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Nonlocal Noether currents and conformal invariance for super chiral fields
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We find an infinitesimal transformation relating the parametric-conformal symmetry in super
chiral fields. This allows us to derive an infinite set of nonlocal Noether currents and to form an
infinite-dimensional conformal algebra.

I. INTRODUCTION

The concept of an infinite set of conserved Noether
currents in (1+1)-dimensional field theories has received
considerable attention. Such sets have been found both
for quantum and classical theories such as the principal
chiral model' and the Heisenberg model. ' The ex-
istence of an infinite set of conserved Noether currents is
closely connected to the existence of an infinite-
dimensional Lie algebra, the well-known Kac-Moody
algebra which acts on the solution space of a nonlinear
system. The explicit expressions of the infinitesimal
transformations for this type of hidden symmetry, which
change the Lagrangian density by a total divergence and
give rise to the desired nonlocal Noether currents, have
been well developed.

However, it is interesting to notice that there exists
another type of hidden symmetry which is known to al-
low for another infinite-dimensional Lie group, the so-
called Virasoro group in some integrable systems. This
means that the algebra is enlarged by a Virasoro algebra
forming a semidirect product with the Kac-Moody alge-
bra. In this paper we show that parallel developments
can be made for super chiral fields. To make sure of the
existence of another set of nonlocal conserved currents,
we propose new infinitesimal transformations and show
that they constitute symmetries of the field equations.
We also hope to be able to extend the hidden-symmetry
algebra for super chiral fields to the semidirect product
with the Kac-Moody and Virasoro algebras.

Here we would like to point out that there exist two
different types of Virasoro symmetries as well as those of
the Kac-Moody symmetries in two-dimensional chiral
models. One kind is involved in quantum field theory,
the other is considered in the classical case. According to
the pioneer work, the model with the Wess-Zumino term
possesses the Kac-Moody and Virasoro symmetries on
the two light-cone components. The algebra of genera-
tors corresponding to these symmetries, constructed from

the quantum commutators of currents and the energy-
momentum tensors, respectively, is calculated to be the
semidirect product algebra. Since there is a construction
of Virasoro algebra in terms of bilinears in the Kac-
Moody generators due to a connection between the
energy-momentum tensors and currents, both algebras
are thought of being relevant. At the classical level, the
existences of hidden symmetries under consideration are
independent of whether the model has the Wess-Zumino
term. In fact, hidden symmetries represent the sym-
metries of the gauge transformation and the conformal
transformation of the spectrum parameter which appear
in the linearization equations of the model. The Kac-
Moody and Virasoro algebras are, respectively, related
with the infinitesimal Riemann-Hilbert transformations
and have irrelevant structures. Moreover, unlike the
quantum Wess-Zumino model, the hidden-symmetry
algebras lack the central extensions and their representa-
tions are shown to be nonunitary and nonhighest weight.
Therefore, these different symmetries are used to describe
the difi'erent features of the chiral model at the quantum
and classical levels. So far the relationships between
them have not made clear yet.

II. NOTATION

[O, ,g]=O . (2)

is
With this notation the action of the super chiral fields

We first introduce notations which are in common use
in many references. Considering a super chiral field

g(g, q, 0„62) where g and g are light-cone coordinates
and 0& and 02 are anticommuting coordinates, the super-
potential 2; can be defined as

A;=g d, g (i =1,2),
where g is unitary and commutes with 0;:
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S = f dgd2) d9id8+(g, q, 8i, j92),

where

L(g, 2), 8„92)=tr(d, g "d2g )

and

(4)

With the help of the linearization equations (10), we can
obtain the identities

f«[d [k(y)0 '(y)]}~

= —f y tr(d, pd2$ '+d2pdip )

d=ae, '"ag

(6)

+ A2.

(15)

Thus we can derive the equation of motion from the La-
grangian density

(7)

According to the definition of superpotentials, they satis-
fy the curvature-free condition

and

f tr(d2$$ ')32= f tr[d, (pd2$ ')

where we used the fact that

(16)

and

d, A2+d2A, + [ 2 „A2}=0

did2 +d2di 0

(8)

(9)

f „, dy=0 for k)0.1

0~. y"+'(y —A, ')

Upon substituting Eqs. (15) and (16) into Eq. (13), 5X can
be expressed as a total divergence:

d, g(A, ) = — A, P(A, ), (10a)

d2$(A, ) = A 2P(A, ), (lob)

where t, } denotes the anticommutations.
It is not difficult to prove that Eq. (7) together with

Eqs. (8) and (9) is the integrability condition for the fol-
lowing linearization equations:

SX=f—tr[d, (pd2$ ') +d (2pd, p ')] .

This means that the action is invariant under the trans-
formation (12). We should bear in mind that integration
is only available to the parameter, not to the coordinates.

The derivation of nonlocal conserved currents from
this new hidden symmetry is straightforward. Using the
equation of motion, we easily get another expression for

where A, is a real parameter and 5X= —f tr[d, (PP ' A ) d(PP— ' A, )] . (18)

[0 ();]=0.

—d2[4'(y)4' '(y)l~ i } (13)

III. THE PARAMETRIC CONSERVED NOETHER
CURRENTS

Now we consider the infinitesimal transformation

2 2

.f, P(y)P '(y)dy, (12)
0~ y (y —

A, ')

where an infinitesimal constant is omitted, and Co&
denotes a circle surrounding y=O, X' in the complex y
plane, and P(y) satisfies the linearization equations (10)
with the parameter y. The overdot stands for
di6'erentiation with respect to the parameter. We can
verify that the Lagrangian density (3) is changed by a to-
tal divergence under the transformation (12).

In fact, from Eqs. (11) and (12), we find that

SX=—f trjd, [p(y)p (y)]22

Combining these two expressions of the variation of the
Lagrangian density, we obtain the conversation law

d j J2+d2Ji =0, (19)

where the parametric conserved currents J are defined by

(20b)

J, = f—tr(Pd P i') —f tr(fP 'A, )

= f tr(pp ' Ai),1+r (20a)

J2= f—tr(pd2$ ')+ f tr(pp ' A2)

= —f tr(pp ' A )1-y"
Expanding J, and J2 in powers of A,

' at A,
' =0, we can ob-

tain the infinite set of nonlocal conserved Noether
currents as one did for the Kac-Moody symmetry.

In addition to the invariance of the action, our trans-
formation yields the invariance of the equation of motion.
The proof follows from the fact that

where

1 ( 1 y2)2
4

0 i y "(y—A, ')
(14)

5 2, = —f—d, (PP '),

5 A2= f—d2(PP ') .

(21a)

(21b)
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In a similar way, we can also prove that our transforma-
tion makes the variation of the energy-momentum densi-
ty vanish.

IV. ALGEBRAIC STRUCTURE
OF THE SYMMETRY TRANSFORMATION

d, 5 p(A, ) = — 5 3,p(A, ) — A, 5 &p(A, ), (22a)

d28 P(A) = 5 A2$(A, )+ 2 25 P(A) . (22b)

In this section let us consider the algebraic structure of
the new infinitesimal transformation. To do it we need to
expand into the form 6=5' 'A, ' and then calculate the
commutator relations between 5' ' and 5'" (k, 1~0) to
make sure what algebraic structure they are.

In calculation we deal with the explicit expression of
the operator 5 acting on the generating function p(k).
From the linearization equations, we know that corre-
sponding to the transformation (12), 5 P(((.) should satisfy
the equations

cause the latter is not the symmetry transformation for
the fields.

We can express our transformations in terms of the
operators I.:

5 '"'$(X)=(Lk+4 —2Lk+2+Lk )P(((, ) . (27)

+5 (k+1))y (28)

for k, I ~ 0. Although these commutator realizations
seem to be strange and complicated, not so neat and
elegant as the usual forms of the commutator relations of
the Virasoro algebra, they certainly establish a represen-
tation of an infinite-dimensional Lie algebra, which is re-
lated to the conformal algebra.

It is well known that there exists the Kac-Moody sym-
metry for the super chiral fields which corresponds to the
infinitesimal transformation

By using Eq. (26), it is easy to give the commutator rela-
tions between 5 ' ' and 5 '":

[5 (k) 5(ll]y(g) (k ()(5 {k+I+4) 25(k+I+2)

We are led to
T(k)g 8 dy y

k 1
y T 1 (29)

5 p(A. )=— (1—y )

co,~, ~ y (y —
A, ')(y —A. )

XP(y )P(y ) 'P(A, ) (23)

T',"'P(A, )= — . fdy P(y)T, P(y) 'P(&) . (30)
2&l

The commutator relation between T'"' and f''" is calcu-
lated to be

by directly solving Eqs. (22). Then expanding it in
powers of A.

' at k'=0, we get [f (k) f (l)]y(g) —fc f (k+()y(g) (31)

(1—y )
k+4Co~ y (y g)

XP(y)P (y)P(k) .

It is also convenient to discuss the relations of the
difFerent types of the symmetry transformations. Using
integration forms of both transformations we find that

For the convenience of discussion, we introduce a new
set of operators I.k.

[5 (k) 7 (l(]P(g) I ( 7 (k+I+4) 27 (k+I+2)

+ 7 (k+l))y(g) (32)
—k

. f27Tl Cp
(25)

Using the previous results given in Refs. 5, we can easily
give the commutator relations

So we succeed in extending the hidden-symmetry algebra
into the semidirect product of the infinite-dimensional
loop algebra and conforrnal algebra.

f Lk, L(]P(A, ) = (k —1)Lk+(P(A. ) . (26) ACKNOWLEDGMENTS
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