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Are 't Hooft indices constrained in preon models with complementanty?
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(Received 10 August 1988)

We present a counterexample to the conjecture that the 't Hooft indices for composite models
satisfying complementarity are bounded in magnitude by 1. The model is based on the metacolor
group SU(9)Mc with two preons in the representation. 36 and two preons in the representation 126.
We obtain the 't Hooft index 12 for this model.

In a previous paper' we made a conjecture that in a
preon model in accord with complementarity the
't Hooft indices which correspond to the solution of the
't Hooft anomaly-matching conditions do not exceed 1

in magnitude:

This conjecture is based on a physical point of view that
if the indices exceed 1, it is hard to interpret physically
the implied degeneracies in preon models with com-
plementarity. The conjecture was further elaborated in
Ref. 4, which showed that the only known example that
seemed to violate the conjecture does indeed satisfy the
conjecture. However, a rigorous mathematical proof of
the conjecture was lacking. In this paper we shall discuss
possible sources of degeneracies which might occur in
preon models based on complementarity and then give a
counterexample to our conjecture. The model is based on
the metacolor gauge symmetry SU(9)MC and the global
color-flavor symmetry SU(2), X SU(2)z X U(1).

We first give a general discussion of how and where de-
generacies of fermion representations might occur in
preon models satisfying complementarity. The degenera-
cies, if they exist, will imply that the t Hooft indices cor-
responding to those degenerate representations exceed 1

in magnitude, thus violating the conjecture. Let us
denote the metacolor group by 6Mc and the global
color-flavor group by GCF. In general, there are three
possible sources of degeneracies.

Case 1. Branching in GMC or GCF. When the
metacolor group GMc gets broken into GMc by tum-
bling, two preons with representations P&=(r&,R&) and
Pz=(rz, R2) under GMC XGCF might result in degenera-
cies of representations under GMC XGCF. Namely, if
R

&
=R

p
=R and if r, and r2 include the same representa-

tion under GMC, then there will be two fermions with ex-
actly the same representation under GMC X G~„. For ex-
ample, let GMc=SU(N) and GMc =SU(N 1), and sup-—
pose that there exist P, =(;R) and P2=( EI;R) in the
model. Then by the following branching rules of SU(N)
into SU(N —1),

~1+
(2)

Pi =(36;2, 1,5), P~=(126;1,2, —1) (3)

under SU(9)MC X SU(2)
&
X SU(2)~ X U(1)~.

In the Higgs phase this model goes through seven steps
of tumbling, and we end up with 12 massless fermions
with the representation

we find that there exist two fermions with representation
(;R) under GMC XGc„. If these fermions remain mass-
less after tumbling stops, we will violate the conjecture.
The same argument follows for the case of the breaking
of the global chiral symmetry GcF.

In case 1 degeneracies come from two different fer-
mions (P& and P2 above). In cases 2 and 3 below we dis-
cuss possibilities of degeneracies resulting from one fer-
mion.

Case 2. Breaking into a diagonal subgroup. It com-
monly happens in preon models with complementarity
that two same groups (often one from GMC and the other
from Gc„) break into the diagonal subgroup (as part of
Gc„). When this happens, the representations in the di-
agonal subgroup might have degeneracies. For example,
suppose GMc X Gc„=SU(3) X SU(3) breaks into the diag-
onal subgroup GMC =SU(3). If a fermion P =(15;8) un-
der GMC X Gc„exists, it results in two 15 representations
under GCF. This is a possible source of degeneracies.

Case 3. Intrinsic degeneracies in branching. This is the
most naive case. In the breaking of a group G (GMC or
GcF ) into its subgroup G, a certain representation might
produce degeneracies in branching. For instance, when
G =SO(10) and G ' =SU(5) X U(1), 560 of G branches into
two copies of 10( —1) under G' (and other representa-
tions). Also, for G =E6 and G'=F4, 650 of G includes
two 26 of 6' in the branching.

We have so far considered various possibilities for
violation of the conjecture, Eq. (1). The question is then
whether any of these three cases actually occurs in
specific models. Here we give an example in which cases
1 and 2 are realized. The model is based on the
metacolor group GMC=SU(9)Mc with two preons in the
36 representation of SU(9)MC and two preons in the 126
representation of SU(9)MC. The global color flavor-
symmetry group is thus SU(2)& X SU(2)~XU(1)F, an'd the
preons have the representations
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(4)

under GMC X GCF =SU(4)MC X U(1)E. Hence, this
presents a counterexample to the conjecture, Eq. (1). The
seven steps of tumbling are summarized in Fig. 1.

We shall now give the details in the Higgs phase. For
the first tumbling the condensate in the most attractive
channel (MAC) is given by combining two preons P7 in

(3) into the symmetric 9, i.e.,

under SU(9)MC. By the meta-Pauli principle, this MAC
condensate has the representation

(9s'1 3s —2) (6)

SU(8)MCXSU(2)i XU(1)i XU(1)2, (7)

under SU(9)Mc X SU(2), X SU(2)2 X U(1 )~. This breaks the
symmetry down to

126X 126—+9~ (5)
where U(1)& and U(1)z are linear combinations of three
U(1)'s: U(1)F, U(1)s2 coming from the breaking of SU(2)7,
and U(1)Mcs coming from the breaking of SU(9)MC into
SU(8)Mc XU(1)Mcs. For the U(1) quantum numbers, we
can set, for instance,

SU (9)gc x SU (2) ~
x SU (2) 2 x U (1)E

Tumbl ing 1

SU (8)etc x SU(2) 1 «(1) 1 x U (1)2

Q(U(1), ) =Q(U(1)~) —6Q(U(1)s2)+Q(U(1)MC, ),
Q(U(1)2)=Q(U(1)F) 2Q(U(1)s2)+ &Q(U(1)Mcs) ~

The remaining massless fermions are then

(8;2, 12, —")+(28;2,3,4)+(56;1,—9, ——')

(8)

Tumbl ing 2

SU(8)HC x SU(2) ~
x U(1) ~2

+(56;1,—3, ——', )+(70;1,6, 2) (9)

under (7).
For the second tumbling the MAC condensate is given

by

70X70 1~ (10)

Tumbling 3

SU(7)&tc x U(1)3 «(1)4

Tumbling 4

under SU(8)MC. This condensate has the representation

N~ = ( 1s, 1, 12,4)

under (7) and breaks the symmetry down to

SU(8)MCXSU(2), XU(1)i2,

where U(1)&2 is a linear combination of U(1), and U(1)2.
One can choose, for example,

SU(6) )ac x U(1) 3 x U(1)4'

Tumbling 5

Q(U(1) )2) = —', Q(U(1) ) ) —2Q (U(1)p)

The remaining massless fermions are then

(8;2, —9)+(28;2, —6)+2(56;1,3)

(13)

(14)

SU (5)gg x U (1)3 x U(1) 4
under (12).

For the third tumbling the MAC condensate is given

Tumbling 6 28X56 8 (15)

under SU(8)MC. This condensate has the representation

SU (4) tie x U(1)3 x U(1)4"'

Tumbl ing 7

N3=(8;2, —3)

under (12) and breaks the symmetry down to

SU(7)Mc X U( 1)3 XU( 1)4,

(16)

SU(4)ttc x U(1)E

FICx. 1. The seven steps of tumbling in the SU(9)«model.

where U(1)3 and U(l)4 are linear combinations of three
U(1)'s: U(1),z, U(l)s, coming from the breaking of SU(2)„
and U(1)Mc7 coming from the breaking of SU(8)MC into
SU(7)Mc X U(1)M( 7 We set
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+(21;8,—2)+2(35;0,6) . (19)

Q(U( 1)3)=Q(U(1) iq)
—8Q(U(1)~i) —Q(U(1)MC7)

(18)
Q(U(1)4) =Q(U(1),~)+ 20Q(U(1)s, )+Q(U(1)MC7) .

The massless fermions are then, under (17),

(1;—20, 8)+(1;—12, —12)+(7;—16, 10)+(7;—12,0)

+(7;—8, —10)+(7;—4, —20)+(21;0,—18)

under SU(7)Mc. This condensate has the representation

4g=(7;0, —12)

under (17) and breaks the symmetry down to

SU(6)MC X U(1)3X U(1)4, (22)

where U(1)4 is a linear combination of U(1)4 and U(1)Mc6
coming from the breaking of SU(7)Mc into
SU(6)McXU(1)Mc6. We choose

For the fourth tumbling the MAC condensate is given
by Q(U(1)4, ) =Q(U(1)g) —2Q(U(1)Mc6) . (23)

21X 35 7 (20) The remaining massless fermions are then, under (22),

(1;—20, 8)+(1;—16, —2)+2(1;—12, —12)+(1;—8, —22)+(1;—4, —32)+(6;—16, 12)

+(6; —12,2)+(6; —4, —18)+(6;0,—28)+(15;8,—6)+(15;0,14) . (24)

Note that we have a degeneracy of metacolor-singlet fermion (1;—12, —12), which will remain massless all the way to
the last tumbling.

For the fifth tumbling the MAC condensate is given by

6X 15—+6

under SU(6)Mc. This condensate has the representation

N~=(6;0, —14)

under (22) and breaks the symmetry down to

SU(5)MC X U(1)3 XU(1)4,

(25)

(26)

(27)

where U(1)4 is a linear combination of U(1)~ and U(1)Mc~ coming from the breaking of SU(6)Mc into SU(5)M& X U(1)Mc~.
We set

Q(U(1)4 ) =Q(U(1)4) ——", Q(U(1)MCg) .

The remaining massless fermions are then, under (27),

(1;—20, 8)+2(l; —16, —2)+3(1;—12, —12)+(1;—8, —22)+2(1; —4, —32)+(1;0,—42)

+(5;—16,—'," )+(5;—12 —")+(5'—4 ——")+(5'8 —")+(10;8,' ——")+(10;0—")

(28)

(29)

For the sixth tumbling the MAC condensate is given by

10X 10 5s

under SU(S)M&. This condensate has the representation

@6=(5s;0,—", )

under (27) and breaks the symmetry down to

SU(4)MCXU(l)3XU(1)4",

(30)

(31)

(32)

where U(1)'," is a linear combination of U(1)4 and U(l)M&4 coming from the breaking of SU(5)Mc into
SU(4)McXU(1)Mc4. We choose

Q(U(1)4') =Q(U(1)4 ) ——", Q(U(1)MC4) .

The remaining massless fermions are then, under (32),

(1;—20, 8)+3(1;—16, —2)+4(1;—12, —12)+3(1;—4, —32)+(1;0,—42)+(4; —16, 19)

(33)

+(4; —12,9)+(4;—4, —11)+2(4;8,1)+(4;0,21)+(6;8,—20) . (34)
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6X6—+1+ (35)

under SU(4)Mc. This condensate has the representation

For the seventh and the last tumbling the MAC con-
densate is given by

The branching of the fermions in (3) gives four preons:

P'1 =(36;5), P1' =(36;5),

P2 =(126;—1), P2' =(126;—1)
(40)

@7=(ls, 16, —40)

under (32) and breaks the symmetry down to

(36)
under SU(9)McXU(1)~. Let I be the 't Hooft index for
the composite fermion (1;9) under SU(9)McXU(1)F.
Then the 't Hooft anomaly-matching equations are '

SU(4)MCX U(1)E, (37)

where U(1)z is a linear combination of U(1)3 and U(1)4".
We set

Q(U(1)E )= —
—,",Q(U(1)3)—

—,', Q(U(1)4" ) .

The remaining massless fermions are then, under (37),

12(1;9) .

(38)

(39)

Since we have only metacolor singlets as massless fer-
mion, tumbling stops here. Note that we ended up with
the 12-fold degeneracy.

Finally, let us consider the model in the confining
phase. Following the Higgs phase, we assume that
SU(2), X SU(2)2 in the color-flavor symmetry is complete-
ly broken so that we should apply 't Hooft anomaly
matching to the preon model based on SU(9)Mc X U(1)~.

U(1)F: 108=9l +
(U( 1)~): 8748 =7291 +

(41)

where the ellipsis indicates contributions from other com-
posite fermions. Thus, we have the solution

l =12 with all other I;=0 . (42)

This solution corresponds to the same massless fermions
as in the Higgs phase [see (39)). That is, complementarity
holds in this model. Equation (42) gives an explicit coun-
terexample to our conjecture, Eq. (1).

In this paper we considered possible sources of degen-
eracies in preon models which are in accord with com-
plementarity and presented a counterexample to the con-
jecture about the constraint on the 't Hooft indices, thus
disproving it. However, mathematical understanding of
the whole subject is still missing.
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