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The geometrical branching model with jets is used to analyze the data on 0,0, {7 ), and the
higher moments of particle multiplicity in hadron-hadron collisions at all available energies. The
eikonal formalism is used as the framework to combine the soft and hard components of the mul-
tiparticle production process. The soft component of the eikonal function is assumed to be geome-
trical scaling even in the presence of the hard component. We show in the context of the model that
the geometrical size of a hadron ceases to increase in the energy region of the CERN SppS collider.
The production of jets is shown to be responsible not only for the continued increase of the inelastic
cross section, but also for the breaking of the Koba-Nielson-Olesen scaling.

I. INTRODUCTION

This is the third in a series of papers on the geometri-
cal branching model for multiparticle production in
hadron-hadron collision at high energy. The first is on
combining geometrical scaling and Furry branching in a
model that yields Koba-Nielson-Olesen (KNO) scaling.
It gives a good description of the multiplicity distribution
in the CERN ISR energy range 20<V's <65 GeV. The
second in the series extends the geometrical branching
model (GBM) in order to treat the problem of forward-
backward multiplicity correlation on the one hand, and
on the other, generalizes the model to higher energies,
when the production of jets becomes important.? In this
third paper we carry out the phenomenology of the GBM
with jets in the CERN SppS energy range 200 <V's <900
GeV. In so doing we shall show how nearly all major
features of high-energy collisions, ranging from elastic
cross sections to parton decay functions, are to be amal-
gamated in the formation of one unified picture of strong
interaction at long and short distances.

Minimum-bias physics in hadronic collisions is compli-
cated because it involves many strands of strong-
interaction physics that cannot be decoupled. While it is
possible, indeed sometimes necessary, to focus on one is-
sue at a time in some selected areas of investigation, a
general description of hadronic processes at high energy
must confront as many issues as possible simultaneously,
and succeed in incorporating all the major features. Al-
though economy in the description is important, fun-
damentality in terms of basic constituents and their in-
teractions should not be the overriding criterion, when
the physical phenomena to be described involve length
scales much larger than those of the constituents. In oth-
er words, instead of searching for a fundamental theory
of hadronic processes, a more fruitful line of investigation
should be directed at the discovery of a general frame-
work in which all the phenomenological properties of
those processes can be described. Such a framework
should, for example, give explicit credence to the picture
that hadrons are geometrically extended objects consist-
ing of pointlike constituents. In collisions they produce
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particles so numerous that statistical behavior indepen-
dent of energy should have a natural expression in the
framework, yet the energy dependence of elastic and total
cross sections should also be the prominent features that
have their rightful places in the description. We attempt
in this series of papers to construct just such a frame-
work; in this paper we cement the construction with phe-
nomenology and show that the whole scheme is empiri-
cally realistic over the entire energy range accessible to
data.

Since the GBM is already first described in Ref. 1 and
then further reviewed and extended in Ref. 2, we shall
not reproduce all the relevant equations here yet another
time. In the following we shall refer to the equations i
Ref. 2 with the prefix II. : :

II. CROSS SECTION‘S WITH JETS

Let us briefly recall the key issue involved in the GBM
with jets. Without jets the GBM successfully described
KNO scaling for V's <100 GeV (Ref. 1). The breaking
of the KNO scaling for V's > 100 GeV is attributed to
the production of jets, which also breaks geometrical scal-
ing.? The principal objection to an identification of such
jets with the low-E jets of UA1 (Ref. 3) called minijets,
is the arbitrariness in the algorithm adopted in the exper-
iment to define a jet. The mechanism that breaks KNO
and geometrical scalings must involve a type of process
that can only be described in a probabilistic sense, since
KNO and geometrical scalings are themselves notions
based on the statistical properties of many observed
events. Thus a definition of the hard component that in-
volves jet production, if probabilistic in its definition,
cannot be translated into an algorithm for jet
identification from even to event in an experiment. In
short, the jets of concern to the GBM are not the minijets
of UAL.

The central point in our separation of the inelastic
cross section into a soft and a hard component is that we
define what a soft component is. This is to be contrasted
from an experimental definition of what a hard com-
ponent is. Because of the unitarity complication the two
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definitions are not complementary; hence, they define two
different separations. Our definition is based on theoreti-
cal reasoning, while the other is based on experimental
expediency. In our reasoning we argue that geometrical
scaling would have continued to be valid at higher ener-
gies, if it were not for the emergence of nongeometrical
absorptive processes which can no longer be ignored
above a threshold, say, around 100 GeV. Large-angle
scatterings of pointlike partons with high momenta are
such processes. Thus we define the soft component to be
the geometrical scaling part that is continued from below
to above that threshold, but subject to a nonscaling
suppression factor due to the requirement that there be
no jets in the soft component.

More precisely, we assume that the soft and hard com-
ponents are additive in the eikonal function

Q(s,b)=Q4(s,b)+Q,(s,b) . (2.1)

The soft component Q, possesses the geometrical scaling

property even when V's is above the jet threshold, i.e.,
Qo(s5,b)=Qu(R), where R is the scaled impact parameter:
R =b/by(s). Separating the inelastic cross section also
into two components,

o,=0+a", (2.2)
we have [11-(4.7)]

a‘=7rf0°°db2(1—e_m°(m)e —2Q,(s,b) 2.3)
and [11-(4.8)]

o= [ “ap1—e ). (2.4)

Since 29Q(s,b) has the interpretation of being the proba-
bility of having one hard collision among the partons of
the colliding hadrons,* it is proportional to an appropri-
ately defined o, as well as to Qy(R) on geometrical
grounds. Thus, we have [II-(4.14)]

Q,(5,5)=Qy(R)X(s) , 2.5)
where
—1
XS =0 juls) {2ao(s)de ZQO(R)} . (2.6)

We use o, here without first specifying the criteria of
what a jet is. og(s) is the ‘“geometrical” cross section
7h3(s).

An important point to note about the foregoing is that
there are two unknown quantities with the dimension of
cross section: o(s) and o(s), which are both dependent
on s. Geometrical scaling’ is a concept that involves no
scale (specifically, 0. /0,,,=0.17), so it cannot determine
0 Or Oj. It is here that we use phenomenology to con-
nect the scaling concept with the quantities that mani-
festly depend on the scale, i.e., scaling violation. The
necessity for a phenomenological input at this point is
unavoidable in any theory in which a scale must be intro-
duced. We determine o(s) and o(s) by the observed
0(s) and o0,(s) at one value of s where the ratio o,,/0
is significantly different from 0.17. Thus the breaking of
geometrical scaling is related to the nonvanishing of

0e(s). By the usual procedure in perturbative QCD, the
magnitude of o, (s) can be related to a single parameter
k'™, the cutoff in the parton transverse momentum. Just
as Aqcp determines the Q? dependence of the running
coupling constant, if perturbative QCD provides the
correct description, so also should the scale parameter
kJin determine the s dependence of o ,(s), if our model is
to be successful. If k" must be varied as a function of s,
then k" would lose its significance in setting a scale, and
the model obviously would have no predictive power.

The phenomenology proceeds as follows. First, we re-
call the cross sections in the eikonal formalism

adzaofo“’dk A1 —e " YSR)2 2.7
ai,,ZUOfowdR 21— THUSR)) (2.8)
amzzaofowdR A1 —e " OSR)) (2.9)

which differ from II-(4.1)-11-(4.3) only in that the substi-
tution b =b,(s)R has been made and o,=mb3(s) used.
Putting (2.1), (2.5), and (2.6) in (2.7) and (2.9) results in an
explicit simultaneous dependence of o and o, on o,
and oy, through the function Qu(R). The latter is a
known phenomenological quantity. We use the Gaussian
form®

—0Q,(R)
1—e °

=0.71e " VR* (2.10)

The parameters in (2.10) have been fixed by us to fit o,
and o, in the CERN ISR energy range. It differs from
our earlier parametrization'

Qy(R)=1.4¢ ~1-628” 2.11)

in a way that does not affect our results in Ref. 1, but
provides a better description of do /dt within the
diffraction peak. Either parametrization is a result of the
geometrical description of pp elastic scattering and o, at
Vs $65 GeV. To continue using the same parametriza-
tion of Qy(R) at higher energies is the essence of our pro-
cedure of extending geometrical scaling into a region
where Q,(s,R) is not zero, and thereby defining the soft
component of ().

The result of our calculation of o, and o, in terms of
0, and 0}, is shown by the dashed and dotted lines in
Fig. 1. We have plotted o, Vs 0./0,, so that the data
points’ from ISR line up along a constant o, /0, value
of 0.175. That is the empirical evidence for geometrical
scaling and corresponds to o, =0 in our model. At
higher energy there is only one published data point at
540 GeV from UA4 (Ref. 8), as shown by the solid circle
in Fig. 1. The open squares are the extrapolated results
of Carlson’ at other SppS energies. We use the 540-GeV
data to fix the values

00(540)=40 mb, 0;,(540)=24 mb . (2.12)

At other energies the question we ask is whether (2.12)
supplies all the information that we need, viz., o((s) con-
stant at 40 mb for V's =200 GeV and o (s) being deter-
mined by a fixed k" obtained from (2.12). The constan-
cy of o in the SppS range is hinted by the data in Fig. 1;

the constancy of k" remains to be checked.
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FIG. 1. A plot of 0, Vs 0/0,,. The dashed lines are for
different constant values of oo=mb3(s); the dotted lines are for
different constant values of o, Data points are from Refs.
7-9.

Following the usual procedure in perturbative QCD
for calculating o, due to the hard scattering of partons,
as outlined in Ref. 2, we have [I1-(4.30)]

O pls)= %‘—% _ZZO%Z—F(XI)F(xZ)%—f* . Q1)
where

zo=(1—4kP"™ /x x,5)1/% | 2.14)
Using the effective parton distribution!®

F(x)=G (x)+4[Q(x)+Q(x)] (2.15)

for the gluon and quark distributions, G (x) and Q (x), re-
spectively, we adopt the UA 1 parametrization'!

F(x)=6.2¢ %5 (2.16)
The hard-scattering differential cross section is
9ma(Q?) 2)3
dasé _ $(Q7) (3+2%) 2.17)

dz 16x,x,5 (1—2z2)?

for which we have used what is appropriate for the gluon
scattering only. We have used Q2=p# /4 for the virtuali-
ty in (2.17). From the above equations it is evident that
Oje(s) is completely determined by k7'". The value of 24
mb for 0,(540) corresponds to

kmin=2 7 GeV , (2.18)

a value which is large enough to render the application of

perturbative QCD not unreasonable, although a some-

what larger value would have been even easier to justify.
To examine the question whether a constant kX"

suffices for all energies, we have calculated o, and
0.1/ 0 in the SppS range assuming constant o, and k™"
and obtained the results shown in Figs. 2 and 3. Our cal-
culated results on cross sections are not sensitive to the
choice of Q2. For instance, using Q*=—r=1xx,s(1
—cos6), we can reproduce the curves of o, and 0, /0
in Figs. 2 and 3, with the corresponding k" being 2.1
GeV. Note that in Fig. 2 the solid curve for o, goes
through the SppS as well as the cosmic-ray data points,
but the dashed curve for oy, diverges badly, a clear
demonstration of the necessity for unitarization.* Figure
3 vividly exhibits the violation of geometrical scaling
above 100 GeV. A corollary to this analysis is that if
kPin is fixed at 2.7 GeV, then only an s-independent o (s)
can fit the cross-section data throughout the SppS ener-
gies. The behavior of o(s) for V's >20 GeV is shown in
Fig. 4. In the ISR energy range o(s) is specified by the
observed o;,(s); in the SppS range it is fixed at 40 mb.
The two are joined by hand in the transition region using
a smooth curve, the precise shape of which has no
significance. In the same figure we also show o,(s) and
o(s), as given in (2.2)-(2.4). The decrease of o°* with in-
creasing s is due to the suppression factor exp(—2,) in
(2.3), which expresses the diminishing probability that an
event contains no jets at high s.

The implication of a constant o(s) is quite interesting.
In the ISR energy range, geometrical scaling means that,
as § increases, a hadron increases in size, while its
opaqueness at a fixed b also increases in such a way that
Q(s,b) depends only on the scaled variable R. The in-
crease in size is given by the s dependence of o (s). Ass
further increases into the SppS range, the observed oy,
continues to increase, but o, reaches an asymptote; o* de-
creases, while o” picks up the increase. This seems physi-
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FIG. 2. Cross sections versus c.m. energy Vs. The solid
curve is o, calculated from (2.1) and (2.9). The dashed curve
is 0} calculated with k"=2.7 GeV. Data points beyond SppS
region are from cosmic-ray experiments (Ref. 4).
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cally reasonable, if we identify o, with the geometrical
size mb3(s), and o” with the part of the cross section aris-
ing from the added absorption due to hard scattering be-
tween pointlike partons. It is intuitively sensible to ex-
pect the geometrical size of a hadron not to increase with
energy forever. The preliminary result from UA1l on
Bose-Einstein correlations between charged pions appear
to indicate that the transverse size of a proton ceases to
increase with s at the SppS (Ref. 12).

We emphasize the importance of recognizing that the
value of k7" in (2.18) is an inferred result from phenome-
nology, just as Aqcp is in the experiments on QCD cou-
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FIG. 4. The solid line is the total inelastic cross section; the
dashed line is o0o=mb3(s). The dotted line is ¢’ calculated from
(2.3), using 2.7 GeV as the p; cutoff in Q.

pling, and that it is not set arbitrarily to define a jet.
Indeed, (2.18) is meaningful only in the context of the
lowest-order perturbative calculation in QCD. An im-
provement of that calculation can undoubtedly change
the value of k", but what will not change in the GBM is
the value of oy, in (2.12) determined from experimental
data. Thus k™" has no strong connection with an experi-
mental Pr, for the definition of an observable jet, unless

the lowest-order perturbative QCD is the complete
theoretical description of jet production with zero contri-
butions from the higher orders and higher twists.

1In Figs. 2—4 we have plotted the calculated curves to
Vs =4X10* GeV, as determined according to our
prescription for computing o0j(s) summarized in
(2.13)—(2.18). The purpose is merely to indicate what the
GBM plus jets (in the approximation adopted without
further modification) would predict, thereby showing the
relative sizes of o;,, 0y, and o° in Fig. 4. We must, how-
ever, stress that the extrapolation to higher energy above
1 TeV should not be taken seriously in any quantitative
way. There are many approximations in our treatment of
the hard-scattering part that are inadequate for handling
the higher-energy regime. To mention a few, they are (A)
the UA1l parametrizations in (2.16) are inaccurate
without scaling violation, (B) an effective parton distribu-
tion may be a poor approximation, (C) quark and gluon
channels may have to be treated separately, (D) multiple
production of minijets may be important, (E) shadowing
at small x may have to be considered, and (F) the recent
discovery of p (the ratio of real to imaginary parts of the
elastic scattering amplitude) may require a complex Q) for
a better treatment. The formalism developed in this pa-
per is meant only for phenomenology in the CERN col-
lider energy region, and the purpose is to demonstrate
that the GBM with jets can describe the various features
in the data at those energies.

III. MULTIPLICITY DISTRIBUTION WITH JETS

As we have discussed before, the GBM without jets is
designed to give the KNO-scaling multiplicity distribu-
tion, while the model with jets is supposed to account for
the violation of KNO scaling. Now, we must demon-
strate that the jets introduced in the previous section,
which are responsible for the breaking of the geometrical
scaling, can indeed fulfill that role.

We recall that without jets the multiplicity distribution
in the GBM is [1I-(2.14)]

P,,=f0 dRg (R)FK® | 3.1
where g (R) is the scaling overlap function [II-(2.13)]:

g(R)=1—exp[ —2Q(R)] . (3.2)
FK®) s the Furry branching distribution [II-(2.10)]:

) n—k
I'(n) 1 1
Flw)= — —— 3.
PO O —k+ 1) | w w| o ©BY

where w=7/k. When jets are included, the expression:
for P, becomes [I1-(4.15)]
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P,=o Yo*Pi+o"Pl), (3.4)
where [I1-(4.16) and I1-(4.17)]
o.sP;::aofowdR 2(1_ —ZQO(R))e “ZQI(S,R)F:(R)(W) ,
(3.5)
ohPh=g, J "dr¥ 1~ e M H (s,R) . (3.6)

Note that Q(R) in (3.2) is replaced by the equivalent
Qu(R) in (3.5). The multiplicity distribution of the hard
component at R is [1I-(4.22)]

dx, dx,

H,(s,R)= ——F F
SRI= f o x, FOOFGo)
% dz do
-2y 2 dz 2manl+1+mFl(D Wm >
(3.7
where ®; is the multiplicity distribution of a jet frag-

menting into j particles, and ¥,, is the distribution asso-
ciated with the initial-state bremsstrahlung into m parti-
cles. Since ¥,, is not known well, we shall assume that it
is the same as <l>j and adopt the following form for both:

O =¥,==

e KiZi 3.8
K (j /1)K (3.8)
which is a form suggested by the phenomenology of the
quark decay function in e *e ~ annihilation.!* In Ref. 13
the empirical value for K is 12, which is what we shall use
in the following. We assume that the average multiplicity
jin a jet behaves as

j=am@*+B8m2Q?,

where 0 is in units of GeV, and a and B8 are parameters
to be adjusted to fit the multiplicity data. Q is the parton
momentum transfer

0 2=1x,x;5(1—cosh) .

(3.9

(3.10)

From (3.4) we can calculate the multiplicity moments

(n9)y=o, o(n?) +o"(n?,), (3.11)
where
(n?),,= 3 niPy" . (3.12)
n
In view of (3.5) and (3.6) we have
(n?),,=—= [ “dR%3,(s,R)ng,(s,R),  (3.13)
> h 0 s s
where
g (s, R)=(1—¢ 200R), T2N=R (3.14)
g, R)=1—¢ R (3.15)
ni(s,R)=3 niFfRy) , (3.16)

n

nf(s,R)= 3 nH,(s,R) . (3.17)

In Ref. 1 the R dependences of 7i(s,R) and k(s,R) are
specified by the same function 4 (R); now at higher s we
continue to use A (R) in adherence to our basic point that
the geometrical aspect of the problem is unaltered by the

introduction of jets. Then we have for the first moment
of the soft component (with subscript s suppressed)

fi(s,R)=N(s)h (R)
k(s,R)=K(s)h(R) .

(3.18)
(3.19)

Note that N(s) and K (s) are no longer the same as the
corresponding quantities in Ref. 1 because of the s depen-
dence in g, (s, R); nevertheless, the evolution parameter w
is

(s,R) _ N(s)

1S

= (3.20)
“TIeR)  K(s)
which is related to N (s) as before:!*
w=1+0.114N(s) . (3.21)

The function 4 (R) was parametrized previously' by

h(R)=hyQY(R) , (3.22)

where y=0.3+0.05. Very recently, we have found a
parameter-free description of & (R) that has the form'>

BRI=QR) [(1=e %" [ ar20q(R) | (3.23)
The difference between the phenomenological conse-
quences of the two forms is negligible.

The description of the formalism is now complete. To
carry out the calculation requires information on the pa-
rameters a and 3 in (3.9) and on N (s) in (3.18). Unlike
the situation in Ref. 1, N(s) is now inequivalent to the
observable average multiplicity {n ), not even its soft
component {n )S, because of the e ! factor due to hard
scattering. We are therefore forced to use the data on the
multiplicity moments C,

C,=(n?)/(n)*

at one energy, specifically at V' s =540 GeV, to determine
the three parameters. By fitting the experimental values'®
of {(n) and C, to Cs, we obtain

(3.24)

a=0.34%0.02, $=0.37%0.02,
N (540)=23.41+0.5 .

(3.25)
(3.26)

This value of N (s) at 540 GeV lies on a straight-line ex-
trapolation from the ISR values, so we adopt the formu-
la17

N(s)=—5.13+2.27Ins (3.27)

for all s in units of GeV2. We then calculate {n ) and the
moments Cq for all s, obtaining the results shown in Figs.
5 and 6; they agree well with the data at all energies.
Some discussion seems appropriate here to explain the
results and what has been done to achieve them. One
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FIG. 5. The solid line is the total average multiplicity. The
dashed line is {7 ) in the soft component. The dash-dotted line
is the average multiplicity of particles with low p; produced in
the hard processes. The dotted line is the average multiplicity
of particles produced in jets. Data are from Refs. 7 and 16.

may naively think that if the data points at 540 GeV in
Fig. 6 are fitted, the resultant smooth curves passing
through all the other data points as 200 and 900 GeV are
easy and natural to obtain. Actually, that is not the case.
It is only when we used j as expressed in (3.9) and Q 2 as
in (3.10) that we could achieve the fit. When we tried
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FIG. 6. Normalized moments of multiplicity distribution.
Solid lines are calculated results. Data points are from Ref. 16.

other forms, the higher moments C, and Cs developed
oscillatory behaviors. The phenomenon has to do with
adding two multiplicity distributions as specified in (3.4);
the resultant distribution need not be smooth (i.e.,
without bumps at high n). Depending on the weights at
various energies, the degree of dominance of the hard
component may affect C, and Cs in such a way that they
can temporarily become smaller with increasing energy
until the hard component itself begins to develop larger
fluctuation due to larger virtuality smearing. We are not
certain how to interpret the necessity of the forms in (3.9)
and (3.10) in order to achieve the fit. The dependence of j
and Q2 seems reasonable, although we have no precise
criteria for that assessment. The minijets are mainly due
to gluon large-angle scatterings at 0 ? where our theoreti-
cal and experimental knowledge is not reliable. The
proper form for the virtuality in hadronic collisions is
known to be not unique and controversial. Our general
view on the phenomenology done here is that low-E jets
are not hard enough to enjoy clean theoretical descrip-
tion; the approximation made here in the adoption of the
forms (3.9) and (3.10) crudely summarizes the unknowns
about the semihard subprocess. They are not the essence
of the GBM. What we can claim is that GBM with jets,
made precise in Egs. (3.1)-(3.7), can produce a fit of the
multiplicity distribution data, if the hard component can
be described by (3.8)—(3.10) with the parameters specified
in (3.25). While the latter are not unreasonable, we have
only shown that the GBM with jets can possibly fit the
data. To be convincing that it is a successful model, we
must test the predictions on some other features of mul-
tiparticle production. That will be done in connection
with the average transverse momentum in the following
paper.

In Fig. 5 the different components of (n) are also
shown. ([), signifies the low-p; multiplicity in the hard
component, arising from the soft interactions among the
residual partons in conjunction with the hard interaction
of one pair of partons. {j), is the mean jet multiplicity,
as well as in the initial-state bremsstrahlung not neces-
sarily at large angles, smeared over virtuality and aver-
aged over impact parameter. Note that the solid curve
for {n ) in Fig. 5 goes through the data points at 200 and
900 GeV, the one at 540 GeV being fitted. The extrapola-
tion to higher energies is meant mainly to show the im-
portance of the jet contribution, even though our con-
sideration of at most only one hard scattering in a col-
lision is likely to be unrealistic at extremely high energies.
Note also that the average multiplicity in the hard com-
ponent, {n),=<1),+2{;j),, is larger than that in the
soft component {(n) , even at Vs =100 GeV, when
0,~0. That is so because (n ), is calculated from the
normalized P,f’, and can be large even if there is rarely a
jet event. It is unfortunate that we cannot compare our
results with the multiplicities, {n ), jo; and {(n ), deter-
mined in the UA1 experiment,® since our separation into
the soft and hard components bears no relationship to the
ad hoc separation into the no-jet and jet events in that ex-
periment.

By virtue of the good agreement of our results with the
data on C, in Fig. 6, we have succeeded in demonstrating
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that the GBM with jets can readily explain the violation
of KNO scaling in the SppS energy range. With the mo-
ments being so well specified by our model, it should not
be a surprise that we can generate a spectacular fit of the
full multiplicity distribution at any energy. An example
at 540 GeV is shown in Fig. 7 (Ref. 18) in which we also
exhibit the contributions from the soft and hard com-
ponents separately. It is important to recognize that the
soft component in Fig. 7 is not the KNO-scaling curve of
Fig. 3 in Ref. 1 because the () used in both the abscissa
and ordinate in the plot in Fig. 7 includes (7 ),, which is
sizable compared to {(n),, as can be seen in Fig. 5.
Furthermore, 0” /0, in (3.4) is not negligible.

It is a prediction of the model that the broadening will
continue with increasing s. The broadening studied in
this paper is due to the appearance of the hard com-
ponents with high multiplicity. As s is increased to even
higher values, jet production will be so dominant that the
soft cross section will become vanishingly small on ac-
count of the exp(—2Q,) factor in (2.3). Then the two-
component description turns back to essentially only one
component, albeit a different one. However, the multipli-
city distribution should continue to broaden. The reason
is that virtuality smearing, which is the new source of
fluctuation, will cover a wider range at higher s. Besides,
multijet processes will become increasingly more impor-
tant.

A final point to note here is that in our approximation
for the initial-state bremsstrahlung we have (m),
=(j ), which is about 1 of {/),, as can be read off from
Fig. 5. Since (/), is about 2 of (n),, it means that
(I),+{m), is about 1.4{(n ),. A more realistic treat-
ment of the bremsstrahlung process may well increase
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FIG. 7. A KNO plot of multiplicity distribution at Vs =540
GeV. The solid line corresponds to the P, calculated from (3.4);
the dashed and dotted lines are the soft and hard components,
calculated from P; and P}, respectively. Data points are from
Ref. 18.

{m), and decrease (j),, which would further raise
(1),+(m), compared to {n),. Since the bremsstrah-
lung products are distributed over all pseudorapidities,
(1),+{m), contributes to the background in dE/d 1,
above which jet particles would contribute to a peak.
Thus large /), +{m ), compared to {n ), implies that
in the dE/dn vs 7 plot the background associated with
the jets is significantly higher than the minimum-bias pla-
teaus. This has come to be known as the pedestal effect,
and has been seen in the UA1 data.3

IV. CONCLUSION

We have successfully shown that our geometrical mod-
el for hadronic collisions can describe -all prominent
features observed in the laboratory. The model is framed
in the eikonal formalism, uses Furry branching to de-
scribe soft production, incorporates perturbative QCD to
describe hard subprocesses, and relies on the geometrical
scaling to define the soft component when the production
of jets is not negligible. It integrates the studies of elastic
scattering, total cross section, multiplicity distributions,
correlations, and jet production. In this paper we have
concentrated on the confrontation of the data with the
model and showed most importantly that our conception
of the soft and hard components is phenomenologically
sensible.

In order to avoid any arbitrariness in the definition of a
jet, we used geometrical scaling extended to the energy
region where o /0, is not constant to define the soft
component subject to unitarity correction. The hard
component is then expressed in terms of a o, without
the prior definition of what a jet is. The fact that we later
relate o, to a k7" in perturbative QCD is secondary to
our procedure for the soft-hard separation. Thus as far
as the separation into soft and hard components is con-
cerned, we need not deal with an ad hoc cutoff either to
justify the validity of the perturbation theory or to facili-
tate experimental identifications, both of which involve
limitations that are not inherent parts of the physics of
multiparticle production. ‘

The value of 2.7 GeV for k7" is in the middle of the
grey region from 1 to 4 GeV, in the sense that below 1
GeV all processes can reasonably be classified as soft,
whereas above 4 GeV the perturbative results in QCD
can most probably be trusted. The specific value of 2.7
GeV (which is fortunately within that range) has no spe-
cial significance apart from indicating that the hard com-
ponent that breaks geometrical scaling as well as KNO
scaling is large, and that the same value for k" suffices
for all energies where jets are produced. A concomitant
result in our analysis is that the geometrical cross section
o becomes constant above 200 GeV. An explicit experi-
mental verification of this result would be of great in-
terest.

We have also shown that the moments of the multipli-
city distribution of the GBM with jets can be made to
agree very well with the UAS data. Because of unknowns
in the particle production processes in the hard com-
ponent, parametrization of j(Q 2) and N(s) have to be
adjusted. We do not regard this as a serious drawback.
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At this point our aim is to construct a framework in
which all prominent features of hadronic collisions over a
wide range of energy can be the natural consequences in
the model. As we learn more about this framework, we
hope to approach a level of understanding whereby those
consequences can become inevitable.

We believe that this framework is now firm enough to
warrant further extension into the area of rapidity and p
distributions of the produced particles. An investigation
of the rapidity-interval dependence of the multiplicity
distribution has already been considered.!® The multipli-
city dependence of {p; ) is found to have an interesting
“ledge” effect.’® We feel that the geometrical branching

model is in the hub of a multiply connected scheme
which shares common grounds with many otherwise
disconnected views about hadronic collisions, as in the
simple geometrical model, parton model, statistical mod-
el, dual topological model, branching model, string mod-
el, etc. It would indeed be a worthy goal if in the end a
unified picture of all those views can emerge.
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