr(—(p ~,S +),(p,S ))= g Tr (AL '*g'L, '+A+ '*E'I(')(Ii + m+—)

ff'
1+y5g

X ( A (f'8'f'+ A 'f'8'f')(P' +m )L L R R e e

1+ysg +(A'f'8'f'+ A fV' ')(gf +m )

1+y~gx ( A (f')+g(f')+ A (f')eg(f'))(p
) (28)

where we have permuted the matrices under the trace and exchanged f ~f ' in the first trace. From (28) it is clear that
only terms of the form Im(AL(I()AL(&) ) are odd for the exchange (p, S )~(p +,S +) while the part in cr which is
even for the latter exchange will include only real parts of interferences in which we are not interested here. We thus
come to the important conclusion, confirmed by explicit computations, that no term proportional to
is p~~ pp+S~ S + can appear, leading to no aplanarity when the vectors e are averaged on, i.e., to no mean value of
the type M2 (13) nor aplanarity of the type A2 (4). We are left with only two types of T-odd terms in o. First, terms
involving six vectors, analogous to

(e & sp p~+S S + )(e' 'S +) Im(AL 'A~ "—Az 'AL ")—(e ~e+)

or, similarly,

(e 13 sp S~ S +e( ' )(e( 'p ) Im(AL 'Az '* —Az( 'AL ')—(e ~e+) .

These lead to aplanarities of the type A 2 (25).
Second, since we do not anymore assume vanishing masses, we have now new terms involving only four-vectors:

a 0 ~(f)y~(f )s Im( A (f) A (f )e A (f) A (f )e
)apyS e ~e+ I L R R

S Si' ~'f"~'f'"m m Im(A'f'A'f'* —A'f'A'f'") .~aPy5 e e+ 6 6 &e ~e m L L R R

(29)

(30)

(31)

(32)

These terms do not depend anymore on a nonvanishing
phase between left and right amplitudes unlike the case in
Eqs. (29) and (30), but on a nonvanishing phase between
left (right) amplitudes corresponding to vectors e„'f' vs
E' '. This means that their existence depends on the in-
terference between different processes in the final-state in-
teraction. We will leave aside the study of this equation

in this paper.
When we speak of non-negligible masses we have first

in mind the t quarks. These will furthermore introduce
in the scheme non-negligible coupling with the Higgs
particles which are outside our hypothesis (5), which in
turn lead to some contributions to the aplanarities.
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V. CONCLUSION

To summarize, we have studied possible tests of T-odd
effects in e+e colliders, either due to genuine CP viola-
tion or to final-state strong interactions. We have shown
that the simplest T-odd observables of the form
(v, X v2).v3, where v; are e or e polarizations and ini-
tial or final momenta have vanishing expectation values
in the standard model. This fact follows in spite of the
CP violation of the standard model and even if the Higgs
sector is strongly iriteracting, and it is essentially due to
the chirality-conserving character of the gauge interac-
tions; i.e., it holds exactly in the m, =0 limit. More com-
plicated observables correlating final momenta and initial
lepton polarizations are on the contrary allowed, but they
are in practice very small in the standard model, since

they are proportional to a small phase shift Im (AL Az)
between the left-handed and right-handed amplitudes.
We give examples of this type of effect in supersymmetry,
and in the production of Higgs-particle pairs. More gen-
erally, we have studied in detail the general from of the
T-odd observables that can allow to detect new CP-
violation sources or unitarity correction effects due to
nonstandard strong-interacting forces. Finally we have
briefly discussed the case of heavy quarks in the standard
model.
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