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Energy-momentum tensor in theories with scalar fields and two coupling constants.
II. Yukawa theory
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We examine the question of renormalization of the energy-momentum tensor in Yukawa theory
following our earlier work on scalar QED and non-Abelian gauge theories with scalars. As in those
cases, we consider two kinds of forms for the improvement term: (1) one in which the improvement
coefFicient is a finite function of bare quantities of the theory (so that the energy-momentum tensor
can be derived from an action that is a finite function of bare quantities); (ii) one in which the im-

provement coefficient is a finite quantity. As in earlier cases discussed we show that neither form
leads to a finite energy-momentum tensor to 0(g A, ").

I. INTRODUCTION

Energy-momentum tensors and their finiteness have re-
ceived a good deal of attention on account of their
relevance in physics. ' " The finiteness of energy-
momentum tensors in theories with scalar fields is a non-
trivial question on account of a need for an improvement
term and has been studied in great detail by various au-
thors. ' Until recently the question had been stud-
ied in detail in the context of XP theory (with one scalar
field). Collins ' has shown that an improvement term of
the form

H, (e)(a„a.—g„.a')y'

[where Ho(e) is a unique power series in non negatiue-
powers of a=4 n] leads —to a finite energy-momentum
tensor to all orders.

In Refs. 10 and 11 (henceforth referred to as I and II)
we discussed two special cases of theories containing sca-
lar fields and having more than one coupling constant:
viz. , scalar QED and non-Abelian theories with scalar
fields. As explained in detail in II, the crucial question in
such theories is whether the improvement term can be
chosen in such a way that the root-mean-square mass ra-
dius of the scalar particle is a prediction of the theory or
whether this piece of information is needed as an in-
dependent experimental input to fix an independent re-
normalization constant of the —,'RP term in the action.
This depends on whether a finite energy-momentum ten-
sor can be constructed so that the improvement
coefIicient is either a finite function of bare quantities, or
a finite function of renormalized quantities (and hence a
finite number), i.e., whether the "finite improvement pro-
gram" works in such theories.

To this end, we have considered energy-momentum
tensors in theories with scalar fields and having two cou-
pling constants (for simplicity). There are four such re-
normalizable models: (i) scalar QED; (ii) non-Abelian
gauge theories with scalars; (iii) Yukawa theory; (iv) a

model with two interacting scalar fields. The first two
cases were analyzed in I and II. We analyze the third
case in this paper. As in I and II we reach a negative
conclusion for either kind of improvement coefricients in
Yukawa theory also. The case (iv) is analyzed elsewhere
with a similar conclusion.

In theories without scalar fields finite energy-
momentum tensors which are finite functions of bare
quantities exist. ' As shown by Collins ' the forms for
the improvement coefficient of both kinds [the same one
mentioned in Eq. (1.1)] work in A,P theory. In pure A.P
theory, the root-mean-square radius of the scalar particle
is (or rather can be) an experimental prediction of the
theory and the coefficient of the RP term in the action
need not be independently renormalized. This proves to
be an exception rather than a rule. In theories with scalar
fields and more than one coupling constant the root-
mean-square mass radius of the scalar field is needed as
an additional experimental input to renormalize the
coefficient of the R P (-like) term in all the four cases ana-
lyzed.

II. PRELIMINARIES

We shall be dealing with the Yukawa theory of the
scalar-fermion interaction. The Lagrangian density is

,'(a„y) ,'Mog —P+—P—(ttI m—o)P—
+igoA sly

5= d"xL .

We shall work with dimensionally regularized quanti-
ties and use the minimal subtraction (MS) scheme. ' '
The unrenormalized but dimensionally regularized
Green's functions, connected Green's functions, and
proper vertices are generated, respectively, by 8'[J,7), i)],
Z[J,~,~], and r[y, q, y] with
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W[J, 21, g]

= —f~~~~~~1

N

Equations of motion imply that

(2.7)

Xexp i f d "x +J0+A+W
a

(2.2) (2.8)

where &[0]= 1 and a is the loop expansion parameter: (2.9)

and

Z [J,rj, 21]= i—in''[J, 2l, 21],

P(x)=, g(x)=, g(x)=-6Z 5Z — 5Z
5J(x) '

52)(x)
' 5g(x)

I f P, P, P]=Z —f d "x (JQ+ gf+Pri) .

(2.3)

(2.4)

(2.5)

az UR

(M P)= —2M = —2 1+
aM 0

m ZM

m'z am'
(2.10)

Similarly, mogg is also not a finite operator:

Unlike the cases considered in I and II Mog now is
not a finite operator as seen from Eq. (2.6), using the mass
independence of Z, ZM, ZM:

In the MS scheme the renormalization transformations
are'

az UR

( .A&=- ~,am0

y
—z 1/2yR y

—z 1/2yR

A, =p'[AZ +5k(g)], itj=Z '/ g

g0 =p g, m0 =Z m, M0 —ZM~ +ZMm

(2.6)
aZ 2m M 2 aZ
am ~ ZM

But the sum MOP +mogij/ is finite:

(2.1 1)

where p is an arbitrary parameter of dimension of mass.
M. in Eq. (2.6) starts with O(g ) and ZM starts with
O(g ).

The renormalized Green's functions, connected
Green's functions and property vertices are generated, re-
spectively, by

R[JR R R] ZR[JR R, R], and I R[PR, gR, gR)

with

g R[JR, riR, r)R]= g [J,ri, ri] and J =Z'/ J, etc.

2 az az
(MOP +moit/il/) = —2M —m =finite .

am

(2.12)

Furthermore 8 P is a multiplicatively renormalizable
operator

I
g2y2

I
UR Z —i

I
g2y2

I
R (2.13)

We shall use the renormalization group extensively.
Below we give definitions and values of various re-
normalization-group quantities

P (A, , g, e):—p,= a'
aP Ap gp Mp mp

= —A.e+P (A, ,g)

az (1) (1) (1) az(1)a(5X ) g a(W,
ax ax 2 ag ' ag

= —Ae+P2A, +
agps(&, g, e)=p = — +pg(A, ,g)= — +A,g +

yM(k, ,g, e)=+—,'p lnM =yM(A, ,g),a
ap

y (A.,g, e)= —,'p lnm =y (A, ,g),
ap

(1)
y (A, ,g, e)= —

—,'p lnZM=yM(k, g)= — Z"'+ — Z'"=y"' + .

y(A, ,g, e)= —,'p lnZ =y(A, ,g),a
ap

y(A, ,g, e)= —,'p 1nZ=y(i, ,g) .a
ap

(2.14)
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We shall work with the following set of operators:

4

6S -6S
03 =mop/, 0~=p, 05 =Q

5g

o, = q, 0,=-,'g, y) Ay, o, =a'y'.6S

We note that, at zero momentum,

(2.15)

is obtained from Eqs. (2.7)—(2.11) and

Z11 Z12 Z13 Z14 Z15

0 Z22 0 0 0

0 Z32 1 0 0

0 0 0 1 0
0 0 0 0 1

0 0 0 0 0
Z71 Z72 Z73 Z74 75

0 0 0 0 0

Eq. (2.13):

Z16 Z17 Z18

0 0 0

0 0 0

0 0 0
0 0 0
1 0 0

76 77 78

0 0 Z88

6S , 5S
X 01 —Ap +—gp

6kp '
5gp

d "x 02 = —2Mp
6S

0

5Sjd"x o, = —m,
5mp

5Sf d"x o, =-,'g,
5gp

(2.19)

It should be noted that Z22 and Z32 so defined depend
on m/M.

We expand ZM
' in powers of g:

Z~ —ZM(p)+g ZM(2)+g ZM(4)+

We now state two results needed in Secs. V and VI. As
shown by Collins, if H(A, , M, e) is a finite function of
A, , M at e=O and

H(A, , M, e)Z M'(0( ))(e)= fiinte at @=0

keeping A, and M finite and fixed, then

We shall define another set of renormalized operators:

d "x rl =A
aA

+-g
a

H(A, ,M, )e—=0 .

Second, as shown in Ref. 9, if

, MoF kpp, , E
p

(2.20)

XX2 M
2 is a finite function, at e=O, of A,pp 'and Mp/p and if

BZ

d xXR = — JRx = d xoR

(2.16)

~R x dn OR

MpF Aofc 2
E ZM('o)(k, , e) =finite at @=0

p

keeping X and M fixed and finite, then

MoF App ) g =0
p

III. IMPROVED TRACE

(2.21)

d"xx6 = —
R

9'x = d"x 06

d "x X7 =
—,'g, X8 =08 .

(0 )UR Z (X )R (2.17)

(Note that X =0 for j =4, 5, . . . , 8. ) Then

As discussed in I and is also evident from Eqs. (2.6),
(2.10), and (2.11),X; &0, for i= 1, 2, and 3, but one can
still define a renormalization matrix Z, by

g„~+a„yaA+—) q) „aA (3.1)

One may carry out the analysis of Ref. 3 here also to
show that this energy-momentum tensor has finite matrix
elements at q=O and to first order in q, the external
momentum. But in 0 (q ) a further improvement term is
needed. The most general improvement one can add to
0„ is parametrized as

The energy-momentum tensor of Yukawa theory as ob-
tained from the action (2. 1) is

2 5S
&—g(~) ~g"

a
Z; p Z I, =y, k =finite at e=O .

—1
'J gp J (2.18)

Information on the structure of renormalization matrix (3.2)



39 ENERGY-MOMENTUM TENSOR IN. . . . II. 1727

9'„»=( n —4) — + ~iggy5$$ +(M P +mfa)

n —2 ~6S ( )~M
2 5$

(3.3)

As before, G is a free parameter for which we shall be
trying specific forms in Secs. V and VI, just as in I and II.
The trace of 0„' p is

ble to choose G in either of the two ways mentioned in
the Introduction so that & 8„' »

& is finite.

IV EXPRESSIONS FOR Z j
In this section we shall use the techniques of Ref. 10 to

obtain expressions for Zi (j =1,2, . . . , 7), which are
needed in further investigations of Secs. V and VI. These
expressions are obtained by considering renormalization
of 0& at zero momentum.

It is straightforward to show that

Using Eqs. (2.7), (2.8), and (2.13) one obtains

&
0'-»

& =fnite+(n —4) & 0, &""+GZ-'&a'y'& f d "x 0, = —S+ ,' f—$ d "x + ff d "x .
5$

(4.1)

(3.4)

In the following sections we shall investigate if it is possi-

The last two terms on the right-hand side are finite opera-
tors. &S & can be obtained by following the procedure
of Refs. 10 and 17. The final result is

R A. g R+~ ' fdx(X+X) + ' —2 ' fdxX,
E AE g6

(4.2)

Hence,
e„'-.'=o„.+ "

(a„a —g„.a')y'
4(i —n

VM
Z12 ~ Z»+Z16 2

E

3'm f3 2'
E A6' gE

(4.3)

V. IMPROVEMENT-TERM DEPENDENCE
OF THE FORM G(E, A,Dp ', gop ')

From the fact that the right-hand side of Eq. (4.2) has
only simple poles in e, it follows that & 9 & is finite at zero
momentum. Finiteness of &8"„& at zero momentum and
to first order in q can be established along the lines of
Ref. 3 using the conservation equation.

It should be noted that the above procedure does not
yield Z, ~ and Z, 6 separately because f d "x 05
= fd "x 06. From Eq. (4.3) it only follows that
Z»+Z&6 has simple poles. However, the theory has a
charge-conjugation invariance and the operator 0& is
charge-conjugation invariant. Hence the operator
0~ —06=ia"(gy„g) which is odd under charge conjuga-
tion cannot appear as a counterterm for 0, . Hence only
the combination 05+06 can appear in the expression for
&Oi & . This requires that Zi5=Zi6=y/e.

gimp gP~ P~

G(e, goy ', hop ')
1 7l

n 2 +
4(1 n)—

where

x(a„a —g„a )p (5.1)

G(e, gop ', Aop )= g G2. (e, k& ')(gop ')",
r=0

(5.2)

where G2„(e,A~ ') are finite functions of A, o.
From Eq. (3.4) and the fact that Z, . (j =1,2, . . . , 7)

involve simple poles, it follows that

& 6™"& =finite+ [—eZ, 8+ G(e, goy ', Aoit, ')ZM']

is finite at zero momentum. Explicit calculation shows
that it is finite only up to 0(A, ) at g=0, up to 0(g ) at
A. =O and also in 0(Ag ), but a finite improvement is
necessarily needed in 0(A, ), 0(kg ), and 0(A, g ) [see,
for example, the Appendix].

In this section, we shall consider a further improve-
ment, where the improvement coefficient G is a Pnite
function of bare coupling constants:

As shown in the previous section, the energy-
momentum tensor x & a2p2&i~ (5.3)
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For future convenience, we shall reexpress this as follows:

G(e, goy ', ApiL» ') = e—G(e, g pI» ', A~ '),
Gz„(e,kpiM ') = —eG2„(e, Apit» '), (5.4)

(0„' ~")=finite —eX(B P )

where

(5.5)

where now G2, (e, k.op ') may also contain 1/e terms
when expanded in powers of e and (AoiM '). We thus
have

18
~M 18

Bg

must find a G(e, gpiM ', A, oiM
') such that X given above

does not contain worse than simple poles. We shall show,
in what follows, that it is not possible to do so consistent-
ly except at g=0.

For this purpose, we shall use the renormalization-
group (RG) equation satisfied by Z&s, which can be de-
rived straightforwardly from Eqs. (2.18) and (2.19) fol-
lowing the procedure of Appendix C of I. It is

(
—«+p ) + — +ps

~Z18 g E

aA, 2

X =Zis+G(e, goI» ', Lop ')ZM' . (5.6) 11 V18+ 17 F78 ' (5.7)

Thus to obtain a finite energy-momentum tensor, one Substituting from Eq. (5.6) for Z, s and using

p [G(e,gpp ', Au»» ')ZM']=2yMG(e&gp/l &Au»» )Z~ +ZM p G(e&gpi»» ', An»» ')
Bp Bp

=2FMG(e goP ', AoI» ')Zw'+ZM'P g Gi„(e,AoP )(g pP )
n=O

one obtains an equation satisfied by X:

(5.8)

( —«+p )
~~

+ — +p —2y~X —Ziiyis —Zi7)'7s= —e g (gpiL» )" nG2„+ kpp ZM2 Bg „=p
"

B(&()p ')

(5.9)

Now, suppose it were possible to choose G„'s such that X
has no worse than simple poles (which would imply the
existence of a finite energy-momentum tensor). Then as
Z11 and Z17 have only simple poles, the left-hand side of
Eq. (5.9) has at worst simple poles and hence so does the
right-hand side. Hence

oo BG2n
e g (gpiM ')" nG~+ A(gc

' ZM'
B(A,(gc ')

VI. IMPROVEMENT-TERM DEPENDENCE
OF THE FORM G ( e,g, A, )

In this section we shall consider an improved energy-
momentum tensor of the form

2
gimp —g + n 2 + G &~g &~

(g g g2 )y2
4(1 n) —1 n—

(6.1)

=finite . (5.10)
where G(e,g, k) is finite for finite g and A. at a=0. Re-
tracing the steps of the previous section, we obtain

Then, following the same reasoning as in I, the above
equation, after using Eq. (2.21), implies that

G2(e', A, (gc ') =0 . (5.11)

This implies that the improvement term in Eq. (5.1) is
consistent with the finiteness of (0„""~»') in 0(g A, ") only
1f

(e™~) =finite —~X(a'y')',
where

X =Z, s+G(e, g, A, )ZM'
and

G (e,g, k. ) = ——G(e,g, A, )
—= g g "G2„(e,A, ) .

1-
n=0

(6.2)

(6.3)

G ( E,g pp, kpiM ) = Go ( E ) +0 ( g ) (5.12)
As in Sec. V the RG equation satisfied by X can be ob-

tained and rewritten as [see II Eq. (6.4)]
i.e., only if the improvement term obtained to 0(g ) is
sufficient even to 0(g ). But this contradicts the result
in the Appendix that an additional improvement term is
necessarily neeed to make 0„ finite in 0(A, g ). Hence,
we conclude that it is not possible to find an improved
energy-momentum tensor of the form given in Eq. (5.1)
which may be finite even to 0 (g A, ").

(
—«+p ) + — +p' 2) ~X Z—») is Z—i7r7s—~ BX eg

( —A, +P) + — +P Z
BA. 2 Bg

(6.4)
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As before, the existence of (6™") implies that

e ( —Xe+P ) + — +Ps Z~'=finite .
BG gc BG
Bk 2 Bg

G(e, g2, A, ) =Go(e)+0(g"), (6.6)

and hence as argued at the end of Sec. V, it is not possible
to find an improved energy-momentum tensor of the
form given in Eq. (6.1), which may be finite to 0 (g A, ").

(6.5)

Again, following the same procedure as in I and II and
using the value of ps from Eq. (2.14), Eq. (2.20) together
with the above equation implies that

APPENDIX

It was shown in both Secs. V and VI that, in order that
X has no worse than simple poles to 0(g ), it was neces
sary (but not sufficient) that G was a function of e only.
Now we show explicitly that even in this case X does
have double poles to 0 (A, g ). The proof proceeds exact-
ly analogous to Appendix A of I.

The double poles in X =Z» —Go(e)ZM' arise entirely
from those in Z» in 0 (A, g ), since Go(e) [which is the
same as go(e) of I and II] begins as 0 (e ) (Ref. 7). Direct
calculation shows that Z&g has no worse than simple
poles in 0(lg ) and the simple pole term is nonvanish-
ing. The double-pole term in Z, s in 0(A. g ) is obtained
using the RG equation satisfied by Z, g:

( —Xe+p ) + — +ps
aA, 2

~Z18 p——2X~Zig =
Bg kF

pA. pg+ ——2-
XE g6'

BZ ]g g BZ]g
2 Bg

Z7g g ~Z7g(&) (1)

Bk 2 Bg

Following the same procedure as in Appendix A of I and
using (a) Z, s and Z7s vanish to 0 (g ), (b) Z7s vanishes at
g=O, (c) at g=O, Z, s begins as X, (d) Z» —Z7s has Ilo
poles in 0(A,g ), since

o0 —0 =—
4t

(see II), and (e) Ps has no term of 0(kg) as verified by
direct calculation, one obtains

Z, s(2, )
——

—,(p2 —2yM' )Z is(, , ) &0(2) j I(1) (&)

as neither factor vanishes. (Note that 2yM is the same
as 2y") of I and II.) Here Z'is'( „) is the coefficient of
A. g "/e" in Z&g.

Hence, Z&g and therefore X does have double poles in
0(A, g ). Therefore, the improvement coefficient Go(e)
obtained from 0(g ) calculation does not suffice in
0 (A, g ) to make 0„' " finite to this order.

J. Lowenstein, Phys. Rev. D 4, 2281 (1971);E. C. Poggio, Ann.
Phys. (N.Y.) 81, 481 (1973);K. Yamada, Phys. Rev. D 10, 599
(1974).

C. G. Callan, Jr., S. Coleman, and R. Jackiw, Ann. Phys.
(N.Y.) 59, 42 (1970).

D. Z. Freedman, I. J. Muzinich, and E. J. Weinberg, Ann.
Phys. (N.Y.) 87, 95 (1974).

4D. Z. Freedman and E. J. Weinberg, Ann. Phys. (N.Y.) 87, 354
(1974).

~D. Z. Freedman and S. Y. Pi, Ann. Phys. (N.Y.) 91, 442 (1975).
J. C. Collins, Phys. Rev. Lett. 36, 1518 (1976).
J. C. Collins, Phys. Rev. D 14, 1965 (1976).
L. S. Brown, Phys. Rev. D 15, 1469 (1977); L. S. Brown and J.

C. Collins, Ann. Phys. (N.Y.) 130, 215 (1980).
S. D. Joglekar and Anuradha Misra, Ann. Phys. (N.Y.) 185,

231(1988).
S. D. Joglekar and Anuradha Misra, Phys. Rev. D 38, 2546
(1988).

S. D. Joglekar and Anuradha Misra, preceding paper, Phys.
Rev. D 39, 1716 (1989).

2'. 't Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972).
' G. 't Hooft, Nucl. Phys. 861, 455 (1973).

I M2 Z
XM VM Mp Z M

+ 1 p ]nZ
Bp

J. C. Collins, A. Duncan, and S. D. Joglekar, Phys. Rev. D 16,
438 (1977).

'

' It has already been shown in I that A. is not multiplicatively re-
normalizable. The same argument holds here. In Yukawa
theory, the scalar mass is also not multiplicatively renormal-
izable due to the presence of diagrams for the scalar propaga-
tor [such as the single fermion loop diagram in O(g')] which
give contributions proportional to m .

is a multiplicatively renormalizable operator since there is
no dimension-2 operator it can mix with. Its renormalization
constant Z~' can be obtained by dividing Eq. (2.10) by Mo
and putting I=0 as this renormalization constant is mass in-
dependent in the MS scheme.
Here y~ and yM are not the same in contrast with scalar
QED and non-Abelian gauge theory (NACHT). The reason
lies in the fact that Mo is not multiplicatively renormalizable.
One may verify that


