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Energy-momentum tensor in theories with scalar fields and two coupling constants.
I. Non-Abelian case
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In this paper, we generalize our earlier discussion of renormalization of the energy-momentum
tensor in scalar QED to that in non-Abelian gauge theories involving scalar fields. We show the

need for adding an improvement term to the conventional energy-momentum tensor. We consider
two possible forms for the improvement term: (i) one in which the improvement coefficient is a
finite function of bare parameters of the theory (so that the energy-momentum tensor can be derived

from an action that is a finite function of bare quantities); (ii) one in which the improvement
coe%cient is a finite quantity, i.e., a finite function of renormalized parameters. We establish a nega-

tive result; viz. , neither form leads to a finite energy-momentum tensor to 0 (e k').

I. INTRODUCTION

Energy-momentum tensors in quantum field theories
are of great importance and the finiteness of energy-
momentum tensors have received a good deal of atten-
tion. ' ' To understand the significance of a finite
energy-momentum tensor, consider the coupling of
matter fields to gravity in the weak-field approximation
(i.e., keeping terms linear in h„). It is of the form
0„h"'. A process 3 ~B in which gravitational waves
are emitted will have a matrix element (B~0& ~

A )h"
which, being observable, should be finite. Hence there
should exist an energy-momentum tensor 0„of matter
fields which has finite matrix elements to all orders.

In theories with scalar fields, it is known that the
energy-momentum tensor obtained from

2 6S
pv

(where S is the straightforward generalization of the fiat-
space action coupled to gravity) does not lead to a finite
energy-momentum tensor. An improvement term has to
be added. In I P theory for concreteness the improve-
ment term is proportional to (B„B,, —t) g„„)P . This term
can be derivecl from a term proportional to RP added to
S. Now the crucial question is whether this term added
to S is multiplied by a coupling constant Ko, which is in-
dependently renormalized, or the coefficient of this RP
term is a known function of known bare parameters of
the theory and needs no independent renormalization.
The two cases are qualitatively diAerent in that in the
first case an additional piece of experimental information
is needed to fix the theory, this information being the
"root-mean-square mass radius" of the scalar particle.

The second possibility, in which the coe%cient of the
RP term is not independently renormalized, is realized
in the case when one can find the energy-momentum ten-
sor 0„'„„which is a finite function of bare quantities. Con-
sider

g(e, A,ott ', . . . )
S=So+

2(1 n)— (1.2)

This action is a finite function of bare quantities as an ac-
tion should be. Moreover, it leads to finite matrix ele-
ments (to first order in h„) for processes A ~B in which
gravitational radiation is emitted. Thus there is no need
to invoke an independent renormalization of the R P
term. This possibility of constructing an improved finite
0„' which is a finite function of bare quantities has been
called the "finite improvement program" in Ref. 4.

In theories in which the finite improvement program
works, no independent renormalization of the RP term
is needed only in the case in which gravity couples to
matter through an action S of Eq. (1.2). It can still cou-
ple to matter through a term of the form h"'0„" where
0„" is not obtained by finite improvement, This requires
addition of a term of the form —,'tcoRP, where tco is in-

dependently renormalized. Vr'hich of the two possibilities
is realized in reality is a matter for experiments to decide.
But in such theories there is at least the possibility that
gravity can couple to matter via S of Eq. (1.2). In this
case there is an experimental prediction for a mean-
square mass radius of particle(s) not possible in other
theories in which Ko is independently renormalized.

The finite improvement program has also been alterna-
tively interpreted by Collins ' to mean the construction
of a finite 9„', in which g is now a finite quantity (i.e., a
finite function of renormalized parameters at n =4). In
this case also, no new experimental input is needed.

The earlier works on the construction of finite energy-
momentum tensors in the context of gauge theories
without scalars by Freedman, Muzinich, and Weinberg,

theory by Freedman and Weinberg, ' by Collins '

and by Brown have been summarized in the Introduc-

g (e, kott ', . . . )
=0„,+ (t)„t) —t) g„,)p

1

where g is a finite function at n =4 of bare quantities
such as k~ '. Such an energy-momentum tensor can be
derived from an action
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tion to Ref. 10. It has been shown that in all the above
cases there do exist energy-momentum tensors which are
finite functions of bare quantities. In A, P theory the im-
provement coeScient is a function g(e) of e only and is
finite at e=0 (Ref. 7) and hence also fits the description of
"finite improvement program" as interpreted by Collins.

The question arises whether the finite improvement
program holds in theories which contain scalar fields
(among other fields) and have more than one coupling
constant. In this series of papers, we shall investigate this
question in the context of theories having two coupling
constants such as scalar QED, non-Abelian theories with
scalars, Yukawa theory, and A,P" theory with two scalar
fields. In Ref. 10, we investigated this question for scalar
QED and reached a negative conclusion for either kinds
of finite improvement programs. In this paper we shall
investigate this question in the context of non-Abelian
gauge theories with scalars and reach the same negative
conclusion. This negative conclusion seems to be valid in
remaining two theories which will be reported separately.

The treatment of the problem in the context of non-
Abelian theories is very similar to that in the context of
scalar QED of Ref. 10, which we shall refer to as I. For
this reason we shall be very brief.

II. PRELIMINARIES

For simplicity we shall deal with a real scalar multiplet
in the vector representation of O(3) coupled to O(3) gauge
fields. Generalization to the O(N) group is straightfor-
ward. The Lagrangian density is

X=XO+X +X „, S=fXd "x, (2.1)

where

1F&gaP&+ 1(D y)T(DPy) 1m2yTy (pe)2
Xo

W[J,J„,g, i)]=—fDADA„DC DC
1

X exp i f d" x(X/a+ JP+ J„'Ag

+C 'il'+ i) 'C')

(2.3)

where W[0]= 1 and a is the loop expansion parameter:

Z [J,J„,ii, vy]= i ln—W[J,J„,vg, Fg],

4&;(x)=, C'(x) =6Z , 6Z
5J, x '

A„'(x)=, , C '(x)=-5Z —, 5Z
5J'"(x ) 571'(x )

I [@,A„,C, C]=Z —f d "x(J @+J„A"+gC+Cil) .

(2.4)

(2.5)

(2.6)

In the MS scheme the renormalization transformations
are

y=Z'"y" m'=m'Z

Ao=p'[AZ2+5A(e)], co=@'e Z, ,

A„=z,'"A,', g, =z,g=z
Z 1/2CR C Z 1/2C R

(2.&)

where p is an arbitrary parameter of dimension of mass.
5A. in Eq. (2.7) starts as O(e ).

The renormalized Green's functions, connected
Green's functions, and proper vertices are generated, re-
spectively, by W [J",J,ri, i) ], Z [J,J„,g",g ],

W[ ,JJ,g, ]r,)and J =Z' J, etc.
Equations of motion imply that

Xs= —
—,'+go(B A') (2.2)

(2 &)

& h
=8"C 'D ', C

and

D„P=(r)„ieoT'A „')P, —

F„'.=a„A: a.A „'+e,f"'A—„'A:,

T being the adjoint representation of O(3) satisfying

C —C —C M C =finite
a a

C, = C, =finite .

Also one has

(mog P) =(mog P) =finite .

(2.9)

(2.10)

(2.11)

(2.12)

[7~, T ]=if~ ~7'

We shall work with dimensionally regularized quantities
and use the minimal subtraction (MS) scheme. "' The
unrenormalized but dimensionally regularized CJreen's
functions, connected Green's functions and proper ver-
tices are generated, respectively, by [W, J„,J, ii],21

Z[J,J,Ti, ri], and I [C,A„,C, C] with

Furthermore 8 (P P) is a multiplicatively renormalizable
operator:

[$2(/TED)]UR z —
1[$2(/TED)]R (2.13)

We shall use the renormalization group extensively.
Below we give the definitions and values of various
renormalization-group quantities (here, Z"' shall mean
the coe%cient of 1/e terms in Z, etc.):
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/3 (A, , e, e):—p = —
A,e+/3 (k, e)

~P kp, ep, mp Pp

oz(" az(" (])06k + e 0 gg(]) gg(] )

BA. 2 Be BA, 2 Be

= —
A.e+p2A, +

y(dj, e, g, e)=——,'p 1nZ=y(l, , e, g)= — Z'"—a = =Ra
Bp 2 BA,

y3(k, e, g, e)—:— 1nZ3 y3(A e g) Z3 3

1 0 k 0 (, ) e 0 (, )

z(])
Be

P'(A, , e, e) =p = — +P'(A. , e ) = — + Z,"'+ed(,
0p 2 2 2 Be

(]) ~ (])— (])
y (X,e, e)=——

—,'p 1nZ =y (X,e)Z"'+ — Z"'=y"IX+

+0(e )+0(eA, ),
2

(2.14)

—(]) e ~ (])
y(X, e, g, e) =——,'p 1nZ =y(k, e, e) =— Z

Bp

The following set of operators is closed under renor-
malization:

az' az' ZRf dn OR g +1 + 1 JaR dn
e

6S02™od4, 03=/;
I

f d "x O,'= —2m' azR
Bm

f d "x O', = —f d "x J,', = f d "x O, ,
gzR

O 4 Pgga P P

where S=S+—,'go g (B.A ') d x,

0 6C'

0 = 'F' g '" + 'g g (—8 A ')—
0,=-,'g, y(a. ~')', o„=a'(y'y) .

(2.15)

gzR
f 8

"x 0~ = —f d"x J'x
x +2(f d "x 0",

)

+ d'X OR

fd"x 0~5= f d"x i/. (x) = fd"x 0, ,
gzR

5i), (x)

f ez R gzR
nx OR }e + 1 dn& gaR

6 2 ge 2 P gJaR

ZRf d"x O,"=—g

(2.16)

(2.16)

We note that, at zero momentum,

Here renormalization of f d "x 04 has been defined in
terms of that of f d "x 0~ and f d "x 07 using the identi-

ty

as , as , . as

fd"x O, = —2m,' BS
CIPl 0

f d "x O, =-'e, ' f d "x—26 2 0 ye ~ Pgga0 p

(2.1S')

gzRf d "x 0~ = —f7'„.d "x+2 f d "x 0,)p

+ d'x 05

We shall define the renormalization matrix by

(0 )UR Z (0 )R

Then,
(2.17)

fd"x0 as
7 ops.

and hence define'

Z j p Zjp p p finite at e=0 (2.18)

Information on the structure of the renormalization ma-
trix is obtained from Eqs. (2.8)—(2.13). Mixing of 07 is
discussed in Appendix 8 and there it is shown that it can



39 ENERGY-MOMENTUM TENSOR IN THEORIES. . . 1719

mix only with 03,04, 05. Mixing of 04 is also discussed
there and it is shown that it can also only mix with 03,
04, and 05. This leads to the following structure for the
renormalization matrix:

H(A, , m, e)Z ~'o~(A, , e)=finite at e=O

keeping A, and I finite and fixed, then

H(A, , m, e)=0 . (2.20)

Z=

11 Z 12 Z 13 Z 14 1S

0 1 0 0 0
0 0 1 0 0
0 0 Z43 Z44 Z4s

0 0 0 0 1

Z61 Z62 Z63 Z64 Z65

0 0 Z73 Z74 Z7s

Z16 Z17 Z18

0 0 0
0 0 0
0 0 0

0 0 0

Z66 Z67 Z68

0 1 0

Second, as shown in Ref. 9, if

rn0F XPP , 2, E
p

is a finite function (at e=O) of A,ui»
' and mo/p, and if

07'
F A, ui» ', , E Z ~'Oi(i, , e)=finite at e=O

p
0 0 0 0 0 0

We expand Z ' in powers of e:

Z '=Z ('0)+e Z ('2)+e Z ('4)+

0 Z-'

(2.19)

keeping A, and m fixed and finite, then

2Pl 0F A~ ', , e =0 .
p

(2.21)

We now state two results needed in Secs. V and VI. As
shown by Collins, if H(i, , m, e) is a finite function of A, , m
at @=0and

III. IMPROVED TRACE

We work with the energy-momentum tensor

0„,= g„L, —F„' F'„+—,'[(D„p) (D—p)+(v p)] a„c.D'„"c,——a.c.D„"c,—g„,g,(a ~)'+g,a„(a.~')~;
+g,a.(a ~ )~„—g„,g,aqa ~ )g; . (3.1)

This energy-momentum tensor has finite matrix elements at q =0 and to first order in the external momentum q (Ref. 3)
but not to second order in q. The most general improvement one can add to g„ is parametrized as

gimp g + n + g
4(1 —n) 1 n—(a„a.—g„,a')(p p)=&„ + (a„a —g„,a')(p p), (3.2)

where g„ is the energy-momentum tensor obtained from the conformally invariant action. Here g is a free parameter
for which we shall be trying specific forms in Secs. V and VI, respectively, as mentioned in the Introduction. The trace
of g„' p is easily verified to be

0' ""=(n—4)P

X0
(P P) + ,'F„'g'" + ,'go+—(aA') ——(n —2)C

a

n —2 6S
2 ~'Sy

—(n —2)a~[( (a g )g —C D„C ]+m p p+ga (p it') . (3.3)

It is shown in Appendix 8 that a"[go(a A ') A '„—C,D„' Ci, ] is a finite operator. Now using Eqs. (2.8), (2.10), (2.12), and
(2.13) one obtains

(8& ")=finite+(n —4)(0i ) +gZ '(a (P &f&) ) (3.4)

In the following sections we shall investigate if it is possible to choose g in either of the two ways mentioned in the In-
troduction so that ( 8™i') is finite.

P

IV, EXPRESSIONS FOR Z] J.

In this section we shall use the techniques of Ref. 10 to obtain expressions for Z„. (j = 1,2, . . . , 7) which are needed
in further investigations of Secs. V and VI. These expressions are obtained by considering renormalization of 0, at
zero momentum.

It is straightforward to show that
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dx 0 = dx — +—'I' '" +—' BA'O

a

= —S+—,'; d'x+ C,M' Cbd'x .
6S

I

(4.1)

The last two terms on the right-hand side are finite operators. (S ) can be obtained following the procedure of Refs.
10 and 14. We skip the derivation and give the final results:

d x 0) = —S +—;d x + C M'"Cbd x

1 — ' fd" 0 — fd" 0 + ' fd" 0
A, E

x x

T

+ (fd" xO~) +

+ —2 (Jd"x 0,)+ (ld "x 0,
)

. (4.2)

Hence

Z 111 14

where g„(e,intro) are finite functions of Ao.

From Eq. (3.4) and the fact that Z1~ (j =1,2, . . . , 7)
involve only simple poles, it follows that

Z
P'
ee

(4.3) (e~™")=finite+[ —eZ, 8+g(e, eop ', i1~ ')Z ']

x ( a2(pe) )R (5.3)

As Zi . (j = 1,2, . . . , 7) have only simple poles in e, from
Eq. (3.4) it follows that (e™1') is finite at zero momen-
turn, a result known also from Ref. 3.

V. IMPROVEMENT- TERM DEPENDENCE
OF THE FORM g(e, epp A,pp )

For future convenience, we shall reexpress

g(e, eop ', Auu ')= eg(e, eo—p ', i1~ '),
g„(e,A,uM ') = —eg„(e,A,op, '), (5.4)

As shown in the previous section, the energy-
momentum tensor

where now g„(e,A,oui ') may also contain 1/e terms when
exPanded in Powers of e and (Aolt, '). We thus have

e„'-.~'=e„,+ ", (a„a.—g„.a')y'y/l'v /lv 4 1 P v Pv ( e~™") = finite —eX ( a ( p p ) ) (5.5)

2 d g d
n —2 g e eoP ~o1M

4(1 n)—1 —n

x (a„a.—a'g„.)(y'y), (5.1)

where

is finite at zero momentum. Explicit calculation shows
that it is finite only up to 0(k ) at e =0, up to 0(e ) at
i1, =0 and also in 0(ke ), but a further improvement is
necessarily needed in 0(k ), 0(Ae ), and 0(A, e ). (See,
for example, Appendix A. )

In this section, we shall consider a further improve-
ment, where the improvement coefficient g is a finite
function of bare coupling constants:

where

X=Z18+g(e, eop, ', 2(.o1M ')Z (5.6)

Thus, to obtain a finite energy-momentum tensor, one
must find a g(e, eoP, ', Aolt, ') such that X given above
does not contain worse than simple poles. We shall show,
in what follows, that it is not possible to do so consistent-
ly except at e =0.

For this purpose, we shall use the renormalization
group (RG) equation satisfied by Z, 8 which can be de-
rived straightforwardly from Eqs. (2.18) and (2.19), fol-
lowing the procedure of Appendix C of I. It is

~Z&8
( —2(.e+g ) +

aA.

g(e, e(')p ', d(,18M
')= g g,„(e,Roid, ')(eop ')",

r=0
(5.2)

Z1 1 Y18+Z163 68

Substituting from Eq. (5.6) for Z, 8 and using
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p, fg(e, eap ', ADp ')Z ']=2@ g(e, eap ', Rap ')Z '+Z 'p g(e, e0p ', Rap ')

=2y g(e, eap ', ADp ')Z '+Z 'p, g gz„(e, ADp ')(e0p ')"
~~ n=O

one obtains an equation satisfied by X:

(5.&)

~ BX ee,BX,„gz
(
—Ae+P ) + — +P' —2y X—Ziiyis —Z, 6y6s= —e g (eap '}" ng2„+, Lap ' Z

Bk 2 Be „B(gyp, ) (5.9)

Now, suppose it were possible to choose g„'s such that X
has no worse than simple poles (which would imply the
existence of a finite energy-momentum tensor). Then, as
Z» and Z&6 have only simple poles, the left-hand side of
Eq. (5.9) has at worst simple poles, and hence so does the
right-hand side. Hence,

oo ~g2n

B(X,p-')

(5.10)

In I we solved the same equation in the context of scalar
QED using the result of Eq. (2.21) and it was shown that
Eq. (5.10), when considered up to O(e ), implies that

momentum tensor of the form given in Eq. (5.1) which
may be finite even to O(e X").

VI. IMPROVEMENT TERM DEPENDENCE
OF THE FORM g(e, e, A, )

In this section we shall consider an improved energy-
momentum tensor of the form

gimp g + n 2 + g er~e ~~
(B B B2 )pe

4(1 n) — 1 n—
(6.1)

where g(e, e, i, ) is finite for finite e and A, . Retracing the
steps of the previous section, we obtain

g2(e, ki) p ')=0 . (5.1 1) (g™")=finite —eX(B (P P)), (6.2)

This implies that the improvement term in Eq. (5.1) is
consistent with the finiteness of ( g™i') in O(e A, ") only
if

where

X=Z»+g(e, e, k)Z

g(&, e0p ', &ap ')=g0(e)+O(e4), (5.12) and

i.e., the improvement term obtained to O(e ) is sufficient
even to O(e ). But this contradicts the result in Appen-
dix A that an additional improvement term is necessarily
needed to make g„ finite in O(k e ). Hence, we con-
clude that it is not possible to find an improved energy-

g(e, e2, A)= ——g(e, e,A)= g e "gz„(e,A) .1-
n=0

(6.3)

As in the previous section, the RG equation satisfied by X
can be obtained using

p g(e, e,k)=( —Ae+P ) + — +P'8 ~ Bg em, Bg

Bp BA, 2 Be
(6.4)

and reads

( Ae+P ) —+ — +P' —2y X—Z„y, 8
—Z,6y6s=+ ( Ae+P —) + — +ig' Z ' . (6.5)

As before existence of finite ( g™i') requires that X has
at worst simple poles in e. If it were possible to choose
g(e, e, A, ) such that X has no worse than simple pole,
then as in the previous section, Eq. (6.5) implies that

We considered Eq. (6.6) in I, in the context of scalar
QED with help of the result of Eq. (2.20). Following the
same procedure one obtains, in the present case also,

g( ee, A, )=g (0e)+ O(e } . (6.7)

e ( —A,e+P ) + — +f3' Z '=finite .~S «
BA. 2 Be

(6.6)

This is exactly analogous to Eq. (5.12) and from the
discussion below Eq. (5.12), it follows that it is not possi-
ble to find an improved energy-momentum tensor of the
form given in Eq. (6.1) which may be finite even to
0 ( e A,

").
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APPENDIX A

It was shown in both Secs. V and VI that, in order that
X has no worse than simple poles to 0(e ), it was neces
sary (but not sufficient) that g be a function of e only.
Now we show explicitly that even in this case X does
have double poles to 0(A. e ). This proves that for no
choice of g of either forms chosen in Secs. V and VI does
X have no poles worse than simple poles. The proof

proceeds exactly analogous to Appendix A of I.
The double poles in X=Z, 8

—go(e)Z ' arise entirely
from those in Z, 8 in 0(A, e ), since go(e) begins as 0(e )

(Ref. 7). Direct calculation shows that Z, 8 has no worse
than simple poles in 0(A,e ) and the simple-pole term is
nonvanishing. The double-pole term in Z18 in 0(A, e ) is
obtained in terms of simple-pole term in Z, 8 in 0(A.e )

via the renormalization-group equation satisfied by Z, 8:

( —
A,e+p ) + — +p' —2y Z, 8

= 1 — y, 8+ —2 y68
BZ18 eE. BZ18 13 13 /3

Bk 2 Be '
A,e '

A.e e e

a Z(1) —e a Z(1)
2

P' 2P'
AE eE'

(&) e ~ (1)
68 2 g 68 (A 1 )

Following the same procedure as in Appendix A of I and
using (a) Z» and Z&8 vanish to 0(e ), (b) Z&8 vanishes at
e =0, (c) at e =0, Z, 8 begins as A, , (d) Z„—Zb8 has no
poles in 0(le ) because 0, —06= —Ao(P P) /4! needs
no counterterms proportional to 08 in this order, (e) p'
has no term of 0(A,e) as verified by direct calculation,
one obtains

18(&, 11 3 () 2 Vm )Z1811,11+0(2) 1 (&) (])

as neither factors vanish. Here Z(&8'(, ) is the coeKcient
of A, e '/e'in Z, 8.

Hence, Z&8 and therefore X does have double poles in
0(A2e2). Therefore, the improvement coefficient go(e)
obtained from 0(e ) calculation does not suffice in
0(A, e ) to make 8™1' finite to this order.

APPENDIX a

We consider the operator

0 = —
—,
' go+( B.A ') +C, r)"D „' Cb .

It is easy to show that 0 is invariant under Becchi-
Rouet-Stora (BRS) transformations. If one considers an
action with a source term added that couples to 0,

~'=&+ f 0(x)X(x)d "x,

then S' is also BRS invariant. From this fact it is easy to
show that the Ward-Takahashi (WT) identity satisfied by
the divergent part of the generating functional for proper
vertices with one insertion of 0(x) is identical to that
satisfied by the corresponding generating functional for a
gauge-invariant operator. Hence it can only mix with
those operators that mix with a dimension-four Lorentz-
scalar operator. These operators are (0, -07 ) 03 03,
(0&-07), and 08. Now from equations of motion of the
antighost field it is easy to show that C, B"D„' Cb is a
finite operator. Furthermore

(
—

—,g,cia ~ )')

satisfies the WT identity

——fog[~ ~'(x)]'+-'C»D "C (x) = —C. (x)a ~'(x) f a "x'gab(x )Db"C, (x )

+J (x')fbd, pd(x')C, (x') 7)b(x') ,'e„f.b, C, (x')—C, (x')—
—

—,'g, [a ~'r '», I &1) . (81)
Note that each term on the right-hand side is proportional to a source. Hence the only operators from the above set

consistent with Eq. (Bl) are 0, , 04, 0, . Hence only Z73 Z74 Z75 are nonzero while Z77 is 1.
The operator 04 is a class-I gauge-variant operator' and can only mix with other class-I operators (here 03 and 04)

and with class-II operators (here 05). Next we comment on the closure of the set 0, (i =1, . . . , 8) under renormaliza-
tion. (0,-07), 02, (0&-07), and 08 are gauge-invariant operators which do not vanish by equations of motion and
from the results on the renormalization of gauge-invariant operators' they can only mix with themselves and operators
03 04 05 Hence the set 0, (i = 1,2;. . . , 8) is closed under renormalization.

Next, we shall show that the operator

Oi g Aa(g Aa) C aDabC
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is a finite operator. This follows from the WT identity that

(r A'(x)B A'(x) —(:'(x)D'„(:(x))=((c'(x)A'„(x)1 dx'[J( x)D„(: (x')+J (x')f, () (x')c(x')
—g~(x') —', eof„~, (.o(x') —(rD((). A )q~(x')]) . (82)

This WT identity is very similar to that satisfied by A„(x)t) A (x) given in Appendix B of I for the case of scalar
QED, in that each term on the right-hand side is proportional to a source. The argument given there following Eq. (BS)
based on dimensions and global gauge invariance applies here also and the right-hand side of Eq. (B2) is finite, proving
the finiteness of 0'.
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