Energy-momentum tensor in theories with scalar fields and two coupling constants. II. Yukawa theory

Anuradha Misra and Satish D. Joglekar Department of Physics, Indian Institute of Technology, Kanpur 208016, India (Received 11 October 1988)

We examine the question of renormalization of the energy-momentum tensor in Yukawa theory following our earlier work on scalar QED and non-Abelian gauge theories with scalars. As in those cases, we consider two kinds of forms for the improvement term: (1) one in which the improvement coefFicient is a finite function of bare quantities of the theory (so that the energy-momentum tensor can be derived from an action that is a finite function of bare quantities); (ii) one in which the improvement coefficient is a finite quantity. As in earlier cases discussed we show that neither form leads to a finite energy-momentum tensor to $O(g^2\lambda^n)$.

I. INTRODUCTION

Energy-momentum tensors and their finiteness have received a good deal of attention on account of their
relevance in physics.¹⁻¹¹ The finiteness of energymomentum tensors in theories with scalar fields is a nontrivial question on account of a need for an improvement term and has been studied in great detail by various authors. $2-4, 6-9$ Until recently the question had been studied in detail in the context of $\lambda \phi^4$ theory (with one scalar field). Collins^{6,7} has shown that an improvement term of the form

$$
H_0(\epsilon)(\partial_\mu \partial_\nu - g_{\mu\nu} \partial^2)\phi^2 \tag{1.1}
$$

[where $H_0(\epsilon)$ is a unique power series in *non-negative* powers of $\epsilon = 4 - n$] leads to a finite energy-momentum tensor to all orders.

In Refs. 10 and 11 (henceforth referred to as I and II) we discussed two special cases of theories containing scalar fields and having more than one coupling constant: viz., scalar QED and non-Abelian theories with scalar fields. As explained in detail in II, the crucial question in such theories is whether the improvement term can be chosen in such a way that the root-mean-square mass radius of the scalar particle is a prediction of the theory or whether this piece of information is needed as an independent experimental input to fix an independent renormalization constant of the $\frac{1}{2}R\phi^2$ term in the action.⁴ This depends on whether a finite energy-momentum tensor can be constructed so that the improvement coefficient is either a finite function of bare quantities, or a finite function of renormalized quantities (and hence a finite number), i.e., whether the "finite improvement program"⁴ works in such theories.

To this end, we have considered energy-momentum tensors in theories with scalar fields and having two coupling constants (for simplicity). There are four such renormalizable models: (i) scalar QED; (ii) non-Abelian gauge theories with scalars; (iii) Yukawa theory; (iv) a model with two interacting scalar fields. The first two cases were analyzed in I and II. We analyze the third case in this paper. As in I and II we reach a negative conclusion for either kind of improvement coefricients in Yukawa theory also. The case (iv) is analyzed elsewhere with a similar conclusion.

In theories without scalar fields finite energymomentum tensors which are finite functions of bare quantities exist.^{3,4} As shown by Collins^{6,7} the forms for the improvement coefficient of both kinds [the same one mentioned in Eq. (1.1)] work in $\lambda \phi^4$ theory. In pure $\lambda \phi^4$ theory, the root-mean-square radius of the scalar particle is (or rather can be) an experimental prediction of the theory and the coefficient of the $R\phi^2$ term in the action need not be independently renormalized.⁸ This proves to be an exception rather than a rule. In theories with scalar fields and more than one coupling constant the rootmean-square mass radius of the scalar field is needed as an additional experimental input to renormalize the coefficient of the $\mathbb{R} \phi^2$ -like) term in all the four cases analyzed.

II. PRELIMINARIES

We shall be dealing with the Yukawa theory of the scalar-fermion interaction. The Lagrangian density is

$$
\mathcal{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} M_0^2 \phi^2 - \frac{\lambda_0}{4!} \phi^4 + \overline{\psi} (i \partial - m_0) \psi
$$

+ $i g_0 \overline{\psi} \gamma_5 \psi \phi$,

$$
S = \int d^n x \mathcal{L} .
$$
 (2.1)

We shall work with dimensionally regularized quantities and use the minimal subtraction (MS) scheme.^{12,13} The unrenormalized but dimensionally regularized Green's functions, connected Green's functions, and proper vertices are generated, respectively, by $W[J,\eta,\bar{\eta}],$ $Z[J, \eta, \overline{\eta}]$, and $\Gamma[\phi, \psi, \overline{\psi}]$ with

$$
W[J, \eta, \overline{\eta}]
$$

= $\frac{1}{N} \int \mathcal{D}\phi \mathcal{D}\psi \mathcal{D}\overline{\psi}$
 $\times \exp \left[i \int d^n x \left(\frac{\mathcal{L}}{a} + J\phi + \overline{\psi}\eta + \overline{\eta}\psi \right) \right],$ (2.2)

Here
$$
W[0] = 1
$$
 and a is the loop expansion parameter:

\n
$$
Z[J, \eta, \overline{\eta}] = -i \ln W[J, \eta, \overline{\eta}] , \qquad (2.3)
$$
\n
$$
\phi(x) = \frac{\delta Z}{\delta J(x)}, \quad \psi(x) = \frac{\delta Z}{\delta \overline{\eta}(x)}, \quad \overline{\psi}(x) = -\frac{\delta Z}{\delta \eta(x)} , \qquad (2.4)
$$

and

$$
\Gamma[\phi,\psi,\overline{\psi}]=Z-\int d^nx(J\phi+\overline{\eta}\psi+\overline{\psi}\eta)\ .\qquad \qquad (2.5)
$$

In the MS scheme the renormalization transformations
 $\langle m_0 \bar{\psi} \psi \rangle = -m_0 \frac{\partial Z^{UR}}{\partial x^2}$

$$
\phi = Z^{1/2} \phi^R, \quad \psi = \tilde{Z}^{1/2} \psi^R ,
$$

\n
$$
\lambda_0 = \mu^{\epsilon} [\lambda Z_{\lambda} + \delta \lambda(g)], \quad \overline{\psi} = \tilde{Z}^{1/2} \overline{\psi}^R ,
$$

\n
$$
g_0 = \mu^{\epsilon/2} g Z_g, \quad m_0 = Z_m m, \quad M_0^2 = Z_M M^2 + Z'_M m^2 ,
$$
 (2.6)

where μ is an arbitrary parameter of dimension of mass. $\delta\lambda$ in Eq. (2.6) starts with $O(g^4)$ and Z'_M starts with $O(g^2)$.

The renormalized Green's functions, connected Green's functions and property vertices are generated, respectively, by

$$
W^{R}[J^{R}, \eta^{R}, \overline{\eta}^{R}], Z^{R}[J^{R}, \eta^{R}, \overline{\eta}^{R}],
$$
 and $\Gamma^{R}[\phi^{R}, \psi^{R}, \overline{\psi}^{R}]$

with

$$
W^R[J^R, \eta^R, \overline{\eta}^R] = W[J, \eta, \overline{\eta}] \text{ and } J^R = Z^{1/2}J, \text{ etc.}
$$

Equations of motion imply that

$$
\left\langle \phi \frac{\delta S}{\delta \phi} \right\rangle^{R} = \left\langle \phi \frac{\delta S}{\delta \phi} \right\rangle = \text{finite} , \qquad (2.7)
$$

$$
+J\phi + \bar{\psi}\eta + \bar{\eta}\psi \Bigg| \Bigg| \, , \quad (2.2) \qquad \qquad \left\langle \bar{\psi} \frac{\delta S}{\delta \bar{\psi}} \right\rangle^{\kappa} = \left\langle \bar{\psi} \frac{\delta S}{\delta \bar{\psi}} \right\rangle = \text{finite} \, , \tag{2.8}
$$

where
$$
W[0] = 1
$$
 and a is the loop expansion parameter: $\left\langle \frac{\delta S}{\delta \psi} \psi \right\rangle^R = \left\langle \frac{\delta S}{\delta \psi} \psi \right\rangle = \text{finite}$. (2.9)

Unlike the cases considered in I and II $M_0^2 \phi^2$ now is not a finite operator as seen from Eq. (2.6), using the mass independence of Z_m, Z_M, Z'_M :

$$
\langle M_0^2 \phi^2 \rangle = -2M_0^2 \frac{\partial Z^{UR}}{\partial M_0^2} = -2 \left[1 + \frac{m^2 Z_M'}{M^2 Z_M} \right] M^2 \frac{\partial Z^R}{\partial M^2} \tag{2.10}
$$

Similarly, $m_0\bar{\psi}\psi$ is also not a finite operator:

$$
\langle m_0 \overline{\psi} \psi \rangle = -m_0 \frac{\partial Z^{UR}}{\partial m_0}
$$

=
$$
-m \frac{\partial Z^R}{\partial m} + \left[\frac{2m^2}{M^2} \frac{Z'_M}{Z_M} \right] M^2 \frac{\partial Z^R}{\partial M^2} .
$$
 (2.11)

But the sum $M_0^2 \phi^2 + m_0 \bar{\psi} \psi$ is finite:

$$
\langle M_0^2 \phi^2 + m_0 \overline{\psi} \psi \rangle = -2M^2 \frac{\partial Z^R}{\partial M^2} - m \frac{\partial Z^R}{\partial m} = \text{finite} \tag{2.12}
$$

Furthermore $\partial^2 \phi^2$ is a multiplicatively renormalizable operator:¹⁵

$$
\{\partial^2 \phi^2\}^{UR} = Z_M^{-1} \{\partial^2 \phi^2\}^R \ . \tag{2.13}
$$

We shall use the renormalization group extensively. Below we give definitions and values of various renormalization-group quantities

$$
\beta^{\lambda}(\lambda, g, \epsilon) \equiv \mu \frac{\partial \lambda}{\partial \mu} \Big|_{\lambda_{0}, g_{0}, M_{0}, m_{0}} \n= -\lambda \epsilon + \beta^{\lambda}(\lambda, g) \n= -\lambda \epsilon + \lambda^{2} \frac{\partial Z_{\lambda}^{(1)}}{\partial \lambda} + \lambda \frac{\partial(\delta \lambda^{(1)})}{\partial \lambda} + \frac{g}{2} \frac{\partial(\delta \lambda^{(1)})}{\partial g} - \delta \lambda^{(1)} + \frac{1}{2} \lambda g \frac{\partial Z_{\lambda}^{(1)}}{\partial g} \n= -\lambda \epsilon + \beta_{2} \lambda^{2} + \cdots ,\n\beta^{g}(\lambda, g, \epsilon) \equiv \mu \frac{\partial g}{\partial \mu} \Big|_{\lambda_{0}, g_{0}, M_{0}, m_{0}} = -\frac{\epsilon g}{2} + \beta^{g}(\lambda, g) = -\frac{\epsilon g}{2} + \lambda g \frac{\partial Z_{g}^{(1)}}{\partial \lambda} + \frac{g^{2}}{2} \frac{\partial Z_{g}^{(1)}}{\partial g} ,\n\gamma_{M}(\lambda, g, \epsilon) \equiv +\frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln M^{2} = \gamma_{M}(\lambda, g) ,\n\gamma_{m}(\lambda, g, \epsilon) \equiv \frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln m^{2} = \gamma_{m}(\lambda, g) ,\n\tilde{\gamma}_{M}(\lambda, g, \epsilon) \equiv -\frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln Z_{M} = \tilde{\gamma}_{M}(\lambda, g) = \frac{\lambda}{2} \frac{\partial}{\partial \lambda} Z_{M}^{(1)} + \frac{g}{4} \frac{\partial}{\partial g} Z_{M}^{(1)} = \gamma_{M}^{(1)} \lambda + \cdots ,\n\gamma(\lambda, g, \epsilon) \equiv \frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln Z = \gamma(\lambda, g) ,\n\tilde{\gamma}(\lambda, g, \epsilon) = \frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln \tilde{Z} = \tilde{\gamma}(\lambda, g) .
$$

(2.14)

We shall work with the following set of operators:

$$
O_1 = -\frac{\lambda_0 \phi^4}{4!} + \frac{i}{2} g_0 \overline{\psi} \gamma_5 \psi \phi, \quad O_2 = M_0^2 \phi^2 ,
$$

$$
O_3 = m_0 \overline{\psi} \psi, \quad O_4 = \phi \frac{\delta S}{\delta \phi}, \quad O_5 = \overline{\psi} \frac{\delta S}{\delta \overline{\psi}}, \quad (2.15)
$$

$$
O_6 = \frac{\delta S}{\delta \psi} \psi, \quad O_7 = \frac{1}{2} i g_0 \overline{\psi} \gamma_5 \psi \phi, \quad O_8 = \partial^2 \phi^2 .
$$

We note that, at zero momentum,

$$
\int d^n x \, O_1 = \lambda_0 \frac{\delta S}{\delta \lambda_0} + \frac{1}{2} g_0 \frac{\delta S}{\delta g_0} ,
$$

$$
\int d^n x \, O_2 = -2M_0^2 \frac{\delta S}{\delta M_0^2} ,
$$

$$
\int d^n x \, O_3 = -m_0 \frac{\delta S}{\delta m_0} ,
$$

$$
\int d^n x \, O_7 = \frac{1}{2} g_0 \frac{\delta S}{\delta g_0} .
$$

We shall define another set of renormalized operators:

$$
\left\langle \int d^n x \, X_1^R \right\rangle^R = \lambda \frac{\partial Z^R}{\partial \lambda} + \frac{1}{2} g \frac{\partial Z^R}{\partial g} ,
$$

$$
\left\langle \int d^n x \, X_2^R \right\rangle^R = -M^2 \frac{\partial Z^R}{\partial M^2} ,
$$

$$
\left\langle \int d^n x \, X_3^R \right\rangle^R = -m \frac{\partial Z^R}{\partial m} ,
$$

$$
\left\langle \int d^n x \, X_4^R \right\rangle^R = -\int J^R(x) \frac{\delta Z^R}{\delta J^R(x)} = \left\langle \int d^n x \, O_4^R \right\rangle ,
$$

$$
\left\langle \int d^n x \, X_5^R \right\rangle^R = -\int \overline{\eta}^R(x) \frac{\delta Z^R}{\delta \overline{\eta}^R(x)} = \left\langle \int d^n x \, O_5^R \right\rangle
$$

$$
\left\langle \int d^n x \, X_6^R \right\rangle^R = -\int \frac{\delta Z^R}{\delta \eta^R(x)} \eta^R(x) = \left\langle \int d^n x \, O_6^R \right\rangle ,
$$

$$
\left\langle \int d^n x \, X_7^R \right\rangle^R = \frac{1}{2} g \frac{\partial Z^R}{\partial g} , \quad X_8 = O_8 .
$$

As discussed in I and is also evident from Eqs. (2.6), (2.10), and (2.11), $X_i^R \neq O_i^R$ for $i=1, 2$, and 3, but one can still define a renormalization matrix Z_{ij} by

$$
\langle O_i \rangle^{UR} = Z_{ij} \langle X_j \rangle^R \ . \tag{2.17}
$$

(Note that $X_j = O_j$ for $j = 4, 5, \ldots, 8$.) Then

$$
Z_{ij}^{-1} \mu \frac{\partial}{\partial \mu} Z_{jk} = \gamma_{ik} = \text{finite at } \epsilon = 0.
$$
 (2.18)

Information on the structure of renormalization matrix

s obtained from Eqs. (2.7) – (2.11) and Eq. (2.13) :

$$
Z = \begin{bmatrix} Z_{11} & Z_{12} & Z_{13} & Z_{14} & Z_{15} & Z_{16} & Z_{17} & Z_{18} \\ 0 & Z_{22} & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & Z_{32} & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ Z_{71} & Z_{72} & Z_{73} & Z_{74} & Z_{75} & Z_{76} & Z_{77} & Z_{78} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & Z_{88} \end{bmatrix}.
$$
\n(2.19)

It should be noted that Z_{22} and Z_{32} so defined depend on m/M .

We expand Z_M^{-1} in powers of g:

$$
Z_M^{-1} = Z_{M(0)}^{-1} + g^2 Z_{M(2)}^{-1} + g^4 Z_{M(4)}^{-1} + \cdots
$$

We now state two results needed in Secs. V and VI. As shown by Collins,⁷ if $H(\lambda, M, \epsilon)$ is a finite function of λ , *M* at ϵ = 0 and

 $H(\lambda, M, \epsilon) Z_{M(0)}^{-1}(\lambda, \epsilon) = \text{finite at } \epsilon = 0$

keeping λ and M finite and fixed, then

$$
H(\lambda, M, \epsilon) \equiv 0 \tag{2.20}
$$

Second, as shown in Ref. 9, if

$$
F\left[\lambda_0\mu^{-\epsilon},\frac{M_0^2}{\mu^2},\epsilon\right]
$$

is a finite function, at $\epsilon = 0$, of $\lambda_0 \mu^{-\epsilon}$ and M_0^2 / μ^2 and if

$$
F\left[\lambda_0\mu^{-\epsilon},\frac{M_0^2}{\mu^2},\epsilon\right]Z_{M(0)}^{-1}(\lambda,\epsilon)=\text{finite at }\epsilon=0
$$

keeping λ and M fixed and finite, then

$$
F\left[\lambda_0\mu^{-\epsilon}, \frac{M_0^2}{\mu^2}, \epsilon\right] \equiv 0 \tag{2.21}
$$

III. IMPROVED TRACE

The energy-momentum tensor of Yukawa theory as obtained from the action (2. 1) is

$$
\theta_{\mu\nu} = -\frac{2}{\sqrt{-g(y)}} \frac{\delta S}{\delta g^{\mu\nu}} \bigg|_{g^{\mu\nu}(y) = \eta^{\mu\nu}}
$$

= $-g_{\mu\nu} \mathcal{L} + \partial_{\mu} \phi \partial_{\nu} \phi + i \overline{\psi} \gamma_{\mu} \partial_{\nu} \psi$. (3.1)

One may carry out the analysis of Ref. 3 here also to show that this energy-momentum tensor has finite matrix elements at $q=0$ and to first order in q, the external momentum. But in $O(q^2)$ a further improvement term is needed. The most general improvement one can add to $\theta_{\mu\nu}$ is parametrized as

$$
\theta_{\mu\nu}^{\text{imp}} = \theta_{\mu\nu} + \left[\frac{n-2}{4(1-n)} + \frac{\tilde{G}}{(1-n)} \right] (\partial_{\mu}\partial_{\nu} - g_{\mu\nu}\partial^2) \phi^2 . \tag{3.2}
$$

As before, \tilde{G} is a free parameter for which we shall be trying specific forms in Secs. V and VI, just as in I and II. The trace of $\theta_{\mu\nu}^{imp}$ is

$$
\theta_{\mu}^{\text{imp}}{}^{\mu} = (n - 4) \left[-\frac{\lambda \phi^4}{4!} + \frac{1}{2} i g \bar{\psi} \gamma_5 \psi \phi \right] + (M^2 \phi^2 + m \bar{\psi} \psi) \n- \left[\frac{n - 2}{2} \right] \phi \frac{\delta S}{\delta \phi} - (n - 1) \bar{\psi} \frac{\delta S}{\delta \bar{\psi}} + \tilde{G} \partial^2 \phi^2 .
$$
\n(3.3)

Using Eqs. (2.7), (2.8), and (2.13) one obtains
\n
$$
\left\langle \theta_{\mu}^{\text{imp}} \right\rangle = \text{finite} + (n-4)\left\langle O_1 \right\rangle^{UR} + \tilde{G}Z_M^{-1} \left\langle \theta^2 \phi^2 \right\rangle^R.
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$
\n
$$
\int d^n x \ O_1 = -S + \frac{1}{2}
$$

In the following sections we shall investigate if it is possi-

ble to choose \tilde{G} in either of the two ways mentioned in the Introduction so that $\langle \theta_{\mu}^{\text{imp}} | \mu \rangle$ is finite.

IV. EXPRESSIONS FOR Z_{ij}

In this section we shall use the techniques of Ref. 10 to obtain expressions for Z_{1j} ($j = 1, 2, ..., 7$), which are needed in further investigations of Secs. V and VI. These expressions are obtained by considering renormalization of O_1 at zero momentum.

It is straightforward to show that

$$
\int d^n x \, O_1 = -S + \frac{1}{2} \int \phi \frac{\delta S}{\delta \phi} d^n x + \int \overline{\psi} \frac{\delta S}{\delta \overline{\psi}} d^n x \quad . \tag{4.1}
$$

The last two terms on the right-hand side are finite operators. $\langle S \rangle^{\text{UR}}$ can be obtained by following the procedure of Refs. 10 and 17. The final result is

$$
\left\langle \int d^{n}x \, O_{1} \right\rangle^{\text{UR}} = -\left\langle S \right\rangle^{\text{UR}} + \frac{1}{2} \left\langle \int d^{n}x \, \phi \frac{\delta S}{\delta \phi} \right\rangle^{R} + \left\langle \int d^{n}x \, \overline{\psi} \frac{\delta S}{\delta \overline{\psi}} \right\rangle^{R}
$$
\n
$$
= \left[1 - \frac{\beta^{\lambda}(\lambda, g)}{\epsilon} \right] \left\langle \int d^{n}x \, X_{1} \right\rangle^{R} + \frac{\gamma_{M}(\lambda, g)}{\epsilon} \left\langle \int d^{n}x \, X_{2} \right\rangle^{R} + \frac{\gamma_{M}(\lambda, g)}{\epsilon} \left\langle \int d^{n}x \, X_{3} \right\rangle^{R} + \frac{\gamma(\lambda, g)}{\epsilon} \left\langle \int d^{n}x \, X_{4} \right\rangle^{R}
$$
\n
$$
+ \frac{\tilde{\gamma}(\lambda, g)}{\epsilon} \left\langle \int d^{n}x \, (X_{5} + X_{6}) \right\rangle^{R} + \left[\frac{\beta^{\lambda}(\lambda, g)}{\lambda \epsilon} - 2 \frac{\beta^{g}(\lambda, g)}{g \epsilon} \right] \left\langle \int d^{n}x \, X_{7} \right\rangle^{R} . \tag{4.2}
$$

$$
Z_{11} = 1 - \frac{\beta^{\lambda}}{\lambda \epsilon}, \quad Z_{14} = \frac{\gamma}{\epsilon},
$$

\n
$$
Z_{12} = \frac{\gamma_M}{\epsilon}, \quad Z_{15} + Z_{16} = 2\frac{\tilde{\gamma}}{\epsilon},
$$

\n
$$
Z_{13} = \frac{\gamma_m}{\epsilon}, \quad Z_{17} = \frac{\beta^{\lambda}}{\lambda \epsilon} - \frac{2\beta^g}{g\epsilon}.
$$
\n(4.3)

From the fact that the right-hand side of Eq. (4.2) has only simple poles in ϵ , it follows that $\langle \theta_{\mu}^{\mu} \rangle$ is finite at zero momentum. Finiteness of $\langle \theta_{\mu}^{\mu} \rangle$ at zero momentum and to first order in q can be established along the lines of Ref. 3 using the conservation equation.

It should be noted that the above procedure does not yield Z_{15} and Z_{16} separately because $\int d^n x \, O_5$ $=\int d^n x O_6$. From Eq. (4.3) it only follows that $Z_{15}+Z_{16}$ has simple poles. However, the theory has a charge-conjugation invariance and the operator O_1 is charge-conjugation invariant. Hence the operator $0₅ - 0₆ = i\partial^{\mu}(\bar{\psi}\gamma_{\mu}\psi)$ which is odd under charge conjugation cannot appear as a counterterm for $O₁$. Hence only the combination 0_5+0_6 can appear in the expression for $\langle O_1 \rangle^{\text{UR}}$. This requires that $Z_{15} = Z_{16} = \tilde{\gamma}/\epsilon$.

V. IMPROVEMENT-TERM DEPENDENCE OF THE FORM $\tilde{G}(\epsilon, \lambda_0 \mu^{-\epsilon}, g_0^2 \mu^{-\epsilon})$

As shown in the previous section, the energymomentum tensor $\chi \langle \partial^2 \phi^2 \rangle^R$. (5.3)

Hence,

$$
\theta_{\mu\nu}^{imp'} = \theta_{\mu\nu} + \frac{n-2}{4(1-n)} (\partial_{\mu}\partial_{\bar{v}} - g_{\mu\nu}\partial^2)\phi^2
$$

is finite at zero momentum. Explicit calculation shows that it is finite only up to $O(\lambda^3)$ at $g=0$, up to $O(g^4)$ at $\lambda = 0$ and also in $O(\lambda g^2)$, but a finite improvement is necessarily needed in $O(\lambda^4)$, $O(\lambda g^4)$, and $O(\lambda^2 g^2)$ [see, for example, the Appendix].

In this section, we shall consider a further improvement, where the improvement coefficient \tilde{G} is a finite function of bare coupling constants:

$$
\theta_{\mu\nu}^{\text{imp}} = \theta_{\mu\nu} + \left[\frac{n-2}{4(1-n)} + \frac{\tilde{G}(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon})}{1-n} \right]
$$

$$
\times (\partial_{\mu} \partial_{\nu} - g_{\mu\nu} \partial^2) \phi^2 , \qquad (5.1)
$$

where

$$
\widetilde{G}(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) = \sum_{r=0}^{\infty} \widetilde{G}_{2r}(\epsilon, \lambda_0 \mu^{-\epsilon})(g_0^2 \mu^{-\epsilon})^r ,\qquad (5.2)
$$

where $\tilde{G}_{2r}(\epsilon,\lambda_0\mu^{-\epsilon})$ are finite functions of λ_0 .

From Eq. (3.4) and the fact that Z_{1i} ($j = 1, 2, ..., 7$) involve simple poles, it follows that

$$
\langle \theta_{\mu}^{\text{imp}} \,^{\mu} \rangle = \text{finite} + [-\epsilon Z_{18} + \tilde{G}(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1}]
$$

$$
\times (\partial^2 \phi^2)^R
$$
 (5.3)

For future convenience, we shall reexpress this as follows:

$$
\widetilde{G}(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) = -\epsilon G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) ,
$$

$$
\widetilde{G}_{2r}(\epsilon, \lambda_0 \mu^{-\epsilon}) = -\epsilon G_{2r}(\epsilon, \lambda_0 \mu^{-\epsilon}) ,
$$
 (5.4)

where now $G_{2r}(\epsilon, \lambda_0 \mu^{-\epsilon})$ may also contain $1/\epsilon$ terms when expanded in powers of ϵ and $(\lambda_0 \mu^{-\epsilon})$. We thus have

$$
\langle \theta_{\mu}^{\text{imp}} | \mu \rangle = \text{finite} - \epsilon X \langle \partial^2 \phi^2 \rangle^R , \qquad (5.5)
$$

where

$$
X = Z_{18} + G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1} . \tag{5.6}
$$

Thus to obtain a finite energy-momentum tensor, one

must find a
$$
G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon})
$$
 such that X given above
does not contain worse than simple poles. We shall show,
in what follows, that it is not possible to do so consistent-
ly except at $g=0$.

For this purpose, we shall use the renormalizationgroup (RG) equation satisfied by Z_{18} , which can be derived straightforwardly from Eqs. (2.18) and (2.19) following the procedure of Appendix C of I. It is

$$
\langle \theta_{\mu}^{\text{imp}} \, \mu \rangle = \text{finite} - \epsilon X \langle \partial^2 \phi^2 \rangle^R \,, \tag{5.5}
$$
\n
$$
(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial Z_{18}}{\partial \lambda} + \left[-\frac{g \epsilon}{2} + \beta^8 \right] \frac{\partial Z_{18}}{\partial g} - 2 \tilde{\gamma}_M Z_{18}
$$
\n
$$
X = Z_{18} + G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1} \,. \tag{5.6}
$$
\n
$$
= Z_{11} \gamma_{18} + Z_{17} \gamma_{78} \,. \tag{5.7}
$$

Substituting from Eq. (5.6) for Z_{18} and using

$$
\mu \frac{\partial}{\partial \mu} [G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1}] = 2 \tilde{\gamma}_M G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1} + Z_M^{-1} \mu \frac{\partial}{\partial \mu} G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon})
$$

$$
= 2 \tilde{\gamma}_M G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) Z_M^{-1} + Z_M^{-1} \mu \frac{\partial}{\partial \mu} \sum_{n=0}^{\infty} G_{2n}(\epsilon, \lambda_0 \mu^{-\epsilon}) (g_0^2 \mu^{-\epsilon})^n
$$
(5.8)

one obtains an equation satisfied by X :

$$
(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial X}{\partial \lambda} + \left[-\frac{g \epsilon}{2} + \beta^g \right] \frac{\partial X}{\partial g} - 2\tilde{\gamma}_M X - Z_{11}\gamma_{18} - Z_{17}\gamma_{78} = -\epsilon \sum_{n=0}^{\infty} (g_0^2 \mu^{-\epsilon})^n \left[nG_{2n} + \frac{\partial G_{2n}}{\partial (\lambda_0 \mu^{-\epsilon})} \lambda_0 \mu^{-\epsilon} \right] Z_M^{-1} .
$$
\n(5.9)

Now, suppose it were possible to choose G_n 's such that X has no worse than simple poles (which would imply the existence of a finite energy-momentum tensor). Then as Z_{11} and Z_{17} have only simple poles, the left-hand side of Eq. (5.9) has at worst simple poles and hence so does the right-hand side. Hence

$$
\epsilon^2 \left[\sum_{n=0}^{\infty} (g_0^2 \mu^{-\epsilon})^n \left[nG_{2n} + \frac{\partial G_{2n}}{\partial (\lambda_0 \mu^{-\epsilon})} \lambda_0 \mu^{-\epsilon} \right] \right] Z_M^{-1}
$$

=finite. (5.10)

Then, following the same reasoning as in I, the above equation, after using Eq. (2.21), implies that

$$
G_2(\epsilon, \lambda_0 \mu^{-\epsilon}) = 0 \tag{5.11}
$$

This implies that the improvement term in Eq. (5.1) is consistent with the finiteness of $\langle \theta_{\mu}^{imp} \mu \rangle$ in $O(g^2 \lambda^n)$ only 1f

$$
G(\epsilon, g_0^2 \mu^{-\epsilon}, \lambda_0 \mu^{-\epsilon}) = G_0(\epsilon) + O(g^4) , \qquad (5.12)
$$

i.e., only if the improvement term obtained to $O(g^0)$ is sufficient even to $\overline{O}(g^2)$. But this contradicts the result in the Appendix that an additional improvement term is necessarily neeed to make $\theta_{\mu\nu}$ finite in $O(\lambda^2 g^2)$. Hence, we conclude that it is not possible to find an improved energy-momentum tensor of the form given in Eq. (5.1) which may be finite even to $O(g^2\lambda^n)$.

VI. IMPROVEMENT-TERM DEPENDENCE OF THE FORM $\tilde{G}(\epsilon, g^2, \lambda)$

In this section we shall consider an improved energymomentum tensor of the form

$$
\theta_{\mu\nu}^{\text{imp}} = \theta_{\mu\nu} + \left[\frac{n-2}{4(1-n)} + \frac{\tilde{G}(\epsilon, g^2, \lambda)}{1-n} \right] (\partial_{\mu}\partial_{\nu} - \partial^2 g_{\mu\nu}) \phi^2 ,
$$
\n(6.1)

where $\tilde{G}(\epsilon, g^2, \lambda)$ is finite for finite g^2 and λ at $\epsilon=0$. Retracing the steps of the previous section, we obtain

$$
\langle \theta_{\mu}^{\text{imp}} \mu \rangle = \text{finite} - \epsilon X \langle \partial^2 \phi^2 \rangle^R , \qquad (6.2)
$$

where

$$
X = Z_{18} + G(\epsilon, g^2, \lambda) Z_M^{-1}
$$

and

and
\n
$$
G(\epsilon, g^2, \lambda) = -\frac{1}{\epsilon} \widetilde{G}(\epsilon, g^2, \lambda) \equiv \sum_{n=0}^{\infty} g^{2n} G_{2n}(\epsilon, \lambda)
$$
 (6.3)

As in Sec. V the RG equation satisfied by X can be obtained and rewritten as [see II Eq. (6.4)]

$$
(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial X}{\partial \lambda} + \left[-\frac{\epsilon g}{2} + \beta^{g} \right] - 2\tilde{\gamma}_{M} X - Z_{11} \gamma_{18} - Z_{17} \gamma_{78}
$$

$$
= \left[(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial G}{\partial \lambda} + \left[-\frac{g \epsilon}{2} + \beta^{g} \right] \frac{\partial G}{\partial g} \right] Z_{M}^{-1} .
$$
(6.4)

As before, the existence of $\langle \theta_{\mu}^{\text{imp}} | \mu \rangle$ implies that

$$
\epsilon \left[(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial G}{\partial \lambda} + \left[-\frac{g \epsilon}{2} + \beta^{g} \right] \frac{\partial G}{\partial g} \right] Z_{M}^{-1} = \text{finite} \quad .
$$
\n(6.5)

Again, following the same procedure as in I and II and using the value of β^g from Eq. (2.14), Eq. (2.20) together with the above equation implies that

$$
G(\epsilon, g^2, \lambda) = G_0(\epsilon) + O(g^4) , \qquad (6.6)
$$

and hence as argued at the end of Sec. V, it is not possible to find an improved energy-momentum tensor of the form given in Eq. (6.1), which may be finite to $O(g^2\lambda^n)$.

APPENDIX

It was shown in both Secs. V and VI that, in order that X has no worse than simple poles to $O(g^2)$, it was necessary (but not sufficient) that \tilde{G} was a function of ϵ only. Now we show explicitly that even in this case X does have double poles to $O(\lambda^2 g^2)$. The proof proceeds exactly analogous to Appendix A of I.

The double poles in $X = Z_{18} - G_0(\epsilon) Z_M^{-1}$ arise entirely From those in Z_{18} in $O(\lambda^2 g^2)$, since $G_0(\epsilon)$ [which is the same as $g_0(\epsilon)$ of I and II] begins as $O(\epsilon^2)$ (Ref. 7). Direct calculation shows that Z_{18} has no worse than simple poles in $O(\lambda g^2)$ and the simple pole term is nonvanishng. The double-pole term in Z_{18} in $O(\lambda^2 g^2)$ is obtained using the RG equation satisfied by Z_{18} :

$$
(-\lambda \epsilon + \beta^{\lambda}) \frac{\partial Z_{18}}{\partial \lambda} + \left[-\frac{g \epsilon}{2} + \beta^{g} \right] \frac{\partial Z_{18}}{\partial g} - 2 \tilde{\gamma}_{M} Z_{18} = \left[1 - \frac{\beta^{\lambda}}{\lambda \epsilon} \right] \left[-\lambda \frac{\partial Z_{18}^{(1)}}{\partial \lambda} - \frac{g}{2} \frac{\partial Z_{18}^{(1)}}{\partial g} \right] + \left[\frac{\beta^{\lambda}}{\lambda \epsilon} - 2 \frac{\beta^{g}}{g \epsilon} \right] \left[-\lambda \frac{Z_{78}^{(1)}}{\partial \lambda} - \frac{g}{2} \frac{\partial Z_{78}^{(1)}}{\partial g} \right].
$$
\n(A1)

Following the same procedure as in Appendix A of I and using (a) Z_{18} and Z_{78} vanish to $O(g^2)$, (b) Z_{78} vanishes at $g=0$, (c) at $g=0$, Z_{18} begins as λ^3 , (d) $Z_{18}-Z_{78}$ has no poles in $O(\lambda g^2)$, since

$$
O_1-O_7=-\frac{\lambda_0\phi^4}{4!}
$$

(see II), and (e) β^g has no term of $O(\lambda g)$ as verified by direct calculation, one obtains

$$
Z_{18(2,1)}^{(2)} = -\frac{1}{3}(\beta_2 - 2\gamma_M^{(1)})Z_{18(1,1)}^{(1)} \neq 0
$$

as neither factor vanishes. (Note that $2\gamma_M^{(1)}$ is the same as $2\gamma_m^{(1)}$ of I and II.) Here $Z_{18(m,n)}^{(r)}$ is the coefficient of μ_{gg}^{m} in Z_{18} .

Hence, Z_{18} and therefore X does have double poles in $O(\lambda^2 g^2)$. Therefore, the improvement coefficient $G_0(\epsilon)$ botained from $O(g^0)$ calculation does not suffice in $O(\lambda^2 g^2)$ to make $\theta_{\mu}^{imp \mu}$ finite to this order.

- ¹J. Lowenstein, Phys. Rev. D 4, 2281 (1971); E. C. Poggio, Ann. Phys. (N.Y.) 81, 481 (1973); K. Yamada, Phys. Rev. D 10, 599 (1974).
- ²C. G. Callan, Jr., S. Coleman, and R. Jackiw, Ann. Phys. (N.Y.) 59, 42 (1970).
- ³D. Z. Freedman, I. J. Muzinich, and E. J. Weinberg, Ann. Phys. (N.Y.) 87, 95 (1974).
- 4D. Z. Freedman and E.J. Weinberg, Ann. Phys. (N.Y.) 87, 354 (1974).
- ⁵D. Z. Freedman and S. Y. Pi, Ann. Phys. (N.Y.) 91, 442 (1975).
- ⁶J. C. Collins, Phys. Rev. Lett. 36, 1518 (1976).
- ⁷J. C. Collins, Phys. Rev. D 14, 1965 (1976).
- L. S. Brown, Phys. Rev. D 15, 1469 (1977); L. S. Brown and J. C. Collins, Ann. Phys. (N.Y.) 130, 215 (1980).
- ⁹S. D. Joglekar and Anuradha Misra, Ann. Phys. (N.Y.) 185, 231(1988).
- ¹⁰S. D. Joglekar and Anuradha Misra, Phys. Rev. D 38, 2546 (1988).
- ¹¹S. D. Joglekar and Anuradha Misra, preceding paper, Phys. Rev. D 39, 1716 (1989).
- $12G.$ 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).
- ¹³G. 't Hooft, Nucl. Phys. **B61**, 455 (1973).
- ⁴It has already been shown in I that λ is not multiplicatively renormalizable. The same argument holds here. In Yukawa theory, the scalar mass is also not multiplicatively renormalizable due to the presence of diagrams for the scalar propagator [such as the single fermion loop diagram in $O(g^2)$] which give contributions proportional to $m²$.
- $^{15}\bar{\phi}^2$ is a multiplicatively renormalizable operator since there is no dimension-2 operator it can mix with. Its renormalization constant Z_M^{-1} can be obtained by dividing Eq. (2.10) by M_0^2
and putting $m=0$ as this renormalization constant is mass independent in the MS scheme.
- ¹⁶Here γ_M and $\tilde{\gamma}_M$ are not the same in contrast with scalar QED and non-Abelian gauge theory (NAGT). The reason lies in the fact that M_0^2 is not multiplicatively renormalizable. One may verify that

$$
\widetilde{\gamma}_M = \gamma_M + \frac{m^2}{M^2} \frac{Z_M'}{Z_M} \left[\gamma_m + \frac{1}{2} \mu \frac{\partial}{\partial \mu} \ln Z_M' \right]
$$

J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D 16, ' 438 (1977).