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Energy-momentum tensor in theories with scalar fields and two coupling constants.
III. A model with two scalars
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In this work, we continue our investigation of the improvement term needed for the energy-
momentum tensor in field theories with scalar fields and two coupling constants. Here, we shall dis-
cuss a model having two scalar fields. As in earlier works, we shall consider improvement terms
which are (i) a finite function of bare quantities, (ii) a finite function of renormalized quantities. We
show that, unlike the case of A,P theory with a single scalar field, in the present case neither form of
improvement leads to a finite energy-momentum tensor.

I. iNTRODUCTION

Energy-momentum tensors and their finiteness have re-
ceived a good deal of attention on account of their
relevance in physics. ' ' As is well known, finiteness of
the energy-momentum tensor in theories with scalar
fields is a nontrivial question on account of a need for an
improvement term and has been studied in great detail by
various authors. ' These investigations have been re-
stricted to theories with scalar field(s) and a single cou-
pling constant

In Refs. 10—12 (henceforth referred to as I, II, III, re-
spectively) we investigated the cases containing scalar
field(s) and two coupling constants, viz. , scalar electro-
dynamics, non-Abelian theories with scalar fields, and
Yukawa theory. In this work we complete this investiga-
tion by considering a scalar field model with two fields
and two coupling constants.

We have motivated this study in Ref. 11. The im-
provement term needed is generally of the form

As in earlier works, we shall consider two forms" for
improvement terms: (i) one in which g is a finite function
of bare quantities (i.e., finite at e=O), (ii) one in which g is
a finite function of renormalized quantities. Unlike a A,P
theory (with one scalar field) but like the cases dealt with
in I—III, neither form leads to a finite energy-momentum
tensor. The physical significance of this result is ex-
plained in II. As the discussion in this case is very simi-
lar to that in I—III, we shall present our results with
brevity.

Our conclusion is that in all (renormalizable) theories
with scalar field(s) and two coupling constants neither
kind of improvement term leads to a finite energy-
momentum tensor, and that a new renormalization is
needed to make 0„ finite. This is unlike theories without
scalar fields and also unlike A,P theory.

II. PRELIMINARY

We consider a theory of two interacting scalar fields P&

and P~. We would like to restrict ourselves to the case in
which there are only two independent couplings. Hence

we shall assume that the couplings of quartic interactions
P& and Pz are the same. We shall also assume that their
masses are equal: this simplifies the treatment without
altering the final conclusion. We consider the Lagrange
density

(2.1)

We shall use dimensional regularization and the
minimal-subtraction scheme throughout.

We define the renormalization transformations:

y, =Z y i=l 2 m =Z

Xc=p'[Azq+M(tcc)], tcc=p'tcz, .
(2.2)

We define an improved energy-momentum tensor

gl IDP —gc
pv pv

71 2 g
4(1 n) 1 —n—

X(P, +$2), (2.4)
\

where the second term on the right-hand side arises when
one considers the conformally invariant action in curved
space-time and obtains 0„ from it via

2 65

and g is an additional improvement to be determined.
The improvement term is symmetric under Pi~$2 be-
cause so is the Lagrange density. A term of the kind
(B„t),—t) g&, )(tt tg2) is not an allowed improvement be-
cause X is invariant under Pi~ —Pi (and also under
$2~ —

Pz separately).
A simple calculation shows that

Here Ac is not multiplicatively renormalizable and 5A, (tco)
starts as ~o.2

The canonical energy-momentum tensor is

(2.3)
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gimP P (n 4)P
~001 ~042

4t 4t
——4'K00 142

+m0(41+4'2)+
fi

01+
fi

02
n —2 5S 5S

$2( f2 +p2 ) (2.5)

To obtain (g„' ") one needs to consider renormaliza-
tion of operators appearing in the above equation. To
this end we shall consider the following set:

definition, we have equated (Ao(BS/Bk, o)) =A,BZ /BA. .
But this cannot be true in 0(K0) because the right-hand
side vanishes at A, =O whereas the left-hand side does not
vanish at A. =O; as then Ao=P'M. (K0)&0 in 0(K0). How-
ever, this definition is valid in 0(K0) because 5io vanishes
to this order. Our treatment needs only 0(K) quantities
and hence the above definition of 01 is correct for our
purpose. ]

We introduce the following renormalization-group
definitions and indicate the nontrivial leading term when-
ever they are needed in the future:

01=—
4,

+
4,

+ 4K00'10—2
y(A, K, ~), =p lnZ =y(A, , K),a

P ~o ~o,

5S 5S02™0(p,+pz), 03=/, , 04=$2, (2.6)
1 2

0 = ,'Kyk P——0=d ((5 +P )

The above set is closed under renormalization. A
slight generalization of the argument in Ref. 10 shows
that 02 is a finite operator so that

y (AK e) = —
—,'p InZ =y (AK)

Bp

Vm(l)~+ Vm(1)K+

P (A, , K, e)=P aA

Bp

=P (A, , K) —Xe

(2.12)

OUR OR
2 (2.7)

OUR —OR OUR OR (2.8)

06 is a multiplicatively renormalizable operator' with

Equations of motion further imply that' 03 and' 04
are also finite operators:

g2 ~ Z(1) + g
~ + ~ gg(1) gg(1)

BA, BK BK

= —Re+pi, +. . .
2

BK
P (A, , K, E)=P =P (k, K) KE

Bp

OUR Z —1OR
6 m 6

where Z ' is defined below.
We note the following:

as os
01 Arp

~~
+KQ

0 Kp

(2.9) az." az."

2KE'+ kK+
16~

For the six operators of Eq. (2.6), the renormalization
matrix is defined by

O = —2m
BS

2 0~mp
(2.10) OUR=Z OR

I V J (2.13)

as
05 KQ

Kp

and thus define renormalized operators' in terms of the
generating functional for connected renormalized
Green's function Z [J, , A, , K] as

It can be shown that

Z, I, 'p Z& =y, =finite at e=O .J J (2.14)

Equations (2.6)—(2.9) imply the following structure for
Z$J ~

OR Aaz + az
~K

BZROR = —2m'
Bm

gZR

1

4 2 gJR
2

(2.11)

Z11

0
0Z=

Z51

Z12 Z13 Z14 Z15 Z16

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

Z52 Z53 Z54 Z55 Z56

0 0 0 0 Z

(2.15)

BZR
05 =K

BK

[The definition of 01 is valid only up to 0(K ). In this

III EXPRESSIONS FOR Z I J.

From Eqs. (2.5) —(2.9) the expression for the improved
trace can be written as
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(g' PP)= e'(0 ) +(0 ) + (0 +Q ) +gz (OG)

= —e(0, ) +gZ '(OG ) +finite
5= —e g Z, .(0 ) +( ez,—e+gz ')(Oe) +finite .

j=1
In the future discussion, we shall need Zi (j =1,2, . . . , 5). These are obtained by noting the identity

Id "x 0i = —S+—,
' Id "x(Os + 0~ ) .

An expression for (S ) can be obtained along the lines of Ref. 10. Here we shall give the final result:

(3.1)

(3.2)

d x 01 = S +2 d x 03+ d"x 04

1(fdxOf)+(fdXOp)+(fdXop+fdXOg)+(fdXOg

This yields j =1, . . . , 5) as

(8„' ~")= —eX(0 ) +finite,

(3 3) where

(4.1)

KE' X=Z16 ——Z =Z16+gZ (4.2)

As Z, J. (j =1, . . . , 5) have only simple poles in e, it fol-
lows from Eq. (3.1) that at zero momentum (where Oe
does not contribute), (6„' i'") is finite.

Here

g ( elcpii, l, po)
IV. IMPROVEMENT- TERM DEPENDENCE

OF THE FORM g(e, scop ', A,op ')

In this section, we shall consider an improvement
coefficient g(e, iris ', A~ ') which is a finite function of
bare couplings Ko and A,o, at e=0. Using the
renormalization-group equation satisfied by Z16 we shall

show that such an improvement term cannot yield a finite
energy-momentum tensor 0„' " for any choice of
g(e, ~uM ', A,~ ') even to first order in Ko.

We rewrite Eq. (3.1) (noting that Z, are finite for

can have I /e terms when expanded in a series in powers
of (iruu ') and (A,uu, ').

Z, e satisfies the differential equation (obtained along
the lines of Appendix C of I)

( —A,e+P ) +( —~e+P") —2y Z, e
BK

=Z
i i y ie+ Zis)'se (4.»

Using the Eqs. (4.2) and (4.3), one can obtain an equa-
tion satisfied by X:

, ax . ax
( Ae+P ) +( ~e+P ) 2y X Ziiyie Zisyse'

BK

8
p (Eg, Ic au, A,pp ) Z~

Bp

oo 8 „(eA, ')= —e g (i~op ')" ng„(e, Bop ')+ (iLop ') Z ', (4.4)
n=0 B(AO P ')

where we have expanded g in powers of (iris '):

g(e~irop ~~op ) r (irop ) gn(e'~~op
n=0

(4.5)

Now, if it is possible to choose g such that X has no worse than simple poles in e, the left-hand side of Eq. (4.4) would
have no worse than simple poles and hence



39 ENERGY-MOMENTUM TENSOR IN . ~ . . III. 1733

Bg (F,A(g» )e' g (~pp ')" ng„(e, A(y» ')+ A(p,
' Z '=finite .a(x~- )

We have analyzed a similar equation in Sec. V of I and shown there that Eq. (4.6) in particular implies that

gp(E, App, ):—gp(E), gi(E, X(gc ) —0

(4.6)

(4.7)

implying that the improvement coefficient obtained in O(x ), viz. , gp(e), should be sufficient to O(x) to make 8™finite
to O(~»I, "). But this contradicts the result in the Appendix that in O(sc»t, ), X=Z,6+gp(e)Z ' does have double poles
as verified explicitly. Hence such an improvement term does not yield a finite 8™"even to O(»rk").

V. IMPROVEMENT-TERM DEPENDENCE OF THE FORM f(e, a, A, )

In this section we shall consider an improvement coefficient which is a finite function (at @=0) of the renormalized
coupling constants and A, . As in the previous section,

(8™")= —eX(O )"+finite,

where

(5.1)

X=Z, 6
— ' ' Z =Z,6+g(C K A, )Zg(e, ~, »" ) —1

E'

Using Eq. (4.3) we obtain a differential equation satisfied by Xof Eq. (5.2), viz. ,

(5.2)

( —Ae+P ) +( —~@+f3") —2y X—Z„y,6
—Z, sy~6= ( —Ae+P ) +( —~e+P') Z

()K Bk BK
(5.3)

As in the previous section, if it is possible to choose g(e, ~, A, ) such that X has no worse than simple poles, then this
implies

F. (
—

A,e+P ) +( —~E+P") Z '=finite at @=0 .
Bk BK

(5.4)

We expand

g (e,~, A, ) = g ~"g„(e,A )
n=0

(5.5)

In O(a'A, ), the double-pole terms in X come from those
in Z, 6 and the O(KA, /e ) terms in Z ' multiplied by
O(e ) term in gp(e).

A direct calculation shows that the order-KA, terms in
Z, 6 are given by

and consider Eq. (5.4) in various powers of ~. Following
the same procedure as in Sec. VI of II (f3 and P' have
identical leading terms as P" and P' of II) we obtain

1z KA, +other terms .
18(16m )e

(A 1)

gp(e, A, ) =gp(e), g, (e, A, ) =0 (5.6) Using the RG equation satisfied by Z, 6 [Eq. (4.3)] one
can relate the 0 (~A/e ) terms , in Z, 6 to those of
O(~A, /e). The result is

implying that the improvement coefficient obtained in
O(a ), viz. , gp(e) should be sufficient to O(a. ). This is of
course wrong as explained at the end of the last section.
Hence this kind of an improvement function does not
yield a finite 8™~even to O(~A. ").

Z16 .

1
2

KA, +other terms
18(16ir )'e'

We further use

(A2)

APPENDIX

In this appendix we shall explicitly show that
X=Z,6+gp(e)Z ' does have double poles in e in
O(a.A, ). This we shall deduce from a calculation of sim-
ple pole divergence in 0 (vA, ) in Z i6, use of
renormalization-group equation for Z, 6, viz. , Eq. (4.3)
and the knowledge of O(F. ) terms in gp(e).

gp(e)=gp2e +O(e )= ——„',e +O(e')

1
A, +other terms

16m e

(A3)
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and use the renormalization-group equation for Z ' to
obtain

Z —1 3
A, ~+other terms .

(16m )

Using the results of Eqs. (A2) —(A5) we obtain

(A5)
2 4 ( —

—,', ++, , )scA, +other terms .
(16' )

Thus X does have double poles in e in order ~A, , a re-
sult used in Secs. IV and V.
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