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The Witten index can be defined in many supersymmetric theories by formulating them in the
space-time R XS'. If the index is nonzero for any value of the radius of S', it can be shown that the
theory does not break supersymmetry in Minkowski space. This approach rules out supersymmetry
breaking in a large class of models, chiral and otherwise. The index arguments are consistent with
previous instanton calculations which indicate supersymmetry breaking in certain theories.

If supersymmetry plays a role in nature, it must be bro-
ken since fermions and bosons with the same mass are
not observed. One possibility is that a theory which has
global supersymmetry at the tree level might break this
symmetry dynamically through nonperturbative effects. '

A simple way of knowing if this happens was discovered
by Witten. For a theory with global supersymmetry,
define an index 5 equal to the number of bosonic states
X~ minus the number of fermionic states N~ in the sub-
space of energy eigenstates which have zero spatial
momentum. If 6 is nonzero, supersymmetry can be
shown to remain unbroken. '

To count the number of states, one regulates the theory
by formulating it in a finite volume. Then the energy
spectrum is discrete. In super symmetric theories, all
states have non-negative energy, and for any positive en-
ergy, there is an equal number of bosonic and fermionic
states. So 6 only gets a contribution from the zero-
energy states: Xii(0) —XF(0).

But the number of such states is not finite if the theory
contains zero-energy bosonic and/or fermionic modes.
States with an arbitrary number of such modes have zero
energy (assuming that the interaction energy between two
or more modes is zero). Then Nn(0) [and perhaps cVF(0)
as well] is infinite and b. becomes ill defined.

Witten was able to formulate several theories in a rec-
tangular box with suitable boundary conditions in such a
way that there are no zero-energy modes. The index can
then be easily counted. However, this method fails in
two classes of theories: (i) those with chiral fermions, i.e.,
scalar multiplets in a complex representation of the gauge
group, and (ii) those with massless fermions belonging to
a real representation of the gauge group. Defined in a
box, these theories necessarily contain zero-energy fer-
mionic modes and 6 cannot be computed. This is unfor-
tunate because some very interesting theories belong to
these two classes; Thus supersymmetric SU(5) and E6
grand unified theories are of type (i), whereas massless su-
persymmetric QCD is of type (ii).

To complete the program of ruling out supersymmetry
breaking through index arguments alone, one must be
able to define the index in every theory. In this paper we
significantly extend the class of theories in which the in-
dex can be calculated. In particular, some versions of the

models mentioned above can be dealt with.
The new idea is to define theories in the space-time

R XS . On S, the spectrum is discrete and there are no
boundary conditions to worry about. Generally speak-
ing, the curvature eliminates all the zero-energy modes.
If the index can be calculated here and is nonzero, then
one can let the radius p of S go to infinity and conclude
that the limiting Minkowskian theory also has a nonzero
index and cannot break supersymmetry. Unlike the in-
dex (whose precise value, though independent of the
volume, does depend on the nature of the finite space and
the boundary conditions), the absence of supersymmetry
breaking is a physical result and cannot depend on how
the Minkowskian theory is approached as a limit.

Supersymmetry in R XS has been discussed in Ref. 4
to which the reader is referred for mathematical details.
For X= 1 supersymmetry, the superalgebra is modified
from Minkowski space by a piece proportional to p

I Q, Q, I =2io. ,B ——cr,R .
P

Here Q, Q. (ct, a=1,2) are the supersymmetry genera-

tors and the operators c) =(t)o, c), ) generate time transla-
tion and rotations of S (which reduce to translations in
flat space as p~ ~ ). The last term in (1), which is absent
in Oat space, contains the well-known R operator. This
operator assigns U(l) charges to the various fields as fol-
lows. In a vector multiplet, the gauge boson is neutral
whereas the charge of the gaugino is +1. In a scalar
multiplet of R charge rs, the scalar field has charge r&

whereas the fermion has charge r&
—1.

An important consequence of (1) is that for any theory
in R XS, the R charge of each scalar multiplet must be
specified and the action is supersymmetric if and only if it
is also R invariant. (Since the kinetic terms are automati-
cally R invariant, this means that all the I' terms must be
invariant as well. ) This indirectly provides a rationale for
preferring R-invariant theories in Minkowski space, as is
usually done for purely phenomenological reasons.

The R charge ri, of a vector (gauge) multiplet is zero.
For a scalar (chiral) multiplet, the charge rz could be any
real number in Minkowski space. On S, however, a
curvature-dependent mass term is required by supersym-
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metry for the scalar field A (Ref. 4). This term equals

p rs(2 —rs) A *A, and is negative unless

Q~~s ~2 (2)

This is necessary for the Hamiltonian to be bounded
below.

The R operator generates a U(1) symmetry which is
anomalous in general. This would be disastrous in
R XS since, by (1), supersymmetry itself would then be
anomalously broken, and the connection between a
nonzero index and the absence of supersymmetry break-
ing would no longer hold. Demanding that a theory be
nonanomalous imposes severe constraints on the R
charges of the various scalar multiplets as we will see.

To summarize, a consistent supersymmetric theory ex-
ists on S only if all the charges rz can be chosen such
that (a) all F terms in the action are R invariant, (b) each
rs satisfies 0 ~ rz ~ 2, and (c) the R current is anomaly-
free at the one-loop level. These three conditions form
the central result of this paper.

Next, we define 6 in R XS as the difference Nz —Nz
in the subspace of energy eigenstates in which the opera-
tor P =iB3—R /p is zero [Th.e Hamiltonian H, a Hermi-
tian supersymmetry generator Q =(I/i/2)(Q, +Q, ) and
the operator P mutually commute, and Q =H +P.
Also, the vacuum belongs to the subspace P =0. ] ~ith
this definition of the index, the connection between a
nonzero 6 and the absence of supersymmetry breaking
continues to hold.

The value of 6 follows immediately from the spectrum
of states. The latter must be calculated with all the com-
plicated interactions taken into account. In the litera-
ture, however, the simplifying assumption is always made
(but never rigorously justified), that it is sufficient to look
at the perturbative spectrum, i.e., nonperturbative effects
do not change the value of A. So one takes the extreme
step of setting all the interaction terms equal to zero (so
that the Lagrangian is at most quadratic in the various
fields), and then calculating the free spectrum.

On doing this in R XS (Refs. 4 and 6), we find that if
each of the charges r~ satisfies 0& rz (2, then there are
no zero-energy fermionic or bosonic modes in the scalar
multiplets. The gauginos and gauge bosons do not have
any zero-energy modes. Hence there is only one zero-
energy state, the vacuum, and this is bosonic. So
equals one and supersymmetry is unbroken. Note that
the index in R XS is different from that in Minkowski
space where it is not always one.

If any one of the rz equals zero or two, there are zero-
energy bosonic and/or fermionic modes and 6 becomes
ill defined. There is a reason why 6 changes abruptly if
an r~ becomes zero or two. If 0&re &2, the mass term
mentioned earlier produces a potential which rises to
infinity at large values of the field A. For rz equal to zero
or two, the potential is Oat. It is known that the index
may change suddenly at a particular value of a parameter
if the asymptotic form of the potential changes there.
Note also that only at rz =2, an F term for that parti'cu-
lar scalar multiplet is allowed in the action by condition
(a) above. Since such a term breaks supersymmetry, it is

logical that the index should change discontinuously at
Ig =2.

The index is well defined only if all the rs satisfy
0&rz (2. This also ensures that the tree-level potential
has no Oat directions for large fields.

We now examine several models in light of require-
ments (a) —(c). Each model will contain a single non-
Abelian gauge Inultiplet coupled to various scalar multi-
plets. In each case, we will point out the conditions un-
der which supersymmetry breaking can be ruled out. To
simplify matters, we will ignore the possible presence of F
terms in the tree-level action, so that condition (a) will be
trivially satisfied.

The first example we consider is massless supersym-
metric QCD with N colors and M fiavors. The left-
handed quarks and antiquarks come in multiplets 3, and
A; (i =1, . . . , M), transforming as the fundamental and
antifundamental representations of SU(N). Let the R
charges of 3, and 3; be I"~ and r ~ . The R current is sus-

ceptible to a triangle anomaly coming from the gaugino,
the quarks, and the antiquarks with R charges equal to
+1, r„—1, and r~ —1, respectively. The appropriate
group theoretical characters can be found in Ref. 7. The
character Cz- is defined by Trk, zkz-= Cz-6'", where the A, &-

are the gauge group generators in the representation T.
The values of Cr in the fundamental (or antifundamental)
and adjoint representations of SU(N) are —,

' and Ã, respec-
tively. The R current is therefore nonanomalous
if N+( M/ )2(rz —I) +(M/2)(rz —1)=0, or rz+r
=2(1 N/M) —This is . consistent with condition (b) if
and only if M &N. All the r~ and rz can be chosen to lie

in the range 0 & rz, rz & 2 if

N
N —3

(4)

Since the index is then equal to one, supersymmetry is
unbroken if the number of Aavors exceeds the number of
colors.

If M =N, all the r~ and r~ can be chosen to be equal
to zero so that supersymmetry can be consistently defined
on S . However, 6 is not well defined and one cannot say
anything about supersymmetry breaking. Finally, if
M &N, supersymmetry is anomalously broken on S [if
one imposes condition (b)], and taking the p~ ~ limit
does not permit us to conclude anything about supersym-
metry breaking in Minkowski space.

Next, we consider an SU(N) gauge theory (N ~ 4) with
M generations of scalar multiplets, each generation con-
sisting of one antisymmetric tensor representation
T =N(N —1)/2 and N —4 flavors in the antifundamen-
tal representation F=N. For the T representation, Cz-
equals —,'(N —2). (If N=5 and M=3, this would be the
simplest supersymmetric grand unified model except that
the Higgs sector has been omitted. ) The R current
is not anomalous if N +(M/2)(N —2)(rr —1)
+(M/2)(N 4)(rz —1)=0. Sim—ilar arguments as above
show that supersymmetry is unbroken if
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whereas we cannot say anything definite if
M ~ X/(X —3).

Two other examples one might consider are gauge
groups SO(10) and E6 with M generations of scalar multi-
plets in the representations 16 and 27, respectively (corre-
sponding to the leptoquark sector of possible grand
unification schemes). In both cases, the R-current anom-
aly vanishes if rM=1 —4/M, and supersymmetry is un-
broken if M) 4.

Some of these results [for example, (3) and (4)] were
previously known from instanton arguments. ' It is
clear that the index argument is comparatively simpler.

In all the examples above, supersymmetry is unbroken
if the number of generations (or flavors) M is greater than
a certain number M, . If M is too large however, asymp-
totic freedom is lost and the theory usually becomes
physically uninteresting. The contributions of gauge bo-
sons, chiral fermions and complex scalars to the P func-
tion for the gauge coupling was computed in Ref. 11. It
turns out that asymptotic freedom holds if M & 3M, . So
there is a large range of values of M for which the theory
is asymptotically free and does not break supersymmetry.

An extensive list of theories known to break supersym-
metry dynamically is given in Refs. 12 and 13 and refer-
ences therein. On studying these theories, we find that
none of them satisfies all the three conditions (a) —(c).
Thus the index arguments are not in contradiction with
any of the calculations which positively indicate super-
symmetry breaking.

We end by citing some other theories in which index
arguments rule out supersymmetry breaking. These ex-
amples are not meant to be exhaustive but merely illus-
trative of the efticiency of index arguments in comparison
with the arguments in Refs. 12 and 13.

(i) Any non-Abelian gauge theory with more than one
Aavor of scalar multiplets in the adjoint representation.

(ii) SU(%) gauge theory (X ~ 3) with any number of
generations of scalar multiplets, each generation consist-
ing of one symmetric tensor representation
S =X(%+I)/2 and %+4 antifundamental representa-
tions.

(iii) O(X) gauge theory (X~ 3) with M flavors of scalar
multiplets in the vector representation, if M )X —2.

In (i) above, if we have three flavors and set the rs of
each of the three scalar multiplets equal to 3 we can add

an R-invariant I' term which is trilinear in these multi-
plets and has the same form as in the N=4 extended su-
persymmetric Yang-Mills theory. So this theory does not
break supersymmetry, in agreement with an index calcu-
lation in Oat space. '

In general, the index arguments can rule out supersym-
metry breaking only if the following inequality holds.
Let Cz be the character in the adjoint representation of a
gauge group, and CT be the characters in the various sca-
lar multiplet representations. The R anomaly vanishes if
C„+gT CT(rT 1)=—0. The various rT can lie in the
range 0 & rT & 2 if and only if

XCr&C~ .
T

However, this inequality is not always sufhcient to rule
out supersymmetry breaking because one may be unable
to choose the rT so as to satisfy condition (a) if the action
contains F terms. We have generally ignored the possi-
bility of such terms in this paper.

Interestingly, the instanton arguments' ' seem to
show that the condition in (5) is actually sufficient to rule
out supersymmetry breaking. This could be a sign of a
deeper connection between the instanton and index argu-
ments.

To conclude, supersymmetric models can be con-
sistently defined on 8 XS if three conditions hold. In
addition, if the R charge of every scalar multiplet lies be-
tween zero and two, then the Mitten index has the value
one and supersymmetry breaking can be ruled out. How-
ever, index arguments cannot say anything about super-
symmetry breaking if these conditions do not hold.

The relevance of dynamical supersymmetry breaking
for realistic model building has been much discussed in
the literature. See, for example, Ref. 12 and references
therein.
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